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Abstract: The administration of many cancer drugs is tailored to genetic tests. Some genomic events,
e.g., alterations of EGFR or BRAF oncogenes, result in the conformational change of the corresponding
proteins and call for the use of mutation-specific compounds. Other genetic perturbations, e.g., HER2
amplifications, ALK translocations or MET exon 14 skipping mutations, cause overproduction of the
entire protein or its kinase domain. There are multilocus assays that provide integrative characteristics
of the tumor genome, such as the analysis of tumor mutation burden or deficiency of DNA repair.
Treatment planning for non-small cell lung cancer requires testing for EGFR, ALK, ROS1, BRAF, MET,
RET and KRAS gene alterations. Colorectal cancer patients need to undergo KRAS, NRAS, BRAF,
HER2 and microsatellite instability analysis. The genomic examination of breast cancer includes
testing for HER2 amplification and PIK3CA activation. Melanomas are currently subjected to BRAF
and, in some instances, KIT genetic analysis. Predictive DNA assays have also been developed for
thyroid cancers, cholangiocarcinomas and urinary bladder tumors. There is an increasing utilization
of agnostic testing which involves the analysis of all potentially actionable genes across all tumor
types. The invention of genomically tailored treatment has resulted in a spectacular improvement in
disease outcomes for a significant portion of cancer patients.

Keywords: mutations; genetic testing; lung cancer; melanoma; colorectal cancer; targeted therapy;
TMB; HRD; MSI-H

1. Introduction

Laboratory genetic techniques achieved reasonable compatibility with a daily clinical
practice as early as in 1980s, mainly due to the invention and rapid implementation of
polymerase chain reaction (PCR) [1] and Sanger sequencing [2]. The first medical applica-
tions of DNA analysis involved the diagnosis of hereditary disorders (including familial
cancer syndromes) [3], PCR-based detection of bacteria and viruses [4], genetic testing of
various disease-specific rearrangements in leukemia patients [5] and HLA genotyping for
organ donors and recipients [6]. Although dozens of genes mutated in cancer were known
by the end of XX century, none of these alterations had clear actionability, and therefore
DNA analysis of solid tumors was not a part of clinical oncology until relatively recently.
The first medically relevant cancer DNA tests emerged due to chance. The development
of first-generation low-weight EGFR inhibitors (EGFRi), gefitinib and erlotinib, relied on
frequent overexpression of this receptor in diverse tumor types, especially in non-small
cell lung cancer (NSCLC). Despite the expectations, only a few cancer patients included
in the clinical trials responded to EGFRi; a posteriori analysis of responders revealed
drug-sensitizing mutations in the NSCLC tissue, which were unknown at the time of the
drug’s development [7]. Similarly, crizotinib was historically developed as a MET inhibitor,
and its remarkable efficacy towards ALK-rearranged NSCLCs was established only after
this compound entered clinical trials [8]. The first clinical investigations of anti-EGFR
therapeutic antibodies were limited to colorectal carcinomas (CRCs) positive for EGFR
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expression by immunohistochemistry (IHC); subsequent analysis of disease outcomes
revealed no relevance of EGFR status in tumor response, however, RAS mutations emerged
as a strong predictor of tumor resistance to cetuximab or panitumumab [9,10].

There are several mutation tests integrated in the therapeutic decision-making process
(Table 1). Some mutations, e.g., alterations in EGFR or BRAF genes, render conformational
change of the corresponding protein, thus providing a rationale for the development of
mutation-specific drugs. There are also genetic alterations which are accompanied by
dramatic overexpression of the oncogenic enzyme, but which generally do not result in
the altered interaction of its kinase domain with other molecules; the examples include
ALK, ROS and RET translocations or MET exon 14 skipping mutations. In addition, some
predictive DNA tests provide integrative characteristics of the cancer genome, e.g., they
indicate at high tumor antigenicity due to an excessive number of mutations or druggable
deficiency of DNA repair. This paper provides a brief overview on the role of genetic
predictive assays in cancer treatment.

