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The treatment of metastatic colorectal cancer (mCRC) has improved since the
introduction of the epithelial growth factor receptor (EGFR) inhibitors as cetuximab and
panitumumab. However, only patients with peculiar genomic profiles benefit from these
targeting therapies. In fact, the molecular integrity of RAS genes is a predominant
factor conditioning both primary and acquired resistance in non-responders although
additional molecular derangements induced by selective anti-EGFR pressure may
concur to the failure of those disease treatment, liquid biopsy (LB) appears as a
surrogate of tissue biopsy, provides the genomic information to reveal tumor resistance
to anti-EGFR agents, the detection of minimal residual disease before adjuvant
therapies, and the discovery of tumor molecular status suitable for rechallenging
treatments with EGFR antagonists. LB investigates circulating tumor cells (CTCs), cell-
free tumor DNA (ctDNA), and tumor-derived exosomes. In mCRC, ctDNA analysis has
been demonstrated as a useful method in the mutational tracking of defined genes as
well as on tumor burden and detection of molecular alterations driving the resistance to
anti-EGFR targeting treatments. However, despite their efficiency in molecular diagnosis
and prognostic evaluation of mCRC, the affordability of these procedures is prevalently
restricted to research centers, and the lack of consensus validation prevents their
translation to clinical practice. Here, we revisit the major mechanisms responsible for
resistance to EGFR blockade and review the different methods of LB potentially useful
for treatment options in mCRC.
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INTRODUCTION

During the past 20 years, the adoption of monoclonal antibodies (mAbs) targeting the epithelial
growth factor receptor (EGFR) has led to a dramatic improvement in the survival of metastatic
colorectal cancer (mCRC) patients bearing RAS in its wild type isoform (RASwt). However,
extensive data from clinical trials conducted in the first-line setting showed that approximately 75%
of early responders to EGFR blockade undergo tumor progression within 12 months, while 20% of
patients are primary resistant and only less than 5% are actually long-time responders (1–5).

Therefore, to optimize therapeutic response for the management of mCRC, it would be key to
identify molecular mechanisms able to induce both primary and acquired resistance to anti-EGFR

Frontiers in Oncology | www.frontiersin.org 1 September 2020 | Volume 10 | Article 581130

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.581130
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fonc.2020.581130
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.581130&domain=pdf&date_stamp=2020-09-25
https://www.frontiersin.org/articles/10.3389/fonc.2020.581130/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-581130 September 24, 2020 Time: 19:51 # 2

Internò et al. Liquid Biopsy in Colorectal Cancer

mAbs, detect pre-existing gene alterations, and monitor the
onset of de novo abnormalities restraining cancer sensitivity
to anti-EGFR mAbs.

Recent studies highlighted the mutations of BRAF (B-raf
proto-oncogene serine/threonine kinase) and PIK3CA, as well
as the amplification of HER2/MET, among major events driving
resistance to anti-EGFR treatments (6, 7). However, these studies
were mainly conducted on tumor biopsies obviously requiring
invasive procedures, often limiting the genomic analysis of the
tumor to a single snapshot of a few cells (8). In addition, the
measurement of molecular patterns in tissue biopsies does not
represent the real-time molecular state of the tumor, and the
dynamic changes adopted by tumor cells to escape the selective
pressure of anti-neoplastic drugs.

In this contest, liquid biopsy (LB) has emerged as an
alternative test able to provide, during the course of treatment,
a tumor’s actual molecular profile, namely a real-time gene
assessment. LB is based on the detection and isolation of tumor-
derived components from body fluids, including nucleic acids,
circulating tumor cells (CTCs), and extracellular vesicles (EVs);
overall, it is a minimally invasive test easily providing the
molecular snapshot of a given tumor (9). Furthermore, this
procedure has many potential applications in CRC including
early diagnosis, detection of minimal residual disease, concurrent
molecular assessment, prognostic stratification, and monitoring
the response during treatments (10–13). It may also provide
real-time monitoring of the clonal evolution of a tumor during
its treatment, early detect the development of resistant clones,
and unmask disease progression much earlier with respect
to conventional radiological procedures. Recent technological
improvements have increased its sensitivity, thus allowing
the detection of minimal numbers of cancer cells harboring
molecular defects associated with resistance to EGFR blockade.
To this regard, LB using as substrate the cell-free tumor DNA
(ctDNA) has provided considerable application in tracking the
RAS mutational (RASmut) status, in order to refine the use
of anti-EGFR mAbs in CRC, while a limited experience exists
to date regarding either CTCs or EVs. Thus, based on both
scientific impact and suitability of this procedure, a number of
clinical trials are presently evaluating possible applications of
ctDNA obtained by means of LB in the management of mCRC
patients (14–16), although some unmet needs are still evident,
due to the lack of standardized methods and optimization of
pre-clinical variability.

