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Here, we report a simple synthetic strategy to the bridgehead vicinal diallylation of norbornene derivatives. These substrates are

useful to generate propellanes via ring-closing metathesis. Single-crystal X-ray diffraction analysis of four compounds led to the re-

alization of configurational correction of earlier reported molecules.

Introduction

The norbornene moiety is a useful template and also a versatile
synthon in organic synthesis [1]. The double bond present in the
norbornene frame is strained and therefore participates in cyclo-
addition sequences as a Cy-synthon [2,3]. It was reported that
the norbornene system is as strained as cyclopropane or cyclo-
butane (norbornene, 100 kJ/mol; cyclopropane, 115 kJ/mol;
cyclobutane, 110 kJ/mol) [4,5]. Some of the annulated
norbornene derivatives undergo retro Diels—Alder (rDA) reac-
tions at ambient temperature in the presence of methylalu-
minium dichloride and a reactive dienophile [6-8]. Cage com-
pounds with interesting applications have been assembled by a

cyclization reaction starting with suitably functionalized

norbornene derivatives [9-11]. Moreover, the norbornene unit
induces a hairpin-like architecture when it is incorporated into a
peptide chain. This property is useful to design norbornene-
based ionophores [12]. Due to the strained nature of norbornene
systems they are useful precursors for ring-rearrangement me-
tathesis (RRM) [13-21] to generate intricate polycyclics involv-
ing non-traditional retrosynthetic routes. Recently, functionali-
zation of unactivated aromatic C—H bonds was achieved by
using palladium catalysts and norbornene (Catellani reaction)
[22,23]. In view of these applications, the design and synthesis
of vicinal diallylnorbornene derivatives is a worthwhile exer-

cise. The double bond present in the allyl group can be further
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converted into various other useful functionalities for further
synthetic manipulation by adopting the appropriate functional

group transformations.

Strategy

Our approach to various propellane derivatives is shown in
Figure 1. The target propellane 1 could be assembled from
diallyl compound 2 via ring-closing metathesis (RCM) [24-32].
Whereas, the diallyl derivative 2 can be derived from a readily
available Diels—Alder (DA) adduct 3 through an allylation
sequence.

Results and Discussion

Installation of two C—C bonds to generate quaternary centers in
a stereocontrolled manner in a single step is not a trivial exer-
cise. Generally, it was accomplished by radical three-compo-
nent coupling reactions or Michael-type additions of organo-
copper reagents starting with conjugated carbonyl compounds
[33,34]. But, the resulting alkyl groups are in trans orientation.
Our journey to propellane 1 synthesis (Figure 1) was com-
'

menced with the preparation of known DA adducts 3a, 3b, 3aa
and 3bb' [35-37]. In this regard, DA adduct 3a was treated with
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allyl bromide in the presence of NaH to obtain the correspond-
ing O-allylated compound (70%) and C-allylated compound 2a
(28%) by using our earlier reported method [38]. Next, diallyl
compound 2a on RCM using Grubbs first generation (G-I) cata-
lyst in CH,Cl, at room temperature (rt) gave the desired propel-
lane derivative 1a (61%) along with a minor amount of quinone
derivative 4 (17%) (Scheme 1). The formation of quinone 4 can
be explained on the basis that compound 2a underwent rDA and
RCM in one-pot. Here, the compound 2a didn’t undergo RRM
because a metallacyclobutane cannot be formed between the
allyl and norbornene double bonds due to structural constraint
[39] and moreover, we didn’t observe any ring-opening metath-
esis (ROM) product during RCM reaction. This may be due to
the fact that sparging with an inert gas (N, or Ar) during RCM
process helps to accelerate the loss of ethylene and thus,
prevents ROM [39].

Garratt and Hollowood reported that bridgehead functionaliza-
tion of norbornene derivatives such as endo-5-norbornene-2,3-
dicarboximide 5 gave bridgehead alkylated compound 6 with
retention of configuration (Scheme 2) [40]. Based on this
report, we expected the allyl groups introduced via alkylation

X H9
allylation
H
/| O 2 03
X C.
2a CH
: } H, H 3a
2b  cyclopropyl 3b
2aa' CH, %X 3aa’
2bb’ cyclopropyl} r 3bb’

Figure 1: Retrosynthetic approach to propellane derivatives.
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Scheme 1: Synthesis of the propellane derivative 1a via RCM.
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Scheme 2: Garratts work on alkylation of norbornene with retention of
configuration.

sequence will occupy the exo position (see 2ab) because the
bridgehead hydrogens in DA adduct 3a are in exo configuration.
Thus, in the final compound 1a the newly formed 6-membered
ring during RCM is supposed to be in the exo configuration.

To our surprise, single-crystal X-ray analysis of 1a revealed that
the 6-membered ring (C28—C30-C31-C32-C33—C27) formed
via RCM is in endo configuration as depicted in Figure 2.