Table 1. Examples of predictive mutation tests utilized in clinical oncology.

Cancer Type Genetic Lesions

Lung cancer EGFR, BRAF, MET, HER2, KRAS G12C mutations
ALK, ROS1, RET rearrangements

Colorectal cancer

KRAS/NRAS mutations (exclusion of patients from
anti-EGFR therapy)

BRAF mutations
HER2 amplifications

Microsatellite instability

Breast cancer
HER2 amplifications
PIK3CA mutations

BRCA1/2 germ-line pathogenic variants
Melanomas BRAF, KIT mutations

Sarcomas

GIST: KIT, PDGFRA (GIST)
Inflammatory myofibroblastic tumors: ALK and other

gene rearrangements
Infantile fibrosarcomas and other sarcomas:

NTRK1/2/3 rearrangements
Clear-cell sarcomas: BRAF mutations

Ovarian cancer
BRCA1/2 germ-line pathogenic variants

HRD
Stomach cancer HER2 amplifications
Glioblastomas IDH1/2 mutations

Cholangiocarcinomas IDH1/2, BRAF mutations
Endometrial cancer Microsatellite instability

Prostate cancer BRCA1/2 germ-line pathogenic variants
Pancreatic cancer BRCA1/2 germ-line pathogenic variants
Thyroid cancer RET mutations and rearrangements, BRAF mutations

Urinary tract carcinoma FGFR3 mutations
Agnostic markers Microsatellite instability, NTRK1/2/3 rearrangements, TMB

See comments in the text.

2. Conventional Mutation Tests in Major Cancer Types
2.1. Non-Small Cell Lung Cancer (NSCLC)

There are two major NSCLC histological categories, squamous cell lung cancer and
non-squamous cell lung cancer. Actionable mutations are known only for non-squamous
NSCLC; therefore, squamous carcinomas are currently not subjected to genetic testing [11,12].

EGFR drug-sensitizing mutations occur in 10–20% of lung adenocarcinomas in non-
Asians and in approximately half of Asian NSCLCs (Figure 1). In contrast to many other
actionable mutations, which are usually characteristic for more than one cancer type, EGFR
alterations are highly specific for lung cancer, particularly for tumors obtained from females
and/or non-smokers. There are two common EGFR mutations, ex19del and L858R, with the
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former being significantly more drug-sensitive than the latter [13]. In addition, the analysis
of exons 18–21 may result in the detection of several rare mutations, which are sensitive
to conventional EGFRi and include substitutions in codons 709, 719 and 861, as well as
in-frame insertions in exon 19 [14–16]. There are ongoing clinical trials on novel tyrosine
kinase inhibitors (TKIs), which target EGFR with insertions in exon 20 [17]. Amivantamab,
a bi-specific EGFR/MET antibody, has been recently approved for the treatment of NSCLC
carrying insertions in exon 20 of the EGFR gene [18,19].
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ALK rearrangements are detected in approximately 5% of non-squamous NSCLCs,
while the occurrence of ROS1 and RET translocations is around 2%. These gene fusions have
increased prevalence in young NSCLC patients and, similarly to EGFR and ALK, are typical
for female and smoking-unrelated tumors [20–23]. NSCLCs carrying druggable rearranged
kinases demonstrate spectacular benefit from targeted therapies: several studies involving
metastatic NSCLC cases produced median overall survival estimates well above five years,
with some categories of patients approaching close to ten years survival threshold [24–26].

MET exon 14 skipping mutations result in increased MET protein half-life and, conse-
quently, activated MET signaling. These mutations have a prevalence of around 2–2.5% in
non-selected NSCLCs, but their frequency in elderly patients is several times higher [27].
A crizotinib study involving MET-mutated NSCLCs was clinically successful but did not
result in the approval of this indication, while MET-specific inhibitor capmatinib recently
received authorization for this category of NSCLCs [28–30].