Here, we discuss the role of LB in investigating the
mechanisms driving resistance to anti-EGFR therapies and
review the most recent clinical trials exploring its possible impact
on mCRC management.

MOLECULAR MECHANISMS OF
RESISTANCE TO ANTI-EGFR MABS

Understanding the molecular mechanisms that underly both
primary and acquired resistance to anti-EGFR mAbs is
mandatory to optimize treatment decisions in mCRC, and the
pre-existing RASmut status has been repeatedly described as the

predominant event responsible of therapeutic failure to anti-
EGFR mAbs in RASmut patients (17, 18). However, RASmut is
not the unique mechanism able to overcome the sensitivity to
EGFR blockade, since several other molecular alterations have
been described. Several derangements of the major pathways
involved in generating both primary and acquired resistances are
next described and summarized in Figure 1.

Primary Resistance
Two mechanisms have been proposed to drive primary
resistance. The first one depends on native gene mutations, not
related to RAS, that independently from the EGFR downstream
machinery activate the MAPK pathway signals. The other is based
on the activation of alternative pathways (19).

BRAF is a serine-threonine kinase involved in the downstream
signaling of EGFR. Mutations affecting BRAF and RAS are
mutually exclusive and occur in about 5–20% of mCRC (20).
Noteworthy, BRAFmut mCRCs include a distinct subset of
aggressive tumors that are frequently located within the right
colon and are associated with a defective mismatch repair
(dMMR) system or elevated mutational tumor burden (21).
Similarly to melanoma, the majority of BRAFmut polymorphic
variants hit the V600 codon, thus resulting in the constitutive
activation of the MAPK cascade with consequent inefficacy of
EGFR blockade, and poor responsiveness to systemic therapies
(20–22). The failure of anti-EGFR treatments in these patients
is also confirmed by the major effectiveness of intensified
treatments such as “FOLFOXIRI regimen” to restrain the tumor
progression, although the predictive role of BRAFmut has not
been defined in the response to cetuximab or panitumumab
(23). Since the possible benefits deriving from the combination
of anti-EGFR agents to chemotherapy are still debated in this
setting, the mutational analysis of BRAF is not currently used in
clinical practice, although promising results have been reported
by combining BRAF/MEK inhibitors with anti-EGFR agents such
as cetuximab (24).

Mutations affecting the Phosphatidylinositol-4,5-
bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA),
namely a signal transducer downstream of activated cell surface
growth factor receptors, have also been implicated in the primary
resistance to anti-EGFR agents, and are described in 3–5% of
patients. In fact, germline mutations affecting exon 20 are able to
induce a poor response to cetuximab or panitumumab, as a result
of the hyperactive proliferation signaling which is propagated
independently from EGFR activation. By contrast, activating
mutations of PIK3CA on exon 9 strictly depend on the EGFR
cascade, and require the interaction with RAS proteins, thus
maintaining the responsiveness to EGFR blockade (6).

Further molecular events driving primary resistance to
anti-EGFR mAbs involve the native activation of alternative
patterns, such as HER2/PTEN and AKT1 mutations, HER2/MET
amplifications, or NTRK/ROS/ALK/RET rearrangements (25,
26). Although these molecular alterations are rare in CRC
(1–5%), their frequency increases within the RAS-BRAFwt
population and may be assessed in this subgroup of patients
to predict the favorable response to anti-EGFR blockade.
In fact, these rare genetic alterations have been investigated
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FIGURE 1 | Molecular mechanisms driving the resistance to anti-EGFR mAbs in CRC cells. (A) The normal function of EGFR by EGF leading to the activation of
downstream proliferative signals (continuous arrows). (B) Anti-proliferative effects induced by cetuximab and panitumumab in sensitive RASwt CRC cells by disabling
the downstream cascade of the EGFR (dashed arrows). (C) Primary resistance mechanisms to anti-EGFR mAbs in RASwt cells include: (i) activating mutations of
downstream elements as BRAF, PIK3CA, and AKT; (ii) amplification of HER2 or MET receptors; (iii) rearrangements of ALK, ROS, RET or NTRK receptors.
(D) Acquired resistance mechanisms to anti-EGFR mAbs are: (i) mutations affecting the epitope of EGFR recognized by mAbs; (ii) activating mutations in downstream
elements, including BRAF, PIK3CA, or RAS genes; (iii) STAT3 phosphorylation; (iv) activation of parallel growth factor receptors (HER2/MET amplifications or IGF1R
activating mutations). The blue elements are normal functioning proteins or receptors, while those in red derive from gain-of-function mutations.

to evaluate the therapeutic response to both cetuximab- or
panitumumab-containing protocols in a prospective case-control
study, and at least one of these abnormalities has been
detected within the non-responders with a significant prevalence
(42.6%) (7).

