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Abstract: While adding superabsorbent polymer hydrogel particles to fresh concrete admixtures,
they act as internal curing agents that absorb and then release large amounts of water and reduce
self-desiccation and volumetric shrinkage of cement that finally result in hardened concrete with
increased durability and strength. The entrainment of microscopic air bubbles in the concrete paste
can substantially improve the resistance of concrete. When the volume and distribution of entrained
air are adequately managed, the microstructure is protected from the pressure produced by freezing
water. This study addresses the design and application of hydrogel nanoparticles as internal curing
agents in concrete, as well as new findings on crucial hydrogel–ion interactions. When mixed into
concrete, hydrogel particles produce their stored water to power the curing reaction, resulting in less
volumetric shrinkage and cracking and thereby prolonging the service life of concrete. The mechanical
and swelling performance qualities of the hydrogel are very sensitive to multivalent cations found
naturally in concrete mixes, such as aluminum and calcium. The interactions between hydrogel
nanoparticles and alkaline cementitious mixes are described in this study, while emphasizing how the
chemical structure and shape of the hydrogel particles regulate swelling behavior and internal curing
efficiency to eliminate voids in the admixture. Moreover, in this study, an artificial neural network
(ANN) was utilized to precisely and quickly analyze the test results of the compressive strength and
durability of concrete. The addition of multivalent cations reduced swelling capacity and changed
swelling kinetics, resulting in fast deswelling behavior and the creation of a mechanically stiff shell
in certain hydrogel compositions. Notably, when hydrogel particles were added to a mixture, they
reduced shrinkage while encouraged the creation of particular inorganic phases within the void area
formerly held by the swelled particle.
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1. Introduction