Guidelines for NSCLC testing include the analysis of BRAF codon 600 substitutions.
These mutations are detected in 1.5% of NSCLCs and are druggable by a combination of
BRAF and MEK inhibitors [12].

Activating mutations in RAS genes are detected in approximately 30% of non-squamous
NSCLCs. The spectrum of nucleotide substitutions is distinct between smokers and non-
smokers [31]. The development of specific inhibitors of mutated RAS is highly complicated
due to the small size of the protein and its high affinity to GTP. For the time being, efficient
antagonists have been developed only for the KRAS G12C mutant. KRAS G12C substitu-
tion is characteristic for smoking-related NSCLCs, accounting for approximately one out of
six NSCLCs in this category of patients. The first clinical trials on KRAS G12C inhibitors
provided highly satisfactory results [32,33] and resulted in the approval of sotorasib [34].
The remaining RAS mutations are not druggable. However, many laboratories utilize RAS
testing for NSCLC, as the presence of the RAS mutation allows reliable exclusion of other
actionable mutations [12].

HER2 activating mutations occur in less than 2% of NSCLCs. These tumors can be
managed by several investigational anti-HER2 drugs [35].

The analysis of all genes mentioned above is mandatory for proper NSCLC manage-
ment. This procedure is technically complicated because most of the NSCLC patients are
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diagnosed at an advanced disease stage and can provide only tiny biopsy material for the
test. The use of next generation sequencing (NGS) allows simultaneous assessment of all
NSCLC-specific druggable mutations, therefore, this technique is being increasingly uti-
lized for NSCLC analysis. There are some PCR-based pipelines which allow cost-efficient
and comprehensive NSCLC testing for actionable mutations and gene fusions [12].

2.2. Colorectal Cancer (CRC)

CRC was the first tumor type for which molecular testing became a mandatory part of
the clinical management of metastatic disease. Virtually all CRCs demonstrate activation of
the RAS/RAF/MEK signaling cascade (Figure 1). This upregulation can be attributed either
to the stimuli produced by membrane tyrosine kinase receptors (EGFR, or, significantly
less frequently, HER2) or to the mutations in KRAS, NRAS or BRAF oncogenes [36,37]. The
administration of anti-EGFR therapeutic antibodies has a potential for clinical efficacy only
in the absence of other detectable mutations, which activate RAS/RAF/MEK signaling.
Consequently, the use of cetuximab or panitumumab is permitted only for tumors lacking
mutations in KRAS and NRAS genes. The frequency of KRAS mutations approaches 50%,
while the prevalence of NRAS mutations in CRCs usually falls within 5–7%. RAS-testing
in CRC is relatively complicated, because it involves the analysis of exons 2, 3 and 4 for
each gene [38]. False-negative results of RAS testing, which may be attributed to the failure
of tumor cell dissection or poor performance of DNA assays, possess significant risks
for the patient, as EGFR inhibition in RAS-mutated tumors may facilitate the disease’s
progression [39]. Comprehensive RAS analysis may require some extra time. There are
clinical studies which propose to begin the treatment from a conventional therapeutic
scheme and then to add anti-EGFR therapeutic antibodies starting from the second cycle,
i.e., after obtaining reliable RAS-negative test results. It has been demonstrated that
this delay does not worsen treatment outcomes [40]. In addition to mutations involving
codons 12, 13, 59, 61 and 146, there are rare recurrent RAS substitutions occurring in other
positions. Most of them, although not all, are associated with RAS activation and appear to
be functionally equivalent to the hot-spot mutations listed above [41].

In contrast to NSCLC, KRAS G12C substitutions have relatively low frequency in
CRC [42]. Administration of KRAS G12C inhibitors to CRC patients produced less encour-
aging results as compared to NSCLC, however, this option continues to be investigated in
clinical trials [32]. KRAS G12C mutations are common in MUTYH-driven hereditary CRCs,
which are characterized by excessive tumor mutation burden, high lymphocyte infiltration
and, consequently, responsiveness to immune therapy [42]. Some studies suggest that it is
feasible to perform germ-line MUTYH testing in all CRC patients, whose tumors carry the
KRAS G12C substitution [43].