Acquired Resistance
A percentage as high as up to 60% of patients develop disease
progression during treatments as a result of acquired resistance
to anti-EGFR antagonists. Therefore, relative molecular switches
and/or derangements may become new potentially druggable
targets to prevent cancer cell escape from the EGFR-signaling
blockade. Indeed, novel mutations within the binding domain

of EGFR have been described to impair the interaction
between this receptor and cetuximab, thus greatly limiting
its efficacy. Other mechanisms interacting with the parallel
downstream signaling are reported to induce hyperactivity
of the MAPK cascade and other RAS-independent pathways,
including STAT3 phosphorylation, and IGF1 activation, or
to generate de novo mutations of RAS, BRAF, and PIK3CA
as well as HER2/MET amplifications (27). However, these
mechanisms may be concomitantly activated and accumulate
as a direct consequence of selective anti-EGFR pressure which
primes the expansion of sub-clones constitutively resistant to
EGFR antagonists (28). Based on this limited information on
CRC genomic heterogeneity both in germline and somatic
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development, before planning treatments with anti-EGFR
blockers, it would be critical to investigate the dynamic molecular
landscape of CRC in order to suggest the most suitable
and hopefully efficient therapy to each patient in a precision
medicine environment.

LIQUID BIOPSY IN CRC CLINICAL
MANAGEMENT

Translational studies exploring the possible use of LB in CRC
have rapidly increased in the last decade and both quantitative
and qualitative contributions were derived from analysis of
CTCs, ctDNA, and exosomes (Exo) (29), which are directly
released by tumors in the bloodstream and can be thus easily
detected (Figure 2).

Circulating Tumor Cells
Circulating tumor cells are cancer cells detached from the
primary tumor and disseminated into the bloodstream to reach
distant sites in which they may generate metastasis. They have
been primarily proposed for quantitative analysis in breast cancer
to monitor prognosis and response to treatment, and their
peripheral counts are currently considered a suitable biomarker
of cancer activity in a number of tumors. To date, only the
CellSearch© device has been approved for CTC detection by
the U.S. Food and Drug Administration (FDA). This system
recognizes CTCs by recovering the epithelial surface marker
EpCAM through dedicated immunomagnetic adsorption and
live cytometry imaging (30). The peripheral CTC count by
CellSearch© is currently approved to measure the therapeutic
response in breast, colon, and prostate cancers. In mCRC, the
detection of ≥3 EpCAM+ CTCs in 7.5 ml of venous blood after
treatments is considered an independent factor that correlates
with unfavorable prognosis and short survival (31, 32). Despite
this evidence, the CTC count is rarely used for the clinical
management of mCRC for several reasons including the need
for expensive equipment, the time needed to perform the test,
not to take into account the fact that it does not provide clear-
cut therapeutic indications, thus not providing a real benefit for
patients (33).

Recently, an innovative system (DEPArray) was developed
to allow both detection and sorting of single CTCs by
either surface or cytoplasmic markers and by separation of
cells in relation to their dimensional and dielectrophoretic
movimentation properties as depicted in Figure 3 (34). This
methodology, however, appears more fruitful for qualitative
analysis of the genomic assessment of mCRC since, after the
identification of the cancer phenotype, it may isolate also single
cells. Thus, differently from CellSearch©, the DEPArray can
be used to detect CTCs expressing not only EPCAM, but
also mesenchymal markers typically occurring in epithelial-to-
mesenchymal transition (EMT), such as CD44, CD146, vimentin,
or N-Cadherin, which characterize the metastatic phenotype
(35). Hence, different subpopulations of CTCs are potentially
detectable by the DEPArray system in relation to tissue-specific

or cancer-associated functional markers (36), which otherwise
would not be appreciable using CellSearch©.

Despite limited experience in mCRC setting (37), to date
DEPArray has been proven able to enrich the pool of CTCs
which include differently functional subsets as recently proposed
in breast cancer by Bulfoni et al. (38). Alternative methods for
CTC detection are based on the recognition of mRNA markers
typically expressed by either epithelial- or mesenchymal-like
neoplastic cells or on the conjugation of negative selection with
physical measurements (39, 40). In this contest, the AdnaTest
combines the EPCAM-based enrichment of CTCs with the
recognition of EpCAM, EGFR, and CEA transcripts using an
RT-PCR approach (41).

Mutational analyses of CTCs are not currently supported
in clinical practice. However, their isolation and downstream
molecular profile assessment may provide useful information
for planning adequate strategies, or evaluating the response to
therapies. Recent advancements in Next Generation Sequencing
(NGS) technology, allowing deep genotyping at the single-cell
level, have emphasized the high heterogeneity of CTCs (42), thus
adding complexity in our attempt to translate these techniques
into everyday clinical practice.

