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Effective Mass of Quasiparticles in 
Armchair Graphene Nanoribbons
Marcelo Macedo Fischer1, Leonardo Evaristo de Sousa1, Leonardo Luiz e Castro1, 
Luiz Antonio Ribeiro Jr.1,2*, Rafael Timóteo de Sousa Jr.3, Geraldo Magela e Silva1 & 
Pedro Henrique de Oliveira Neto1*

Armchair graphene nanoribbons (AGNRs) may present intrinsic semiconducting bandgaps, being of 
potential interest in developing new organic-based optoelectronic devices. The induction of a bandgap 
in AGNRs results from quantum confinement effects, which reduce charge mobility. In this sense, 
quasiparticles’ effective mass becomes relevant for the understanding of charge transport in these 
systems. In the present work, we theoretically investigate the drift of different quasiparticle species 
in AGNRs employing a 2D generalization of the Su-Schrieffer-Heeger Hamiltonian. Remarkably, our 
findings reveal that the effective mass strongly depends on the nanoribbon width and its value can 
reach 60 times the mass of one electron for narrow lattices. Such underlying property for quasiparticles, 
within the framework of gap tuning engineering in AGNRs, impact the design of their electronic devices.

Graphene Nanoribbons (GNRs) are quasi-one-dimensional materials in which quantum confinement may lead 
to the appearance of a bandgap1–5. Strategically, GNRs are an alternative route for graphene electronics since the 
latter lacks a bandgap, which represents a drawback in terms of some optoelectronic applications6,7. GNRs present 
two main types of edge geometry, named armchair and zigzag1. Zigzag GNRs are metallic3,4, whereas armchair 
GNRs (AGNRs) may present semiconducting properties, depending on its width N. By its very nature, AGNRs 
are commonly divided into three families, denoted N = 3p, N = 3p + 1, and N = 3p + 2, where p is an integer4. 
Two of these families, 3p and 3p + 1, possess an intrinsic and tunable bandgap, whereas the 3p + 2 family presents 
quasi-metallic behavior, with a relevant bandgap appearing only for small values of p. For this reason, AGNRs are 
widely used in developing new optoelectronic applications8–13.

Despite the promising horizon to develop new solutions for organic electronics, devices based on AGNRs still 
offer limited efficiency14. In addition to the emergence of a bandgap, the characteristic lateral confinement of 
charge carriers in AGNRs also induce a non-zero effective charge carrier mass, which significantly affects charge 
carrier mobility in these materials15. Such picture points to the necessity of improving the understanding of 
charge transport to promote advances in graphene-based technology. Charge transport in AGNRs have been 
experimentally studied via THz spectroscopy2. This technique consists of optically mobilizing charges using an 
ultra-fast light pulse, where the interaction between charges and the THz pulse allows for the determination of the 
intrinsic charge conductivity. Results indicate that quasiparticles play an important role in terms of charge trans-
port in graphene systems2. From a theoretical standpoint, charge transport in graphene nanoribbons has been 
studied in the framework of the tight-binding model16–25. Such studies corroborate the findings that charge carri-
ers in these materials are indeed quasiparticles26,27, with polarons and bipolarons being of particular interest due 
to its charged nature. Polarons are quasiparticles characterized by two intragap electronic states, spin ± 1

2
, and 

charge ± e associated with a local lattice distortion28. Bipolarons, in turn, present two narrower intragap energy 
levels and stronger lattice distortion than polarons, charge ± 2e and are spinless quasiparticles28. The lattice dis-
tortions produced by either quasiparticle result in the observed larger effective masses responsible for reduced 
charge mobility. In this sense, the interplay between the carrier’s effective mass and the different properties of 
AGNRs is a crucial aspect that should be understood to promote the enhancement of graphene-based devices 
figures of merit.

Herein, we study the drift of charge carriers in AGNRs to phenomenologically characterize their effective 
masses (meff). By means of a 2D generalization of the Su-Schrieffer-Heeger (SSH) model29,30, along with a Stokes 
dissipation model, we numerically investigate the dynamics of polarons and bipolarons in these systems. In the 
scope of our approach, we determine terminal velocities and effective masses of the charge carriers for AGNRs 
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with different widths. Our findings show that effective mass strongly depends on carrier type and ribbon width, 
varying up to two orders of magnitude. Importantly, different carbon-based systems (or even inorganic-based 
nanomaterials31) have different electronic structures and may present distinct responses when it comes to trans-
port properties, in the sense their symmetry and doping level may alter these properties substantially32. Zigzag 
GNR does not present an energy gap with which polarons and bipolarons are usually associated3,4. In this way, 
they are not considered here.