BRAF V600E mutations occur in 5–10% of CRCs. They are associated with a highly
aggressive disease course [44]. Down-regulation of mutated BRAF kinase in CRC results
in the feedback activation of the EGFR receptor [45]. Clinical trials utilizing single-agent
BRAF V600E inhibitors failed, while the dual use of BRAF- and EGFR-targeted therapies
provides satisfactory clinical results [46].

Approximately 2% of CRCs are driven by HER2 amplification and overexpression.
These tumors are responsive to HER2-targeted therapies [47].

Some CRCs are characterized by so-called high-level microsatellite instability (MSI-H),
which is caused by the deficiency in DNA mismatch repair (MMR). These tumors accu-
mulate a significant number of alterations in mono- and dinucleotide repetitive sequences;
therefore, the detection of MSI-H can be performed by the analysis of the length of appro-
priate microsatellite markers. This procedure requires electrophoretic separation of DNA
fragments or NGS analysis, which are not always accessible in conventional morphological
laboratories. IHC staining for MMR proteins is considered a reasonable substitute for
MSI-H testing, as the MMR-deficient (MMR-D) phenotype is usually accompanied by
the loss of MLH1/PMS2 or MSH2/MSH6 expression. MSI-H in young and/or familial
CRC cases suggests the presence of Lynch syndrome, therefore, germ-line DNA testing



Int. J. Mol. Sci. 2021, 22, 10931 5 of 16

should be offered to these patients. MSI-H in sporadic tumors is usually associated with
somatic inactivation of the MLH1 gene by methylation of its promoter region; it is highly
characteristic for elderly patients and is often accompanied by the BRAF V600E muta-
tion. Metastatic MSI-H CRCs can be managed by administration of inhibitors of immune
checkpoints [48–50].

2.3. Breast Cancer (BC)

All BCs require the evaluation of the HER2 status. HER2 is amplified and overex-
pressed in a quarter of BCs. Its testing is usually performed via IHC followed by FISH
analysis of ambivalent cases, although some opinion leaders call for the upfront exami-
nation of HER2 DNA status [51]. The invention of HER2-targeted therapies resulted in a
dramatic change of outcomes for HER2-driven cancers: while HER2-amplified BCs had
a notoriously poor prognosis when treated in an adjuvant or metastatic setting by con-
ventional chemotherapy, the development of a spectrum of therapeutic HER2 antagonists
converted this BC subtype into a relatively well-manageable disease [52].

Approximately 15–40% of BCs carry PIK3CA activating mutations. These mutations
result in the up-regulation of PI3K-driven survival pathways and render the resistance
of tumor cells to various therapies. Alpelisib has recently been approved in combination
with fulvestrant for the treatment of hormone receptor-positive HER2-negative PIK3CA-
mutated BCs. This drug does not prolong the response to endocrine therapy in PIK3CA
wild-type BCs. Alpelisib is not a mutation-specific drug in terms of its interaction with PI3K;
it also down-regulates the normal version of this enzyme. Hence, the PIK3CA mutation
test helps to discriminate between tumors, which are indeed supported by PI3K activation,
and cancers that are characterized by the involvement of other signaling pathways. PI3K
activity is essential for the cellular uptake of glucose, therefore patients receiving alpelisib
have a risk of developing hyperglycemia [50].

An inherited mutation in BRCA1 or BRCA2 genes results in the occurrence of 5–8%
of BCs. Tumor development involves somatic inactivation of the remaining BRCA1/2
allele, therefore BRCA1/2-driven BCs are characterized by a selective deficiency in DNA
repair by homologous recombination (HRD). BRCA1/2-associated cancers demonstrate
pronounced sensitivity to platinum compounds and PARP inhibitors (PARPi) [53,54].