Cell-Free Tumor DNA
Cell-free DNA (cfDNA) fragments (<200 bp) are released into
the bloodstream as a result of cell apoptosis, necrosis, or shedding
during pathological and physiological conditions such as exercise,
trauma, renal failure, stroke and cancer (43). In addition to the
passive release of their own DNA fragments, cancer cells actively
spread ctDNA for several functions related to tumor progression
as cell-to-cell crosstalk, distant molecular commitment or
preparation of the metastatic niche (44). Although ctDNA is only
a fraction of the cfDNA (0.01–90%), it is considered a surrogate
for tumor genome, suitable for many molecular tests, such as
mutational tracking, measurement of tumor burden, as well as
DNA methylation and assessment of microsatellite instability
(MSI) (45).

Highly sensitive and reproducible detection methods can
discriminate ctDNA from cfDNA and are thus categorized
as “targeted” or “non-targeted” approaches. The polymerase
chain reaction (PCR)-based method used in early studies has
been replaced by highly sensitive digital PCR techniques, such
as droplet digital (dd)-PCR or BEAMing (beads, emulsion,
amplification, and magnetics) technology (46–48). They are
suitable for the detection of tumor-specific (targeted) mutations
with high sensitivity (0.001%), although the number of genes that
can be simultaneously assessed is restricted. On the contrary,
novel NGS technologies including TAm-Seq (tagged amplicon
deep sequencing), Safe-Seq (safe sequencing system), and CAPP-
Seq (cancer personalized profiling by deep sequencing), are
suitable for concomitantly investigating larger numbers of genes
(49, 50). Nevertheless, these methods are based on the mutational
tracking approach and prevalently investigate known mutations
in ctDNA, whereas unknown molecular defects located in DNA
regions that are not checked, may thus remain undetected in the
same ctDNA sample.
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FIGURE 2 | Liquid biopsy in colorectal cancer. Tumor cells undergoing the epithelial-to-mesenchymal transition (EMT) are shed from primary tumors and can be
isolated from the bloodstream as circulating tumor cells (CTCs). They variably express either epithelial (e.g., EpCAM, E-Cadherin) or mesenchymal markers (e.g.,
CD44, CD146, and N-Cadherin). Tumor cells also release DNA fragments (<200 bp) through apoptosis, necrosis, or active secretion, namely cell-free tumor DNA
(ctDNA), whose fraction in the blood circulation ranges from 0.01 to 90% with respect to non-tumoral cell-free DNA (cfDNA). Exosomes (Exo) are small extracellular
vesicles (<200 nm) actively secreted by cancer cells which are composed by a phospholipidic bilayer encapsulating proteins, coding- and non-coding RNAs as well
as DNA fragments. Isolation from blood circulation and downstream analysis of these tumor-derived components may be used for both diagnostic as well as
prognostic or predictive purposes in CRC, as summarized on the right side of the panel.

“Non-targeted” approaches such as the Whole Genome
Sequencing (WGS) and Whole Exome Sequencing (WES)
allow to discover de novo mutations and detect structural
rearrangements, gene fusions, copy number variations, and other
genomic derangements. Although no preliminary information on
tumor genome is required, a large amount of cfDNA is needed
for a reliable reconstruction of the tumor-specific genome-wide
changes, thus limiting the applicability of this tool in clinical
practice (51, 52). More recently, several researchers have focused
on ctDNA methylation as a potential marker for CRC diagnosis,
since methylation changes occur early along with the natural
history of a given tumor, and are restricted to defined genomic
loci (53–55). To this, Barault et al. presented a dd-PCR five-
gene methylation panel (EYA4, GRIA4, ITGA4, MAP3KI4-ASI,
and MSC) on ctDNA to overcome the absence of patient-specific
mutations for LB (56). Similar findings were obtained by studying
the methylation status of two other genes on cfDNA, namely
the WNT inhibitory factor 1 (WIF1) and Neuropeptide Y (NPY)
(57, 58). These methods are very versatile for their potential
prognostic use, as well as for monitoring tumor burden, or
the response to treatment. Notably, in a recent pre-planned
analysis of the large IDEA-FRANCE phase-III trial, post-surgical
detection of methylated ctDNA in stage III CRC was found to
be an independent negative prognostic factor of recurrence, thus
proposing its clinical application in the adjuvant setting (59).

Finally, quantitative ctDNA analysis is usually considered for
monitoring tumor burden, or as a bio-marker of anti-cancer
treatments. An increased amount of ctDNA directly reflects the
tumor progression as an effect of active proliferation of drug-
resistant cancer cells, whereas the reduction of ctDNA fraction
occurs after surgery, or in response to effective treatments.
With respect to CRC, as well as to other tumors, the detection
of ctDNA in stage II, may reflect the presence of minimal
residual disease, thus identifying patients at high risk of tumor
recurrence (60, 61).