Portland cement is the most frequently used construction material in the world, and
its production accounts for 5–10 percent of the globe’s total yearly carbon dioxide emis-
sions [1–4]. In the US, 92 million metric tons of concrete were manufactured in 2015,
providing $10.6 billion to state revenues [5]. Therefore, concrete is a vast international
sector, and there is significant opportunity for the adoption of a broad variety of material
science technologies that enhance the effectiveness and sustainability of concrete materi-
als [6–9]. Such material developments would in turn lower the need for maintenance and
repair of concrete pavement and infrastructure over time, resulting in significant environ-
mental and economic savings [10–14]. High performance concrete (HPC) is an innovative
alternative to traditional concrete that is more durable and stronger owing to its reduced
porosity and fewer CO2 emissions [1,15–20]. HPC may easily attain compressive strengths
as high as 110 MPa, as opposed to the more typical 30–40 MPa [21]. Reduced porosity and
a disconnected pore network render HPC highly resistant to corrosive fluid penetration,
making it very durable, even in severe conditions [22–25]. Due to its decreased permeability,
HPC has generally strong fire resistance; nonetheless, the narrower pore network might
produce explosive spalling at high enough temperatures [26–31]. Such spalling may be
minimized by including soft polymers, such as crushed rubber, into the concrete, since
they impart a greater elastic modulus [32]. Self-desiccation is the outcome of high Portland
cement content compared to free water (low water-to-cement ratio) in high-performance
concrete. Water is used with Portland cement to produce calcium silicate hydrate (CSH),
the inorganic binder from which concrete derives its compressive strength [33]. Signifi-
cant inward Laplace pressures are increased in HPC mixtures when water is drained and
consumed from the hydrated cement network’s tiniest pores [34–38]. These stresses are
sufficient to generate autogenous shrinkage, which may lead to early-age cracking and
structural failure, particularly if the concrete is restricted by reinforcements, forms, or other
concrete [39]. During the curing phase, more water may be added from external sources
to limit self-desiccation and counterbalance a portion of this early-age shrinkage. Due to
the tight microstructure and poor permeability of HPC, it is difficult for water from the
outside to permeate deeply into the matrix of hardening cement. Internal cure approaches
provide a remedy to this HPC self-desiccation issue. Recent research has focused on the
utilization of covalently cross-linked superabsorbent polymer (SAP) hydrogels [40] for
internal curing. These hydrogels may capture and hold fluids up to a few hundred times
their dry weight [41]. Hydrogels were observed to prevent autogenous shrinkage in HPC,
and while some studies have reported a reduction in early age strength following the
addition of hydrogels, the strength did rebound to control levels with adequate time [42].
The capacity to alter the swelling response, the mechanical response, and the size of hy-
drogels may potentially result in hydrogels conferring several advantages to concrete.
Hydrogels may be added dry to the cement admixture, and very low quantities have been
shown to be helpful in minimizing HPC shrinkage (often less than 2 percent by weight
of cement), making them more desirable than pre-soaked lightweight aggregates [43,44].
A deficiency in the study on polymer hydrogels for internal curing is the widespread use
of proprietary hydrogels with undisclosed chemical compositions; typically, not even the
monomers utilized to synthesis the hydrogels are revealed. The underlying assumption
is that hydrogels inside solid materials are chemically inert. Recent research [43–49] has
shown that when hydrogels are to be employed as internal curing agents for concrete, a
great deal of consideration should be given to their chemical composition as well as the
technique for measuring their swelling capacity. Gels 2017, 3, 45 2 of 18 HPC includes an
overabundance of Portland cement compared to free water (low water-to-cement ratio),
resulting in the self-desiccation phenomena [50–54]. Water is used by Portland cement to
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produce calcium silicate hydrate (CSH), the inorganic binder from which concrete derives
its compressive strength [55]. During the curing phase, more water may be added from
external sources to limit self-desiccation and counterbalance a portion of this early-age
shrinkage. Due to the tight microstructure and poor permeability of HPC, it is difficult for
water from the outside to permeate deeply into the matrix of hardening cement. Internal
curing approaches provide a remedy to this HPC self-desiccation issue. Recent research has
focused on the utilization of covalently cross-linked superabsorbent polymer (SAP) hydro-
gels [56] for internal curing. These hydrogels have the capacity to absorb and hold fluids up
to several hundred times their dry weight [41]. Hydrogels have been observed to prevent
autogenous shrinkage in HPC, and while some studies have suggested a reduction in early
age strength following the addition of hydrogels, the strength did rebound to control levels
with adequate time [39,57,58]. The capacity to alter the mechanical response, swelling
response, form [59], and size of hydrogels may potentially result in hydrogels conferring
several advantages to concrete. Hydrogels may be added dry to the cement mixture, and
very low quantities have been shown to be helpful in minimizing HPC shrinkage (often
less than 2 percent by weight of cement), making them more desirable than pre-soaked
lightweight aggregates [60]. A deficiency in the study on polymer hydrogels for internal
curing is the widespread use of proprietary hydrogels with undisclosed chemical com-
positions; typically, not even the monomers used to synthesis the hydrogels are revealed.
The underlying assumption is that hydrogels inside solid materials are chemically inert.
Figure 1 shows a range of chemical additives added to improve the general operation of
ordinary polyacrylic hydrogel.
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Figure 1. A range of chemical additives have been added to improve the general operation of ordinary
polyacrylic hydrogel. (a) Combining of water, acrylic thickener, and adding PH adjustment, then mix
for few minutes, (b) Swelling that was derived by PH.