2.4. Other Cancer Types

More than 50% of skin melanomas carry activating mutations in the BRAF oncogene
(Figure 1). Vemurafenib, dabrafenib and encorafenib were developed to target the most
common alteration in BRAF, i.e., V600E substitution. These drugs are generally active
against some other mutations affecting BRAF codon 600, particularly V600K. There are
also some rare genetic alterations located in the vicinity of codon 600, which demonstrate
varying sensitivity to BRAF inhibitors. Inhibition of mutated BRAF results in compensatory
activation of MEK kinases, and, therefore, treatment of BRAF-mutated melanomas, always
involves the combination of BRAF- and MEK-targeted drugs [55]. NRAS testing can be
used for the validation of negative results of a BRAF mutation analysis, given the mutually
exclusive nature of these mutations. There is a significant overlap of DNA tests utilized for
NSCLC, CRC and melanoma patients (Figure 2). Approximately 15% of mucosal and acral
melanomas carry activating mutations in the KIT receptor, with some of them rendering
sensitivity to imatinib and nilotinib [56,57].
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Sarcomas demonstrate very specific patterns of genetic aberrations: in fact, the differ-
ential diagnosis between various sarcoma subtypes is now almost entirely based on the
identification of characteristic gene fusions, or some other peculiar genetic events. Unfortu-
nately, virtually all these sarcoma-specific gene alterations are not druggable, although a
few noticeable exceptions exist [58,59]. For example, the majority of gastrointestinal tumors
(GISTs) contain imatinib-sensitive mutations either in exons 9, 11, 13 and 17 of the KIT
oncogene (approximately 70% of cases), or, significantly less frequently, in exons 12, 14 and
18 of the PDGFRA receptor (<5%) [60,61]. In addition, there are specific imatinib-resistant
mutations (PDGFRA D842V (exon 18); KIT D816V (exon 17)), which are detected in about
10% of GISTs. PDGFRA D842V substitutions are particularly common; they demonstrated
sensitivity towards the recently approved drug, avapritinib [62]. Inflammatory myofibrob-
lastic tumors often carry ALK rearrangements or, less frequently, gene fusions involving
other receptor tyrosine kinases [63]. NTRK1/2/3 translocations are particularly character-
istic for infantile fibrosarcomas and occur at some frequency in other sarcoma types [64]. A
small subset of clear-cell sarcomas carries the BRAF V600E mutation [65].

Thyroid carcinomas may arise from follicular cells (papillary, follicular, poorly differ-
entiated or anaplastic subtypes) or parafollicular cells C-cells (medullary subtypes) [66].
More than a half of papillary thyroid cancers are driven by BRAF mutations affecting
codon 600; these tumors are sensitive to the inhibitors of mutated BRAF [67]. Up to 20%
of papillary malignancies carry activating RET fusions. Medullary carcinomas account
for approximately 5% of thyroid tumors. Approximately a quarter of these tumors are
hereditary and develop due to germ-line mutational activation of RET kinase [68]. Two
thirds of sporadic medullary thyroid cancers carry a somatic mutation in the RET oncogene.
RET-driven thyroid cancers can be efficiently managed by RET inhibitors [69].

Cholangiocarcinoma is an aggressive tumor type, which is poorly manageable by
conventional cytotoxic therapy [70]. Intrahepatic biliary cancers carry FGFR2 gene fusions
at a rate of 10–20%. These cancers can be treated with an FGFR inhibitor, pemigatinib [71].
Another 10–20% of intrahepatic cholangiocarcinomas are characterized by mutations in
IDH1 or IDH2 genes [72]. These mutations result in the accumulation of 2-hydroxyglutarate
and, consequently, accumulation of epigenetic alterations [73]. An IDH1/2-targeted drug,
ivosidenib, was evaluated in a randomized phase III study involving 185 patients with
pretreated IDH1/2-mutated cholangiocarcinoma. Although statistically significant im-
provement of progression-free survival has been documented (p < 0.0001), the absolute
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difference between the experimental and the placebo arm was low (2.7 months versus
1.4 months) [74]. A small subset of gallbladder cancers is characterized by the presence of
BRAF codon 600 substitutions. Promising clinical activity of the combination of dabrafenib
and trametinib was observed in a phase II study involving 43 patients [75]. It is notable that
studies on colorectal cancer demonstrated the feasibility of adding anti-EGFR therapy to
BRAF inhibitors in order to prevent feedback activation of EGFR receptor [46]. Gallbladder
carcinomas share gastrointestinal origin with colorectal malignancies; therefore, it is logical
to anticipate that the same principle can be applied to BRAF-mutated cholangiocarcinomas.
The experience of the combined inhibition of BRAF and EGFR is limited to a single case
report, which demonstrated a complete response of heavily pretreated BRAF-mutated
gallbladder cancer to vemurafenib, dabrafenib and irinotecan [76].