Exosomes
Another emerging tool in this evolving scenario includes the
possibility to isolate and investigate EVs directly shed by
cancer cells. These particles of variable diameter, are formed
by a phospholipid bilayer and can be found in all biologic
fluids, such as blood, urine, saliva, and ascites (62). Those
bearing a nano-sized diameter (30–100 nm) are currently
referred to as small-EVs or Exo (63, 64). They are involved
in intercellular communication by delivering cargos of active
molecules including proteins, messenger RNAs, non-coding
RNAs, and DNA fragments from one to another cell (65).
Many studies in CRC revealed that Exo are involved in tumor
progression and metastasis, as well as in tumor resistance against
either cytotoxic or targeting agents (66, 67).
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FIGURE 3 | Isolation of CTCs using the DEPArray system. Circulating tumor cells isolated from peripheral blood are labeled with specific fluorochrome-conjugated
antibodies against typical EMT markers. Cells are loaded in a dedicated cartridge and visualized by fluorescence microscopy. As represented in the fluorescence
panel, CD45neg CTCs variably express epithelial (EpCAM, E-Cadherin) or mesenchymal (N-Cadherin, CD146, and CD44) markers although a small amount of these
cells may share markers of both lineages. This method also allows the size evaluation of CTCs in brightfield. Thus, CTCs are moved into a parking area using
dielectric forces and recovered as single or clamped cells. Further downstream molecular analyses are next assessed on these samples by either Sanger
sequencing, NGS, or dd-PCR.

Differently from cell-free RNA (cfRNA) or cfDNA, the nucleic
acids packaged within the phospholipid bilayer of Exo are
protected from the degradation by serum ribonucleases and
DNases and are easily accessible for downstream analyses.
Peculiar interest in this field has been devoted to the study
of exosomal micro-RNAs (miRNAs) whose defective levels in
CRC are currently under investigation for both prognostic and
predictive purposes (68). Moreover, other potentially useful
applications include the possibility to isolate and analyze Exo
released by immune cells. Their phenotypic profile indeed may
reflect the immune system’s activity against the tumor, as already
demonstrated during immunotherapy of melanoma (69).

Despite the potentiality of Exo as a suitable substrate for
LB, a strong limitation for their use derives from the lack of
a standardized procedure for the purification of nanovesicles
and further analyses. Some commercial kits are already available
for rapid and easy purification of Exo, but a suitable yield
requires expensive and time-consuming ultracentrifugation of
large volumes of biological fluids. This has hence limited the
applicability of Exo as a high-throughput diagnostic tool.

LIQUID BIOPSY AND ANTI-EGFR
THERAPY

The possibility to predict and evaluate in real-time the actual
response to anti-EGFR agents is the most relevant application

of LB in mCRC, while the identification of patients potentially
amenable to rechallenge treatments also represents a goal
pursuable by LB. Table 1 summarizes recent studies with ctDNA,
CTCs, and Exo that addressed these aims.

Predicting Primary Resistance
Liquid biopsy has been recently investigated as an alternative
tool for RAS mutational analysis on CRC tissue specimens. In
a recent study in mCRC, Bettegowda et al. proved that the
sensitivity of dd-PCR to detect mutations of KRAS in ctDNA
was as high as up to 87.2%, with specificity equal to 100%
(70). Although the number of patients analyzed in this study
was quite limited (n = 12), these results prompted further
analysis to validate the ctDNA as a surrogate of tissue biopsy.
In fact, in the CAPRI-GOIM trial, the RAS molecular testing
was performed by NGS and demonstrated a concordance near
80% between tissue and plasma samples. The early detection
of KRASmut in ctDNA in chemotherapy-free patients was
correlated with primary resistance to anti-EGFR mAbs, while
both objective response rate (ORR) and overall survival (OS)
were improved in patients harboring a wild-type status of RAS
in ctDNA (71).

Similarly, Spindler et al. found a linear agreement of the BRAF
status between ctDNA and tissue samples (72). The same authors
revealed a strong predictive and prognostic value of both the RAS
and BRAF molecular status on ctDNA as compared to tumor
biopsy. However, the high molecular intratumoral heterogeneity
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TABLE 1 | Major studies exploring LB in mCRC for molecular testing.