Results
The quasiparticles present local lattice distortions that accumulate charge. Figure 1(a,b) depict the time evolu-
tion of charge density in 6-AGNR, where hot colors represent such charge accumulation. In Fig. 1(a), the charge 
density profile represents a polaron moving under the influence of an external electric field applied in the vertical 
direction. Similarly, Fig. 1(b) shows a bipolaron, subject to the same electric field strength. Both quasiparticles 
respond to the applied field. However, the polaron experiences stronger acceleration. The slower response to the 
electric field as presented for the bipolaron is so in spite of the its charge (2e), which results in twice as much force 
applied on bipolarons when compared to polarons. Such behavior goes to show that the extra force is not enough 
to balance the increased inertia of a bipolaron. Indeed, bipolarons carry along a stronger distortion of the nano-
ribbon lattice. Comparison between both distributions of charge density demonstrates that the polaron’s charge 
is distributed over 40 sites in the vertical direction, whereas the bipolarons’ charge spread over less than 30 sites. 
As such, the polaron is more delocalized than the bipolaron. The combination of more charge confined in shorter 

Figure 1.  Time evolution of charge density in a 6-AGNR showing (a) polaron and (b) bipolaron motions 
driven by an external electric field of 1200 V/cm. Hot colors represent charge accumulation.

Figure 2.  (a) Polaron displacement as a function of time for three different AGNRs families under the influence 
of different electric fields strengths. The red line represents a 4-AGNR under a field of 7220 V/cm. The green 
line represents a 5-AGNR for 2400 V/cm. The blue line represents a 6-AGNR 1200 V/cm. (b) Displacement as a 
function of time for two different families of bipolarons under the influence of different electric fields strengths. 
The red line represents a 4-AGNR under a field strength of 7220 V/cm. The blue line represents a 6x70-AGNR 
for 1200 V/cm.
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regions results in more significant lattice deformation, which is responsible for the increased inertia observed for 
bipolarons. Therefore, Fig. 1 illustrates that increased localization will take a toll on charge mobility.

By taking the center of the charge density distribution and registering its position, it is possible to obtain the 
time evolution of the charge carrier’s position in the nanoribbon. Figure 2(a) shows the polaron displacement, 
in the vertical direction, as a function of time. Each color represents the behavior observed in different AGNR 
families. Red curves refer to 4-AGNR, green to 5-AGNR, and blue to 6-AGNR. In Fig. 2(a) it can be seen that the 
displacement curves approach linear behavior, denoting that charge carriers reach a terminal velocity. Similar 
results are seen in Fig. 2(b) for bipolarons. Note that a curve representing the 3p + 2 family is absent in Fig. 2(b) 
since bipolarons are not stable in lattices belonging to this family33. Regarding polarons, it is worth to mention 
that this quasiparticles are present only in thinner AGNRs for the 3p + 2 family33, and because of that we consider 
as representative systems the ribbons 5-AGNR and 8-AGNR in which polarons can be formed33. Despite similar 
qualitative behavior, the two quasiparticles show different characteristic times for reaching terminal velocity. For 
polarons, this time corresponds roughly to 1 ps, around half of the simulation time. In the case of bipolarons, an 
extra 0.5 ps is necessary. A simple Stokes dissipation model is used to describe the observed carrier motion. This 
model considers a dissipation term proportional to the first power of the velocity: Fd = −bv. Therefore, we can 
obtain terminal velocity vt when the dissipation term equals the force produced by the electric field vt = qE/b, 
where q stands for the carrier’s charge and E the electric field. Under these conditions, the displacement of the 
charge center as a function of time (t) is given by

η∆ =






− −




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−t v t
m

b
e( ) (1 ) ,
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where meff stands for the effective mass of the carrier and b is the drag coefficient. By fitting the displacement 
curves, changing the values of meff and b, we can evaluate both polarons’ and bipolarons’ effective masses as well 
as the drag coefficients. Note that meff is a fitting parameter. In this sens, we are able to evaluate both effective 
masses and drag parameter by using its value. Importantly, the main goal of the present work is proposing a 
route to evaluate the effective masses of quasi-particles in graphene nanoribbons. This quantity is fundamental 
to experimental approaches to the evaluation of charge mobilities, as well as the understanding of underlying 
properties of charge transport in graphene systems. Regarding the model used for the determination of the effec-
tive mass, as mentioned above, we chose Stoke’s model for its simplicity and its phenomenological aspect. A vital 
feature of this model comes from observation of terminal velocity and thus the necessity of a dissipation term.