The tight microstructure produces a sturdy and long-lasting structure [26] with min-
imal environmental impact [32]. The biggest technical problem with HPC is autoge-
nous/volumetric shrinkage, which occurs initially in the curing process and subsequently
leads to the production of greater porosity, micro cracks, and a decrease in the general
strength [55]. The amount of shrinkage increases due to insufficient cement hydration
because of the lack of water to drive curing, causing the mix to self-desiccate [33]. Negative
capillary pressure inside the aqueous fluid in the combination (dubbed ‘pore fluid’) causes
compressive stresses within the system, eventually resulting in the destruction of the ce-
ment microstructure [33]. Internal curing agents that efficiently replace the water supply
within the mix and assist in cement hydration can be used to overcome the deficiency of
water within the system [61–67]. For the internal curing of HPC, superabsorbent polymers
(SAPs) have become popular. SAP hydrogel particles take up water and expand to a
thousand times their initial size [40]. As a result, SAPs can supply a regulated discharge of
a large water reservoir for the use of HPC internal curing [56]. Thus, autogenous shrinkage
and micro cracking in concrete are successfully decreased, while a very tough and durable
concrete is formed [33]. There are other advantages to employing SAP particles as internal
curing agents for concrete, out of which some are presently being investigated: concrete
freeze or thaw resistance can be improved by controlling the size and shape of the pore
systems [68], thermal expansion can be reduced [69], and fractures can be loaded to facili-
tate healing of fractures [70]. The utilization of hydrogel particles also allows for greater
supervision over the rheological characteristics of fresh concrete [71] as well as a decrease
in fire-caused spalling. Figure 2 shows three types of gel structures, namely, RHEOTECH
4800, THXOL 553L, and VISCOATEX 730.
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Portland cement is the most frequently used construction material on the planet, with
its manufacture accounting for five to ten percent of global yearly CO2 production [1]. In
2015, ninety-two million metric ton of concrete were manufactured in the United States,
generating 10.6 billion dollars in state revenue [5]. As a result, concrete is a vast global sector
with enormous promise for incorporating a wide range of material science approaches to
improve sustainability as well as performance of concrete substances [4,35–38,72]. These
material advancements would then gradually lower the demand for concrete infrastructure
as well as pavement replacement and repair, resulting in substantial environmental and
economic advantages. Owing to its smaller porosity and fewer CO2 emissions, HPC is a
more durable and strong replacement for traditional concrete [73]. In comparison to the
more normal compressive values of 30 to 40 MPa, HPC may easily produce compressive
strengths as great as 110 MPa [21]. HPC is resilient to corrosive fluid intrusion due to its
low porosity and unconnected pore network, making it exceptionally stable even in severe
conditions [22]. HPC has excellent fire resistance because of its decreased permeability, yet
the narrower pore network may produce catastrophic spalling when adequately extreme
temperatures are attained [26]. The inclusion of soft polymers, such as crushed rubber
can help to prevent spalling by giving the concrete a greater elastic modulus [32]. HPC
comprises an overabundance of Portland cement in comparison to free water (it has a small
water to cement ratio), resulting in self-desiccation [74–77]. Water is used by Portland
cement to produce calcium silicate hydrate (also called CSH), which is an inorganic binder
that gives concrete compressive strength [55]. As water is used and removed from the
small holes in the hydrated cement network in HPC mixes, large inward Laplace pressures
occur [34]. These pressures are significant enough to generate autogenous shrinkage, a
bulk volumetric collapsing of the system that can result in early age cracks and failure of
the structure, particularly if the concrete is restricted against reinforcements, forms, or even
other concrete [17,39,78–83]. Extra water can be given externally during the curing stage
to prevent self-desiccation and counterbalance part of this early age shrinkage through
the use of wet blankets, hoses, or sprinklers. External water cannot delve deep into the
curing cement matrix because of the thick microstructure and poor permeability of high
performance cement. Internal cure approaches provide a resolution to the self-desiccation