Studies Genes tested Detection method Findings

ctDNA

(70) KRAS Droplet digital-PCR Sensitivity 87%; specificity ∼100%

(72) BRAF ARMS-qPCR 100% concordance with tissue biopsy

(71) KRAS NGS 80% concordance with tissue biopsy; KRASmut

(CAPRI-GOIM trial –
Phase II)

correlate with primary resistance to EGFR blockade

(82) KRAS PCR assay The occurrence of RASmut reflects the clonal evolution

Of CRC during EGFR blockade and the onset of

molecular mechanisms responsible of acquired

resistance to cetuximab or panitumumab

(73) 226 gene panel BEAMing Several alterations undetected with tissue biopsy were revealed on ctDNA of
patients with primary resistance to anti-EGFR agents. RASmut emerge during
EGFR blockade and decline upon drug withdrawal

(84) RAS, BRAF dd-PCR ultra-deep NGS Persistence of RASmut on ctDNA before third-line

(CRICKET trial –
Phase II)

rechallenge with cetuximab is associated with treatment failure

NCT03227926 RAS NGS This ongoing trial will explore the efficacy of a third-

(CHRONOS trial –
Phase II)

line rechallenge with panitumumab in a RASwt mCRC cohort of patients
selected on the basis of RAS extended ctDNA clonal evolution

CTCs

(75) KRAS, BRAF, PIK3CA Vortex Gen1 and Sanger Seq High (∼80–90%) concordance with tissue biopsy

(37) KRAS DEPArray system and WGA

(77) EGFR (mRNA) CellSearch© and MagNest EGFR expression did not correlate with survival in

(78) EGFR, CEA and EPCAM
(mRNA)

AdnaTest (Colon Cancer) RASwt mCRC treated with cetuximab

(13) KRAS, NRAS, BRAF CellSearch© and ddPCR High (97%) concordance of basal mutational status between tumor biopsies,
CTCs and ctDNA. De novo mutations conferring acquired resistance to
anti-EGFR drugs were earlier detected by CTCs than ctDNA

(83) 50 genes included in the LFIMA and NGS In a small cohort of RASwt mCRC patients undergoing

AmpliSeq Cancer Hotspot anti-EGFR therapy, de novo mutations of SMARCB1,

Panel (Thermo Fisher) EGFR, ATM, and PIK3CA genes were detectable on CTCs (but not on ctDNA)

Exosomes

(79) KRAS, BRAF Serum ultracentrifugation Sensitivity 73–75%

and PCR-based sequencing Almost 100% concordance with tumor tissue

(80) UCA1-lncRNA levels Serum ultrafiltration and Increased levels of exosomal UCA1 in RASwt mCRC pts

qRT-PCR were correlated with primary resistance to cetuximab

observed as well as the small sample size and the non-randomized
design of the study strongly limit definitive conclusions.

By using a massive NGS of 226 genes, moreover, Siravegna
et al. retrospectively analyzed the basal ctDNA mutational
landscape of patients with RASwt mCRC that were refractory
to anti-EGFR agents, to discover defects putatively correlated
to primary resistance (73). Noteworthy, in 50% of patients,
they found new molecular aberrations that were associated
with intrinsic resistance to panitumumab or cetuximab such as
alterations of ERBB2, FLT3, EGFR, and MAP2K1. These findings
suggest that ctDNA is a broadly applicable, sensitive, and specific
biomarker that may capture intra-patient disease heterogeneity.

Several commercial kits for ctDNA analysis are available
to date, such as the OncoBEAM RAS CRC Kit (Sysmex
Inostics) and the Idylla ctKRAS/ctNRAS-BRAF Mutation Test
(Biocartis) which received the European approval for detection
of RAS/BRAF mutations in CRC (74). However, there is not
enough clinical evidence to establish the percentage threshold of

mutated RAS alleles on ctDNA that confers resistance to anti-
EGFR therapy. Therefore, analysis of RAS status for therapeutic
decisions should still be performed on tumor tissue, while LB
would be used in case of insufficient or inaccessible tissue. The
analysis of CTCs has been also considered as an alternative tool
for molecular profiling of mCRC patients. Detection of KRAS and
BRAF mutations in CTCs is challenging, but feasible, with almost
10–20% rate of discordance between primary and metastatic
tumors (37, 75). However, data on the predictive value of the
molecular analysis of CTCs are still lacking, while pioneering
works on the use of CTC count or the expression of EGFR by
CTCs did not meet the expected results (76–78).

Finally, Hao et al. assayed the KRAS/BRAF mutational status
of serum Exo from metastatic CRC patients, and found a
high concordance with primary tumors (79). Further studies
are nevertheless needed before considering this approach as
a reliable alternative to molecular testing on tissue biopsy
since these results may have been biased by serum sample
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preparation or Exo collection, as well as by methods applied
for DNA extraction or sequencing. An additional study recently
proposed the measurement of serum exosomal UCA1-lncRNA
levels to identify patients with RASwt mCRC primarily resistant
to anti-EGFR mAbs (80). This is an excellent example of the
wide potentiality of Exo to investigate epigenetic mechanisms
that regulate both intrinsic and acquired resistance to targeted
therapies, even if there are no standardized methods for their
isolation and downstream analysis.