Approximately 20% of urinary tract cancers are druggable because of the presence of
point activating mutations in the FGFR3 gene. FGFR inhibitor pemigatinib demonstrated
good clinical activity in this category of tumors [77]. Interestingly, the efficacy of this
compound was mainly limited to patients who experienced drug-induced hyperphos-
phatemia [78].

There are several major cancer types, e.g., esophageal, pancreatic, kidney and cervical
carcinomas, among others, which rarely carry druggable genetic alterations and, therefore,
are not routinely subjected to mutation testing in a clinical setting. Mutations in RAS
genes (KRAS, NRAS and HRAS) are apparently the most common pan-cancer activating
genetic events, as they occur at high frequency in pancreatic, colorectal, lung, skin and
many other types of malignancies. With the exception of KRAS G12C substitution, there is
no therapeutic compound capable of inhibiting mutated RAS genes. RAS up-regulation
results in the activation of MEK kinase, however, RAS-mutated tumor cells escape MEK in-
hibition by autophagy. The combined use of MEK inhibitors with an autophagy antagonist,
hydroxychloroquine (Plaquenil), resulted in the shrinkage of RAS-mutated pancreatic and
colorectal tumors in several case reports [79–81]. These observations require validation
in properly designed clinical trials and may eventually result in major changes in the
landscape of cancer diagnostics and treatment.

3. Integrative Tests

The tumor mutation burden (TMB) reflects the total number of mutations per genome.
It is especially high in cancers induced by excessive carcinogenic exposure, e.g., lung
cancer or melanoma, and in tumors deficient for particular DNA repair pathways. High
TMB results in increased tumor antigenicity and, consequently, responsiveness to immune
therapy. Although there are some technical issues related to the methodology of TMB
measurement and definition of the threshold, there is a good consistency across the studies
estimating the predictive value of TMB in different tumor types. The correlation between
high TMB and increased benefit from therapy has been observed for immune checkpoint
inhibitors (ICIs) [82,83]. The FDA approved the use of pembrolizumab for the treatment
of tumors with ≥10 mutations per megabase [84,85]. The evaluation of TMB absolutely
requires the use of NGS, either for the analysis of the entire exome or for sequencing of
selected representative fragments of tumor DNA. ESMO guidelines provide the list of
tumor types for which TMB evaluation is recommended as a routine practice [11]. The
history of heavy smoking may be considered as a surrogate for TMB in NSCLC patients [86].

MSI-H is in fact a subcategory of the high-TMB phenotype. Microsatellite-unstable
tumors have a characteristic pattern of mutations, which are caused by the deficiency of the
MMR module for DNA repair. In contrast to the determination of TMB in microsatellite-
stable tumors, the analysis of MSI-H does not necessarily require NGS. MSI-H status can
be determined by molecular analysis using a panel of standard microsatellite markers, or
by IHC [49]. Some tumors carry the hypermutator phenotype due to a deficiency of other
components of maintenance of genomic stability. MUTYH-associated colorectal carcinomas
have an excessive amount of G:C > T:A substitutions due to a deficiency in base excision
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repair [42]. The hypermutator phenotype is also characteristic for tumors with inactivation
of DNA polymerase epsilon (POLE) [87].