challenge in high performance concrete. These hydrogels may take in and hold fluid even
a hundred times their dry weight [41]. Although some researchers have observed a decline
in the early-age strength upon introducing hydrogels, strength recovered to control levels
with enough time [42]. Controlling the mechanical reaction, swelling response, form [84],
and size of the hydrogels could lead to many benefits for concrete. Hydrogels can be
introduced dry to the cement mix and have been shown to reduce high performance
concrete shrinkage (typically around two percent by weight of cement), making them
more appealing to utilize than presoaked lightweight aggregates [85]. During the plastic
and rigid states of concrete and absorption and desorption water [86–91]. the dispersed
components contribute internal water to the cement gel, accelerating the hydration stage
in cement-based substances. Practitioners and academics have widely used two main
substances, lightweight aggregate (LWA) and superabsorbent polymer (SAP), to meet
internal curing in concrete sections. Superabsorbent polymers are polymers that are cross
linked and can take in and discharge significant amounts of water and can be used in a
variety of concrete technological uses. SAPs’ swelling rate and ability to change relying
on polymer type, chemical makeup, and size are key properties [39]. SAP is described as
a smart material that is able to alter its characteristics in a regulated manner in response
to an outside effect. Figure 3 shows hydrogel rheology. Elastic solids σ = Gγ stress and
strain are in phase, and viscous fluid σ = ηγ stress and strain are out of the phase. Figure 3
shows a durability test and deicer scaling of the concrete surface (a); these distresses can be
mitigated by proper mixture design. The three main components of cement-based concrete
are shown in Figure 4.
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According to the literature, the swelling ratio of SAP in deionized water can be
larger than 500 g/g, whereas in a traditional concrete pore solution, it can be as low as
10 to 20 g/g. Whenever the external humidity levels drop, the enlarged SAP acts as a
flow obstacle, slowly releasing absorbed water [15,92–97]. Apart from tangible uses, SAP
has been seen in meat packing, pharmaceutical uses such as delivery of drugs, personal
hygiene products such as diapers, biomedical products such as band aids, trash solidifica-
tion, agricultural uses for the conditioning of soil, and water barrier tapes for underwater
water pipes [98]. SAPs are primarily used as internal curing agents in concrete technol-
ogy to prevent autogenous shrinkage in small water to cement ratio mixes, self-healing,
rheological management, and frost prevention. RILEM STAR-225 produced a futuristic
paper on SAP use in concrete (2012). The advantages of SAP over alternative internal
curing agents, such as LWA, lay in the small amount of SAP required to provide internal
curing water and enhance concrete’s mechanical and freshness qualities. It could be used
as an air entraining substance in concrete to enhance air content and hence raise freeze
thaw resistance [99–102]. The water absorption rate can also be calculated analytically.
According to Jensen and Hensen (2001), the benefits of SAP as an internal curing agent
include preventing self-desiccation, reducing cracks, increasing hydration and longevity,
and lowering permeability [39]. They also stated that adding SAP to the cement matrix
improves the composite concrete’s tensile strength and toughness.
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The technique of limiting the volume of voids in aggregate mixtures for attaining
the appropriate qualities of fresh and hardened product can be defined as mix propor-
tioning of materials made up of cement, e.g., paste such as cement and water, as well as
concrete [103–107]. The use of particle packing systems to estimate the void ratio as well as
packing density of concretes might supply instruments for improving the performance of
hardened and fresh substances by decreasing the quantity of cement and free water and
increasing the number of solids. Nevertheless, the designer’s challenge is to balance the
mix elements so that the solid mix components have a minimal void ratio and maximal
packing density while maintaining acceptable operability [92,108–112]. Figure 5 shows the
three phases of durability test processing: microscopic analysis of the hardened air void
system, cyclic freeze thaw tests of hardened concrete, and air content of fresh concrete.
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Objective of Study