Monitoring Treatment Response
The methods approved to evaluate the response to therapies
in oncology are based on morphological (CT or MRI), or
metabolic (18FDG-PET/CT) modifications of neoplastic target
lesions, mainly using the Response Evaluation Criteria In Solid
Tumors (RECIST) or PET Response Criteria In Solid Tumors
(PERCIST) criteria (81). These traditional methods, however, do
not allow to appreciate in real-time the actual onset of resistant
clones with a consequent possible delay in the identification of
drug resistance. LB may overcome these limitations and forestall
the radiological progression. In particular, the onset of de novo
KRAS or NRAS mutations in ctDNA were able to predict the
resistance to anti-EGFR agents in different studies enrolling
RASwt mCRC patients (10–12). A possible explanation is that
colorectal tumors harboring RASwt gene sequences include a
minimal compartment of mutated clones before therapy. The
amount of these cells hence increases for the selective pressure
exerted by anticancer drugs, until the amount of RASmut clones
prevails on the wild-type counterpart, and patients become thus
unresponsive to EGFR blockade (82).

The possible applications of cfDNA and CTCs have also been
investigated. Sun et al. explored the mutational status of KRAS,
NRAS, and BRAF genes in CTCs and ctDNA from blood samples
of patients harboring RAS/BRAFwt mCRC from the beginning of
treatment (13). They found about 97% concordance of the basal
mutational status of tumor samples, CTCs and ctDNA while 40%
of patients acquired de novo mutations within 9 months from the
initial EGFR blockade. However, half of these acquired mutations
were intermittent, independent from therapeutic changes, thus
questioning their clinical validity in the course of treatment.
Patients developing new mutations in CTCs or ctDNA at the
disease progression were characterized by a worse prognosis with
a 12-months median OS, as compared to 20-months of those
harboring the wild-type status. Furthermore, these mutations
were earlier detectable in CTCs with respect to ctDNA, based
on the ability of tumor sub-clones to rapidly spread into blood
circulation while ctDNA shedding from necrotic and apoptotic
cells occurs later. By using a label-free inertial microfluidics
approach (LFIMA) for CTC isolation, Onidani et al. optimized
an NGS-based method for analyzing a wide spectrum of gene
mutations. Although a small number of mCRC patients were
receiving anti-EGFR therapy, they monitored the emergence of
new alterations along with treatment. Notably, newly acquired
mutations affecting several genes, such as SMARCB1, EGFR,
ATM, and PIK3CA, were demonstrated on CTCs as the disease
progressed. The majority of these alterations were not detectable
in ctDNA at the same time point and, therefore, they concluded

that CTCs should be an optimal tool for the early detection of de
novo mutations, although simultaneous assay on ctDNA should
be provided (83).

Despite CTCs may have not a direct application for
personalizing treatments, they offer a proof-of-concept for testing
the onset of newly molecular alterations associated with acquired
resistance to anti-EGFR agents. This could be helpful for the early
detection of patients who probably benefit from a rapid switch
to alternative drug schedules. However, an adequate number of
CTCs is required for this purpose and the CellSearch© does
not seem the optimal tool for CTC downstream analysis due
to few EpCAM + cells detectable in the blood circulation. By
contrast, the DEPArray system appears to be more suitable for
this purpose, since it allows the capture of a wide number of CTCs
with variable expression of EMT marker (35, 36). Moreover,
it is conceivable that the amount of CTCs with different EMT
phenotypes is representative of variable sensitivity to treatments,
while their modifications along with the use of anti-EGFR agents
may reflect response, as we have recently experienced at our
institution using the DEPArray (Figure 4).