Figure 2: The molecular structure of 1a, with displacement ellipsoids
drawn at the 50% probability level.

At this point, we turned our attention to understand the configu-
rational origin of the allyl groups in 2a. To understand whether
compound 2a was formed by Claisen rearrangement (CR) of the
corresponding O-allyl compound or by carbanion mediated
C-allylation of the DA adduct 3a, we carried out the alkylation
of compound 3a with n-propyl bromide in refluxing THF for

/\/BI’

NaH, THF reflux

3a
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2 h. Here, di-O-propyl compound 7 was obtained in 36% yield
along with a dehydrogenated compound 8 (20%, Scheme 3).
Surprisingly, no C-alkylation product was observed from 3a.
This result suggests that the C-allyl compound 2a was formed
from the corresponding O-allyl compound via CR.

Based on the X-ray structure of 1a and the above observations,
it is clear that the allyl groups in 2a are in endo configuration
which can be explained as follows. Since the stereocenters are
unaffected during the RCM sequence it is evident that the allyl
groups present in 2a should be in endo configuration. To
confirm the configuration of the allyl groups, the X-ray struc-
ture of previously reported oxa-bowl/propellane hybrid (15)
[38] was also recorded and it is in agreement with the above
findings (Figure 3). These results suggested the revision of
earlier reported configuration of allyl groups. More specifically,
various compounds (2ab, 2aa'b and 9a—15a) reported in our
previous report [38] need configurational correction and the
revised structures (2aa' and 9-15) are included in Table 1.

Figure 3: Crystal structure of compound 15 showing 50% displace-
ment ellipsoids.

When the other previously prepared diallyl compound 2aa’' [38]
was subjected to RCM using G-I catalyst under similar reaction

HC e
O
7 (36%) 8 (20%)

Scheme 3: Control experiment carried out to probe the configuration of 2a.
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Table 1: Revised structures from our previous work [38] with correct configuration.

Entry Revised structures Earlier reported structures
(ref. [38])
1
2
3
4

conditions the propellane derivative 1aa' was obtained in 79%
yield (Scheme 4).

To expand the scope of this strategy, cyclopropyl containing
diallyl products 2b and 2bb' were also prepared along similar
lines starting with the corresponding DA adducts 3b and 3bb'
[41]. Initially, the diallyl compound 2b was reacted with G-I

G-1 (10 mol %)

Entry Revised structures

Earlier reported structures
(ref. [38])

catalyst to afford the desired propellane 1b in 86% yield
(Scheme 5). Its structure has been established on the basis of
spectroscopic data (‘H NMR, 3C NMR and DEPT-135) and
was further supported by HRMS data.

In addition, the configuration of 1b and 2b were unambiguous-
ly determined via single-crystal X-ray diffraction analysis

Scheme 4: RCM of the compound 2aa’.

CH,Cly, rt, 8 h
79%

1880



G- (5 mol %)

CH,Cly, 1t, 20 h
86%

1b

Scheme 5: RCM approach to the propellane derivative 1b.

(Figure 4). Based on this data it is clear that the bridgehead allyl
groups in the RCM precursor 2b are in endo configuration.
Subsequent RCM of diallyl compound 2b gave the ring-closing

product 1b with retention of the configuration.

Similarly, staring with substrate 2bb’, another propellane deriv-
ative 1bb' was synthesized using the same catalyst (i.e., G-I) in
CH,Cl, at rt. Here, along with the desired propellane 1bb'
(79%) a minor amount of quinone derivative 16 (13%) was also
generated due to a one-pot RCM-rDA sequence of 2bb' which
is similar to the substrate 2a (Scheme 6). Compound 1bb' was
characterized based on the 'H and 13C NMR, DEPT-135 and
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further supported by HRMS data. However, spectroscopic data

of quinone 16 were identical with the literature values [41].

Conclusion

This methodology was found to be useful to synthesize various
propellane derivatives containing a norbornene moiety by em-
ploying RCM sequence. Moreover, we have firmly established
the configuration of allyl groups at bridgehead position of
norbornene derivatives by single-crystal X-ray diffraction anal-
ysis. A control experiment with propyl bromide provided an
insight into the reaction mechanism that the bridgehead
allylation proceeds through enolization, O-allylation followed
by CR and not via carbanion chemistry. This alternative
strategy is useful to introduce vicinal diallyl groups in a cis ori-
entation to generate propellane derivatives, which is a different
protocol from previously reported methods where the two
vicinal alkyl groups are introduced in trans orientation. In this
study, we have also revised the configuration of our earlier re-
ported molecules containing allyl groups and oxa-bowl/propel-
lane hybrids. Since non-flattened molecules are implicated
in biological systems, our results would be useful in drug
design [42].

G- (7 mol %)

CH,Cly, rt, 10 h

Scheme 6: Construction of the propellane derivative 1bb' using RCM.
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