In this work, packing principles were used to estimate the paste volume required
to fill aggregate void space in order to estimate the void ratio of various aggregates.
Lastly, theoretical approaches for cement content, slump, and compressive strength were
established. Subsequently, the void content density and fineness modules of the aggregate
were estimated, the slump cone test was employed to estimate the needed volume of
cement paste, and the concrete compressive strength was calculated. ANN was utilized
to improve the accuracy of the test by increasing the analysis duration and decreasing the
ratio of error. Figure 6 shows the hardened air void system (ASTM C457). Figure 6 shows a
microscopic image of AASHTO T152 fresh concrete.



Gels 2022, 8, 468 9 of 22Gels 2022, 8, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 6. Microscopic image of AASHTO T152 fresh concrete. 

2. Methodology  
2.1. Hydrogel Chemistry 

Polyelectrolyte molecules are covalently cross linked to produce a three-dimensional 
polymer network, which is employed as an internal curing agent. Due to the presence of 
very alkaline pore fluids (pH greater than 12), hydrogel particles are not chemically inac-
tive in cement mixes [113]. As pKa of acrylic acid is roughly 4.5, the carboxylic acid 
(COOH) functional groups in hydrogel particles that contain acrylic acid deprotonate in 
alkaline conditions, forming anionic COO– moieties in the polymer network and enabling 
substantial quantities of water to be soaked up via ion dipole interplay. Since the anionic 
network results in a higher concentration of free counter ions inside this hydrogel particle 
in comparison to the surrounding fluid for maintaining electro neutrality inside the sys-
tem, the primary method of hydrogel particle swelling could be related to the creation of 
a chemical potential gradient between the surrounding fluid and particle. This gradient 
causes an osmotic pressure gradient, which causes water and other ions in solution to 
diffuse into the hydrogel particle. The particle will expand till the overall osmotic pressure 
is 0. Cations in the aqueous fluid such as sodium ions, aluminum ions, and calcium ions 
will be electrostatically drawn to the COO– moieties and produce ionic complexes that 
essentially function as crosslinks inside the polymer network, lowering the hydrogel’s 
equilibrium absorbency and leading to polymer network breakdown. As specific hydro-
gel compositions (inclusive of some commercially available substances) have been discov-
ered to show great sensitivity to the mono and multivalent cations that naturally occur in 
pore fluids based on mix age, there is a wealth of research in the concrete materials field 
to precisely measure the absorption and desorption behavior of hydrogel particles in ce-
ment pore fluids. Ion-induced deswelling is improved as the anionic character of the hy-
drogel is enhanced, e.g., by increasing the concentration of acrylic acid in the network due 
to the greater availability of anionic sites in the polymer network that are able to complex 
with counter ions in solution. 

2.2. Hydrogel–Cement Interactions 
Hydrogel particles are often utilized in extremely small quantities when added with 

cement (generally only 0.2 percent by weight of dry cement). In the lab, cement and hy-
drogel are combined dry, the needed volume of superplasticizer and water are intro-
duced, and the mix is vacuum or hand combined (or even machine-mixed at the field). A 

Figure 6. Microscopic image of AASHTO T152 fresh concrete.

2. Methodology
2.1. Hydrogel Chemistry

Polyelectrolyte molecules are covalently cross linked to produce a three-dimensional
polymer network, which is employed as an internal curing agent. Due to the presence
of very alkaline pore fluids (pH greater than 12), hydrogel particles are not chemically
inactive in cement mixes [113]. As pKa of acrylic acid is roughly 4.5, the carboxylic acid
(COOH) functional groups in hydrogel particles that contain acrylic acid deprotonate in
alkaline conditions, forming anionic COO– moieties in the polymer network and enabling
substantial quantities of water to be soaked up via ion dipole interplay. Since the anionic
network results in a higher concentration of free counter ions inside this hydrogel particle
in comparison to the surrounding fluid for maintaining electro neutrality inside the system,
the primary method of hydrogel particle swelling could be related to the creation of a
chemical potential gradient between the surrounding fluid and particle. This gradient
causes an osmotic pressure gradient, which causes water and other ions in solution to
diffuse into the hydrogel particle. The particle will expand till the overall osmotic pressure
is 0. Cations in the aqueous fluid such as sodium ions, aluminum ions, and calcium ions
will be electrostatically drawn to the COO– moieties and produce ionic complexes that
essentially function as crosslinks inside the polymer network, lowering the hydrogel’s
equilibrium absorbency and leading to polymer network breakdown. As specific hydrogel
compositions (inclusive of some commercially available substances) have been discovered
to show great sensitivity to the mono and multivalent cations that naturally occur in pore
fluids based on mix age, there is a wealth of research in the concrete materials field to
precisely measure the absorption and desorption behavior of hydrogel particles in cement
pore fluids. Ion-induced deswelling is improved as the anionic character of the hydrogel is
enhanced, e.g., by increasing the concentration of acrylic acid in the network due to the
greater availability of anionic sites in the polymer network that are able to complex with
counter ions in solution.