Through the procedure described above, it is possible to understand how the ribbon width affects charge 
carriers inertia. Figure 3(a) shows the polaron effective mass in units of electron mass (me) as a function of nano-
ribbon’s width. The blue, red, and green lines correspond to the 3p, 3p + 1 and 3p + 2 families, respectively. In all 
cases, the effective mass correlates inversely with the ribbon width, ranging from 0.2 to 14 me. As expected, effec-
tive masses are lower for the 3p + 2 family, given its quasi-metallic nature. The remaining two families, however, 
show no clear ordering, with both curves intersecting each other. Analogous conclusions hold for bipolarons, as 
shown in Fig. 3(b).

Figure 3.  (a) Shows the effective mass of polarons as a function of nanoribbon width, separated into families. 
The red line represents 3p + 1 family, the green line represents 3p + 2 family, and the blue line represents 3p 
family. The inset depicts the polaron’s effective mass as a function of the electric field, for the 9-AGNR. (b) 
Shows the effective mass of bipolarons as a function of nanoribbon width, also separated into families. The 
red line represents 3p + 1 family and the blue line represents 3p family. The inset on the right illustrates the 
bipolaron’s effective mass as a function of the electric field, for the 9-AGNR. The values shown in this figure are 
obtained by using a mean value of all applied fields for polarons (panel (a)) and as well a mean value of field 
strengths smaller than 3000 V/cm in the bipolaron case (panel (b)).
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In contrast to polarons, bipolaron effective masses are considerably larger, ranging from around 10 to near 60 me 
in the case of the 3p + 1 family and from 5 to 15 me in the case of the 3p family. These results reflect the above men-
tioned more considerable inertia observed in the bipolaron’s response to the electric field, responsible for the longer 
times needed for terminal velocity to be reached. Due to the differences in effective mass, the required electric field 
intensity required to move both charge carriers differ considerably. The insets of Fig. 3 show representative results 
of the evaluation of effective mass under different electric fields. One can note that in the case of polarons, the 
obtained masses are practically field independent. The same situation occurs for bipolarons until fields of around 
3000 V/cm. After this critical field strength, the effective masses increase, and the fits to the model are not appropri-
ate, indicating that the model may be not valid in high electric field regimes. This behavior takes place due to strong 
electron-phonon interaction in GNRs. Below a critical field strength, electrons and phonons are strongly coupled. 
Above this critical limit, electrons are decoupled from the lattice assuming supersonic velocities. Therefore, the 
lattice distortions and electron starts to move disconnectedly, and the kinematic model is not valid anymore.

Finally, the interplay between effective masses and ribbon width can be understood from a microscopic per-
spective by analyzing the charge distribution for quasiparticles in different AGNRsy. Figure 4(a,b) show these 
distributions for 4-AGNR and 6-AGNR, considering a lattice containing a polaron (left panels) and a bipolaron 
(right panels). It is clear that as ribbon width increases, the polaron becomes more delocalized, as can be seen by 
the hotter colors in smaller widths. Despite increasing the ribbon width, the charge tends to concentrate later-
ally. The same qualitative behavior takes place for lattices containing a bipolaron. The combination of these two 
underlying effects for the net charge localization leads to an increase in the local lattice deformations associated 
with the presence of charge for narrower AGNRs. Contrarily, for wider AGNRs, the interplay of these two effects 
decreases the local distortions that are interacting with the charge. Moreover, in Fig. 4 it is possible to note that 
lattices containing a bipolaron presents a higher degree of charge localization (that are represented by the signa-
tures in red). Bipolarons quasiparticle have a similar extension to the polaron, approximately 30 Å. Since polarons 
and bipolarons are composite quasiparticles in which the local lattice distortions are coupled to an additional 
charge, both evolve in time together during the transport of these quasiparticles. Therefore, the higher the degree 
of distortion more lattice energy should be transferred between neighboring sites to accomplish the polaron/
bipolaron transport. Consequently, this mechanism for charge transport increases the effective mass of more 
localized charge carriers.

Methodology
The model Hamiltonian employed here is given by H = Hlatt + Helec, where the first and second terms govern the 
lattice and electronic degrees of freedom, respectively. By employing a harmonic approximation30, we treat the 
lattice dynamics classically. In this sense, its Hamiltonian assume the following form

∑ ∑ η= +
〈 〉
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where Pi is the momentum of the i-th site with mass M, and K is the force constant associated with the σ bond30.
The electronic Hamiltonian, in turn, describes the π-electrons dynamics according to the equation below,
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Figure 4.  Charge density (a) for the 4-AGNR and (b) for the 6-AGNR. As the width grows, both polaron and 
bipolaron get more delocalized.
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The summation runs over π-electrons in neighboring i and j sites with spin s (see Fig. 5). †Ci s,  and Ci,s denote 
the creation and annihilation of an electron in states denoted by their subscript indices. To consider an external 
electric field (

→
E ), we use a vector potential according to 

→
= −

���E t c A t( ) (1/ ) ( ). The exponentials come from the 
Peierls substitution method34. The unit vector r̂i j,  points from j site to i site. Finally, the parameter γ in Helec is 
defined as γ ≡ ea

c
, where a is the lattice parameter, e the fundamental charge, and c the speed of light. The term ti,j 

is the hopping integral, which couples the π-electrons to the lattice according to

αη= − .t t (4)i j i j, 0 ,

In Eq. 4, α is the electron-phonon coupling constant and ηi,j is the relative displacement of the lattice sites from 
their equilibrium positions.