Some malignancies, particularly ovarian and triple-negative breast carcinomas, are
characterized by the deficiency of DNA repair by homologous recombination. The HRD
(BRCAness) phenotype can be caused by inactivation of BRCA1/2 genes or some other
genes belonging to the same pathway, and is associated with tumor responsiveness to
platinum compounds, mitomycin C, PARP inhibitors (PARPi), etc. HRD-deficient cancers
cannot efficiently repair DNA double-strand breaks and, therefore, accumulate multiple
copy number abnormalities across the genome. The most frequent cause of this chromoso-
mal instability is a biallelic inactivation of BRCA1/2 genes in hereditary cancers [88–90].
BRCA1 and BRCA2 germ-line mutations predispose to breast, ovarian and possibly stom-
ach malignancies [88,90,91]. In addition, BRCA2 pathogenic alleles are associated with
increased risk of prostate and pancreatic carcinomas [92,93]. Interestingly, not all cancers
arising in BRCA1/2 mutation carriers are characterized by somatic inactivation of the
remaining BRCA1/2 allele; therefore, it is advisable to supplement BRCA1/2 germ-line
testing with the BRCA1/2 loss-of-heterozygosity (LOH) analysis of the tumor tissue [94,95].
There are NGS-based assays aimed at evaluating the genome-wide status of chromosomal
instability and identifying a subset of tumors sensitive to platinum-based or PARPi therapy.
Sporadic cancers with the BRCAness phenotype generally demonstrate lower sensitivity
to BRCA1/2-specific drugs, as compared to hereditary BRCA1/2-driven malignancies.
There are continuing attempts to simplify HRD testing and to adapt it to the daily clinical
use [89,96].

4. Agnostic versus Tissue-Specific Targets

Targeted therapy is based on the assumption that the mere presence of actionable
vulnerability in cancer cell is associated with the responsiveness to a properly selected
drug. Although being generally true, this statement is an oversimplification and may
need some adjustment for a tissue-specific tumor context (Figure 3). For example, BRAF-
mutated melanomas, which do not express significant amounts of the EGFR receptor, can
be managed by a combination of BRAF and MEK inhibitors. In contrast to melanomas,
BRAF-driven colorectal cancers require EGFR inhibition to prevent an activation of the
compensatory signaling cascade, and are usually treated by combined administration of
anti-EGFR antibodies and antagonists of mutated BRAF [97]. IDH1/2 inhibitors are active
in IDH1/2-mutated acute myeloid leukemia, but demonstrate limited efficacy in glioblas-
tomas carrying IDH1/2 genetic alterations [98–100]. The clinical activity of inhibitors of
KRAS G12C is evidently higher in lung versus colorectal cancers [32]. PIK3CA inhibitors
demonstrated satisfactory activity in breast carcinomas, but showed low efficacy in non-
breast cancer clinical trials; it is essential to acknowledge that the BC trials involved the
combination of PIK3CA with endocrine therapy, while other studies utilized single-agent
PIK3CA inhibition [101–103].
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There are several markers which received agnostic status by FDA approval [85]. High-level
microsatellite instability, which occurs mainly in colorectal, endometrial and gastric cancers, but
is rare in other tumor types, is an indication for the use of immune therapy [84,104]. Similarly,
a high tumor mutation burden can be utilized as an agnostic marker for the administration
of immune checkpoint inhibitors [84]. NTRK1/2/3 gene rearrangements, which are found
at a reasonable frequency in pediatric tumors but are exceptionally rare in adults, are
associated with the tumor’s responsiveness to entrectinib or larotrectinib [105–108]. ALK,
ROS1 and RET rearrangements, although not formally classified as agnostic markers, occur
in multiple tumor types and render sensitivity to appropriate inhibitors [63,109–112]. HER2
amplification accompanied by gene overexpression may also be considered as an example
of a more or less agnostic druggable event [113–115].