2.2. Hydrogel–Cement Interactions

Hydrogel particles are often utilized in extremely small quantities when added with
cement (generally only 0.2 percent by weight of dry cement). In the lab, cement and hy-
drogel are combined dry, the needed volume of superplasticizer and water are introduced,
and the mix is vacuum or hand combined (or even machine-mixed at the field). A vac-
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uum mixer can provide more consistent mixing while also assuring that any porosity is
caused by hydrogel particles and capillary water rather than non-uniformity as a result
of the manual mixing process. As the cement paste for HPC has a very small w/c ratio,
the superplasticizer, which is usually a water reducing additive, is included to provide
adequate workability. When water is added to the mix, hydrogel particles instantly swell,
and by the time the cement mix is applied, hydrogel particles are probably fully expanded
(such as in a cast). The interplay between hydrogel particles and cement paste is of primary
importance because hydrogel particles are needed for maintaining adequate hydration of
the cementitious matrix; coarse aggregate (i.e., rock pieces) and fine aggregate (i.e., sand)
have been excluded from the illustrative example for convenience. It is also assumed that a
comparable hydration process would take place in concrete as well as mortar specimens.
Concrete mixture data were taken from [114] (Table 1).

Table 1. Mixture constituents of the concrete specimen [114].

M1 M2 M3 M4

Water 144 144 192 192

Cement II 42.5N 480 480 480 480

Fine aggregate (river-dredged sharp sand) 500 500 500 500

Coarse aggregate (19mm max. size) 1000 1000 1000 100

SAP (<600 µm FLOSET CC 27) - - 0.96 0.96

Super plasticizers CONPLAST SP 432MS 7.2 7.2 7.2 7.2

W/C ratio 30% 30% 35% 35%

Curing medium Fresh Marine Fresh Marine

water water water water

2.3. Material

ASTM C29 was used to determine the total aggregate void content. The amount
of oven dry coarse and fine aggregate needed to maintain the chosen aggregate ratio
was calculated. The fine and coarse aggregates were combined together in a pan using
a scoop. The blended mixed aggregate was layered thrice in a 0.33 cubic foot vessel,
with each layer being rodded twenty-five times. The void content was determined using
the bulk density and aggregate relative density measurements. The test was carried out
thrice with different batches each time. The mixed aggregate’s average void content was
determined to be 25.4 percent. Many various molarity aluminum solutions were created,
and gravimetric measurements were made to further explore the impacts of aluminum
on swelling responses along with hydrogel mechanics. Lastly, the elastic modulus of
hydrogels expanded in 0.025 M aluminum solution was calculated as a function of time.
The kinetics of swelling was also altered. At a concentration of 0.005 M, all hydrogels
exhibited a brief peak of swelling (5 min) followed by consistent deswelling for the rest of
the experiment. Table 2 shows mixture proportions for pastes with and without hydrogels
across all samples. WRA is percent by weight of cement. Q is swelling ratio obtained in
pore solution at 4 h after immersion following the study [115]. Figure 7 shows that the
application of hydrogel in concrete reduces shrinkage and cracking. Figure 8 also shows
that the interactions of alkaline cementitious mixes and hydrogel nanoparticles on the
swelling and curing behavior increase the elimination of voids in the admixture. Figure 9
shows that the application of hydrogel stabilizes the workability level, irrespective of the
w/cm by means of a minimal paste to void ratio.
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Table 2. Mixture proportions for pastes with and without hydrogels.