Selection of Patients Amenable for
Anti-EGFR Rechallenge
The possible utility of re-using EGFR inhibitors after
discontinuation due to initial tumor progression is a hot
topic in mCRC. In the CAPRI-GOIM trial, 182 tumor samples
from KRASwt (exon 2) mCRC were retrospectively examined
by NGS to identify a subset of patients who benefited from
rechallenge with cetuximab (71). This study showed that
only patients harboring at baseline KRAS (exons 2, 3, and 4),
NRAS, BRAF, and PIK3CA wild-type tumors had a minimum
advantage in terms of PFS when rechallenged. However, although
encouraging, this study failed to demonstrate a predictive value
of basal tissue biopsy since both molecular heterogeneity and
clonal evolution of CRC induced by the selective pressure
from anticancer treatment obviously generated several genomic
modifications that were not present at baseline. A step forward
in this field was moved by Siravegna et al., who described, with
the limits of a retrospective analysis, a “pulsatile behavior” of
KRASmut along with the EGFR blockade that increased during
treatment, while rapidly decreased after drug discontinuation
(73). This trend over time of KRASmut in ctDNA may suggest
re-challenging anti-EGFR agents in the next lines of therapy.
Thus, the early identification of acquired resistance leads to
optimization of the duration of EGFR blockade, justifying
treatment interruption if de novo RASmut are detected in ctDNA
and its recovery after ctDNA normalization. In this context, the
CRICKET trial prospectively assessed the efficacy of anti-EGFR
agents as a third-line treatment for patients with RAS/BRAF
wild-type mCRC who were initially sensitive to first-line
cetuximab-based therapy. In this study, 28 patients underwent
rechallenge with cetuximab, and response in more than one half
of them was reported. To retrospectively characterize patients
who benefited from rechallenge, blood samples were collected
before restarting cetuximab and ctDNA verified by dd-PCR
ultra-deep NGS for RAS and BRAF mutations. The RASmut was
found in ctDNA collected at the time of rechallenge start in 12
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FIGURE 4 | Longitudinal monitoring of CTCs by EMT marker expression in mCRC patients in relation to the therapeutic response to EGFR antagonists. The picture
is representative of three RASwt/BRAFwt mCRC patients whose CTC counts and phenotypical distributions, both at baseline and at the first evaluation, varied after
treatment with FOLFOX plus PANITUMUMAB (Pt. 1 partial response, Pt.2 stable disease, and Pt.3 progressive disease). DEPArray System was adopted for CTCs
capturing by measurement of typical epithelial (EpCAM, e-Cadherin) and mesenchymal (CD44, CD146, and N-Cadherin) markers. As shown, Pt.1 experienced a
partial response and, consequently, the reduction of CTC amounts and different phenotypical populations (MES+ and EP-/MES – CTCs, namely double negative
CTCs). In Pt.2, whose mCRC was stable after six cycles of therapy, the total count of CTCs remained unchanged with a different distribution of phenotype
populations. In this case, the number of double negative CTCs increased with a parallel reduction of MES+-CTCs. In Pt.3, a patient with primary resistance disease,
the CTC count, including both double negative and MES+-CTCs increased, in a similar fashion as for CEA. All three patients showed a minimal level of EP+-CTCs
supporting the relevance of CTC purification to detect those with phenotype different from the epithelial one. The gray bars are the total CTC counts, while colored
dots represent EP+ (green), EP–/MES+ (red), and EP–/MES– (blue) CTCs, respectively; CEA levels were also measured (yellow dots).

out of 25 patients, whereas RASmut was not detected in those
achieving a partial response. Moreover, patients bearing RASwt
ctDNA had a significantly longer median PFS than RASmut (4.0
vs. 1.9 months) (84).

Finally, another possible contribution in this field is
expected from the ongoing Italian CHRONOS phase II trial
(NCT03227926) (14). This is a prospective liquid biopsy-driven
study exploring the use of RAS mutations in ctDNA of mCRC
patients to predict the efficacy of third-line rechallenge with
panitumumab. Unlike previous studies, patients are considered
eligible for rechallenge only in the presence of a consistent
reduction of RASmut ctDNA fractions from the withdrawal
of first-line chemotherapy with anti-EGFR to the time of
rechallenge. Moreover, tumor ctDNA will be assayed by NGS
either before and after panitumumab rechallenge to identify
potential associations between different molecular alterations
rather than RAS and response to rechallenge.

CONCLUSION

In the era of precision medicine, the modern oncology is aimed at
identifying personal treatments for each patient that are suitable
for the molecular signature of relative tumors. Precision medicine

would indeed be necessary to select patients for molecularly
targeted therapies, for longitudinal monitoring of treatment
response and for exploring the clonal evolution of cancer
cells along with the treatment. In this context, LB has gained
increasing interest as a simple method aimed at evaluating either
functional or inactive tumor-released components from which
obtaining a real-time molecular snapshot of cancer. However,
although major advances have been reached by investigating
CTCs particularly in breast and prostate cancers, in mCRC the
LB on ctDNA has recently provided results suitable for its future
translation to the clinical practice.

Particularly in mCRC, the use of LB on ctDNA has
been recently adopted to discover minimal residual disease
before adjuvant treatments, as well as for detecting molecular
genomic derangements predictive of primary or secondary
resistance to anti-EGFR agents. The pulsatile behavior of RASmut
in ctDNA also paves the way for dynamic monitoring of
treatment response, or identification of candidates eligible to
EGFR blockade rechallenge. The modern technology of DNA
sequencing supports these purposes since they are endowed with
high sensitivity and moderate costs.

Nowadays, the unsolved limits before a definitive validation
of LB in the clinical practice are mostly due to the lack
of standardized methods as well as the absence of accepted
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thresholds of mutated ctDNA fractions able to definitively predict
the responsiveness to EGFR antagonists.
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