5. Multigene Testing for the Choice of Therapy

The concept of agnostic markers led to the development of multigene panels, which
cover the entire spectrum of all known drug targets and aim to support the choice of an
effective therapy [85]. While it is probably beyond the debate that the curated knowledge
on the status of all coding regions of the genome and its integrative characteristics (TMB
score, HRD status) is generally desirable for every tumor case, the widespread use of NGS
is currently limited by high costs and, to a lesser extent, significant turn-around time of the
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analysis. Besides the economical consideration, there are intrinsic conceptual difficulties
related to the utilization of multigene testing.

There are only a few known targets (EGFR, BRAF, MET, HER2, ALK, ROS1, RET,
NTRK, BRCA1/2, MSI-H, high TMB, HRD) which indeed can be used for therapy guidance
in a relatively straightforward way [85]. Most of the currently utilized NGS panels include
an excessive number of genes with, at best, uncertain predictive value [116–118]. For exam-
ple, the I-PREDICT trial interpreted TP53 mutations as a reason for the administration of
antiangiogenic therapy, despite the scarcity of supporting evidences for this decision [116].
There are several clinical investigations which included patients with exhausted standard
treatment options and involved the administration of drugs based on the results of ag-
nostic NGS tests. All these trials observed clinical responses in a subset of patients, with
many instances of tumor shrinkage attributed to the above-listed well-known actionable
alterations. Overall, it is difficult to make a quantitative assessment of the results of these
trials, as they involved diverse cancer types and considered both targets with a very high
probability of tumor response and last-hope treatment options with clearly insufficient
levels of evidence [116–118].

There are ESMO recommendations which inform clinical specialists on the utilization
of NGS in clinical oncology. These recommendations suggest the routine use of NGS only
for selected tumor types (NSCLC, ovarian cancer, prostate cancer, cholangiocarcinoma)
and only for a relatively small spectrum of genes which have sufficiently proven predictive
value. It is stated that the use of extended gene panels or enlargement of the spectrum
of analyzed tumor types increases the probability of finding a druggable target only by
a small extent, and should be utilized either for investigational purposes or with explicit
knowledge on the expected cost–benefit ratio [11,119].

6. Conclusions and Perspectives

The development of DNA-based tests and corresponding mutation-specific drugs
led to dramatic improvement of outcomes in a subset of oncological patients. However,
the overall number of tumors which have clearly actionable genetic alterations is rela-
tively low, therefore, the majority of subjects with cancer do not receive gene-tailored
treatment. Virtually all major cancer types have already been subjected to systematic
exome sequencing studies, but this effort revealed only a modest number of novel po-
tentially druggable mutated genes [120–122]. Apparently, a single-target drug selection
is gradually reaching its plateau, and many opinion leaders call for the development of
integrative therapeutic approaches. There are attempts to identify universal vulnerabilities
of transformed cells, e.g., activation of particular signaling pathways or some general
metabolic dependencies [123,124]. Some studies suggest consideration of the entire spec-
trum of molecular alterations in each given tumor and the individual customization of
the combination of targeted drugs for every cancer patient [85,116]. Mutation profiling
covers only a part of tumor molecular characteristics, hence, there are efforts to integrate ge-
nomic, transcriptomic, proteomic and metabolomic profiling into a single decision-making
process [117,125]. Although molecular medicine is definitely guiding the development of
novel cancer treatments, it may provide a breakthrough only when coupled with inno-
vations in the clinical management of oncological patients. For example, there is sound
evidence suggesting that not only surgery but even systemic therapy can be efficient only
in patients with a relatively small tumor burden [126]. Consequently, early diagnosis and
screening of malignant diseases will continue to play an utmost role in the fight against
cancer [127]. The invention of immune checkpoint inhibitors boosted clinical research
on neoadjuvant therapy, therefore, an increasing number of potentially operable patients
experience systemic intervention before the surgery [128,129]. Monitoring of the tumor’s
molecular evolution during the treatment course is becoming a part of the clinical rou-
tine [130]. Interaction between surgeons, medical oncologists, radiologists, pathologists
and molecular biologists is a critical factor for success in cancer care.
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