Type Cement (kg) Water (kg) w/c Hydrogels (kg) Q WRA

Control 200 70 0.35 0.4 - 0.7

17 wt% AA 200 70 0.35 0.4 22 0.7

33 wt% AA 200 70 0.35 0.4 18.2 0.7

67 wt% AA 200 70 0.35 0.4 11.7 0.7

83 wt% AA 200 70 0.35 0.4 4.3 0.7
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2.4. Artificial Neural Network (ANN)

Artificial neural networks (ANNs) have lately received a lot of attention as a novel way
of processing data [116–120]. ANN attempts to mathematically simulate biological brain
neural networks [121–125]. The brain is a vast-scale system that connects a huge number
of neural cells known as neurons. The brain has numerous interesting properties, such
as parallel information processing, learning capacity, and self-organization capabilities,
to name a few [46,47,108,126–128]. The ANN is a brain simulation that links numerous
nonlinear or linear neuron models and analyzes data in a distributed, parallel fashion. ANN
can do operations at a considerably faster rate due to its highly parallel feature [61–64,129].
Furthermore, ANN has a lot of intriguing and appealing aspects (Figure 10). As a result,
ANN can adjust to changes in data by learning input signal properties [130–133]. An ANN
may learn mapping among input and output space and create an associative memory that
fetches the proper output when given the input and generalizes when given additional
inputs [50–53,72,134]. ANN can also conduct functional estimation and signal-filtering
activities that are beyond the capabilities of optimal linear approaches due to their nonlinear
character [87–90]. McCulloch and Pitts devised a neuron model and demonstrated its
usefulness in a logical operation system. The Rosenblatts perceptron sparked a lot of
interest for its conceptual ease. The perceptron should not be employed for the use of
sophisticated logic functions, according to Pviinsky and Papert [135]. A complete study
of notable ANN has been given by Richard P. Lippmm [136]. Many researchers have
claimed that the feed forward model of multilayered perceptron (MLP) produces positive
outcomes in many settings. MLP employs the back propagation algorithm (also known
as BPA). The capacity of an ANN [137–141] to acquire the broader relationship among
variables is the focus of the ANN testing presented in this study. A vast number of basic
processing elements (PE) known as neurons make up the ANN. Every PE has a large
number of outputs and inputs. Connection weights are the output paths of a PE. As every
link has a corresponding weight, those weights modify the signals on the input lines to the
processing device. Summation is used to integrate these weighted signals. An activation
function modifies the combined signal before passing it to the processing element’s output
path [142].
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3. Result and Discussion
3.1. Model Performance Indicators

For this work, three regression formulas for the root mean square error (RMSE), the
coefficient of determination (R2), and the mean absolute error (MAE) were applied for
verification of the exactness of values in the testing and training phases of the model for
foreseeing compressive strength and durability of concrete and assessing voids of concrete
while using the hydrogel. The following is how the indices are calculated:
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N = the number of training or testing samples
Oi = observed values in sample i
Pi = predicted values in sample i
O = the mean observed values
P = the mean predicted values
Note: R2 of 1, RMSE of 0, VAF of 100%, and MAE of 0 are the ideal forms in a

predictive model.
Upon assessing the ANN’s included parameters, its performance in terms of previ-

ously defined performance measures was evaluated during the training and testing stages
(Table 3). The goodness of fit models in the testing of half of the data were chosen as the
major criteria to evaluate the performance of both models in terms of prediction accuracy.
ANN has an associated RMSE score of 0.543. The associated R2 values for ANN are 0.984.
The optimum model for forecasting compressive strength and concrete durability as well as
measuring voids while utilizing hydrogel was identified by contrasting values of RSQR and
RMSE. Based on the figure, it appears that the density of color dots across the regression
line is acceptable in this situation. It demonstrates ANN’s goodness. In addition, the image
depicts the ANN’s RMSE, which demonstrates its correct performance. Going through
Figure 11, there is a good correlation between the colored and blue line, showing the proper-
ness of the model in this analysis. In this figure, the horizontal axis shows the data number,
and the vertical axis shows the RMSE values (−80 to 80). In Figure 12, the distribution of
data on the regression line is represented. There is some noise on the regression line; the
closer the noise is to the cross line, the more accurate the model is.