The dynamics calculation starts from an arbitrary initial set of coordinates {ηi,j}, that is necessary to 
solve the electronic part of our model Hamiltonian initially. As a consequence, this procedure leads to an 
eigenvalue-eigenvector equation for the electronic component of the system, where the eigenvalues are Ek and the 
eigenvectors are ψk,s(i,t = 0). These quantities can be related as follows:

ψ ψ ψ ψ= = − = − ′ = − ″ =E i t t j t t j t t j t( , 0) ( , 0) ( , 0) ( , 0), (5)k k s i j l s i j l s i j l s, , , , , , ,

where i, j, j′ and j″ are neighboring sites.
To solve the classical component or our model, that describes the lattice structure, we turn to the 

Euler-Lagrange equation23. From the solution of the electronic part, we evaluate the expectation value of the wave 
function 〈Ψ|L|Ψ〉. This equation leads to:
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Figure 5.  Schematic representation of the model AGNR lattice. This figure was obtained by using Gnuplot (see 
http://www.gnuplot.info).
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couples the electronic and lattice degrees of freedom. The primed sum means that only the occupied states are 
considered.

The solution of the Euler-Lagrange equation with Pi = 0 leads to a new set of coordinates {ηi,j} that is used to 
recalculate the electronic Hamiltonian. This process is repeated iteratively until they reach the convergence crite-
ria. As a result, this self-consistent procedure yields the ground state geometry that considers the interdependence 
between charge and lattice.

After achieving the convergence criteria, the time evolution of the initial state can be accomplished using the 
full Euler-Lagrange equation23. The time evolution of the electronic part is governed employing the time-dependent 
Schrödinger equation. To do so, we expand the wave function ψk,s(t) in the basis of eigenstates of the electronic 
Hamiltonian, ϕ t{ ( )}l s, , at a given time t. Therefore, the wave function in time t + dt can be expressed as

∑

∑

∫ψ ψ

ϕ ϕ ψ

ϕ ψ ϕ

+ =

=

= ε

− ′ ′

−

−

+

t dt e t

e t t t

t t e t

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ,
(8)

k s

i dt H t
k s

i H t dt

l
l s l s k s

l
l s k s

i t dt
l s

,
( )

,

( )
, , ,

, ,
( )

,

t

t dt

l






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where ε t( )l  is the eigenenergy of ϕ t( )l s, .
The dynamics of the electronic structure is carried out by using Eq. 8, that is evaluated numerically and then 

employed to the calculation of the expectation value of a new Lagrangian23. The Euler-Lagrange equation leads to 
a Newtonian type expression that takes into account the neighboring bonds:
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The applied electric field is turned on adiabatically, to avoid numerical error, in the following scheme:
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where tf is the total time of simulation and τ is the time needed until the electric field reaches its full strength. 
Here τ = 100fs.

To avoid edge effects, we consider periodic boundary conditions in the vertical direction of the nanoribbon, 
where the field is applied. Here, we use the notation NxM-AGNR, where N and M represent the number of sites 
on the horizontal and vertical directions of the nanoribbon, respectively. As all systems considered have M = 70, 
for the sake of simplicity, we use the notation N-AGNR. In the studied cases, N vary within the interval of 4–12.

Conclusions
In summary, charge carrier dynamics in AGNRs under the influence of an external electric field were analyzed 
employing a 2D generalization of the SSH Hamiltonian. AGNRs with widths ranging from N = 4 to N = 12 
were studied. Results point to the polaron and bipolaron formation on such systems, where these quasiparticles 
respond differently to the external electric field, being the inertia of bipolarons larger. Eventually, however, both 
quasiparticles stop accelerating under the electric fields, moving afterward with constant velocity. Making use of 
a Stokes dissipation model, we were able to determine the effective mass of the charge carriers for several ribbon 
widths. It is shown that the effective mass of these quasiparticles varies drastically depending on two aspects, 
the system’s width and the particular kind of quasiparticle present in the system. The effective mass for polarons 
presented values from 0.31 me to 14.7 me. In the case of bipolarons, the effective mass had values between 4 me 
and 60 me.
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