Table 3. The regression test results (test phase).

Model RMSE r R2

ANN 0.543 0.765 0.984
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3.2. Experimental Analysis

Table 4 shows that the measured air content ranged from 2.5 to 4.9 percent, which
was higher than the assumed value of 1.5 percent. This was an unforeseen result of not
using deforming chemicals to decrease air content. The yield-adapted paste volumes
for the goal 23 percent paste were on average 25.1 percent, and for the target 25 percent
paste were on average 26.6 percent, due to the greater air contents. In comparison to the
targets of 1.04 and 1.14, the corresponding average paste to void ratios were 1.14 and
1.20, correspondingly. To obtain equivalent slumps, the combinations with a smaller paste
volume required a greater dose of HRWRA than the mixes with a greater paste volume.
Nevertheless, the same dosages were needed for mixes with comparable mixing water
concentrations but differing paste volumes. When examining mixes 0.55PC23 and 0.40PC25,
as well as mixtures 0.55FA23 and 0.40FA25, this was noted. It shows how the concrete
compositions were consistent throughout the slump measurement. Before incorporation of
hydrogel, the 0.55PC23 mix appeared rough, but its inclusion increased the workability
to an adequate degree. In conclusion, when hydrogel was utilized, the minimal paste to
void ratio required to achieve a specified workability level remained reasonably stable
irrespective of the w/cm.

Table 4. Mean air content of significant variables.

Independent Variables Mean Air Content (%) % Increase in Air Content p-Value

A 5.3 8.2 <0.0001

B 6.1

G 5.7 7.2 0.0003

L 6.1

No 5.8 5.2 0.0033

Yes 6.1

70 5.7 7.0 0.0003

90 6.1
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4. Conclusions

This research investigates the relationship amongst concrete strength growth and void
distribution pattern utilizing hydrogel. The void structure of the concrete section is seen as a
sign of bleeding. The void volume fracture of concrete samples is estimated using an image
analysis technique. Upon first look, the obtained data appeared to show a direct relationship
between concrete specimen strength growth and void distribution patterns when hydrogel
was not present. The inclusion of slag in the combinations, on the other hand, changed the
situation inversely. We created two different hydrogel formulations and tested swelling
kinetics in calcium, aluminum, and sodium solutions in this work. Since sodium ions
generated electrostatic shielding inside the polymer network, the swelling capacity was
lowered. Calcium and aluminum ions were capable of forming ionic complexes with the
polymer network, resulting in decreased swelling capacity, deswelling of the hydrogel
over time, and the creation of a mechanically rigid outer shell in the instance of trivalent
aluminum ions. Concrete’s compressive strength, durability, and density were all examined.
The test data were analyzed using ANN, which performed admirably. R2 and RMSE
findings showed that ANN is a reliable technique for these analyses. Hydrogel compressive
strength was studied as a function of immersion period and hydrogel chemistry, along
with aluminum solution concentration. Aluminum ions seem to tightly connect with the
polymer network, increase the elastic modulus (showing an increased level of crosslinking),
and cannot be rinsed off with water, but calcium ions do not create persistent bridges
among charged moieties on the polymer backbone. The coiling and shielding properties of
aluminum form a structurally strong outer shell and hollow down the core of most acrylic
acid hydrogels, indicating that aluminum ions may be harming the polymer network, but
additional research is required.
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