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Detection of quantitative trait loci with estimates of gene expression.<p>The use of recombinant inbred lines allows an estimate of the heritability of expression measured by individual probes. By testing her-itability-weighted averages to define expression of a transcript, more QTLs can be detected than with previously described methods.</p>

Abstract

Heritable differences in transcribed RNA levels can be mapped as quantitative trait loci (QTLs).
Transcribed RNA levels are often measured by hybridization to microarrays of oligonucleotide
probes, in which each transcript is represented by multiple probes. The use of recombinant inbred
lines allows an estimate of the heritability of expression measured by individual probes. This
heritability varies greatly. We have tested heritability-weighted averages to define expression of a
transcript and found that these allow detection of more QTLs than previously described methods.

Background
The steady-state abundance of an RNA species in an organ is,
in part, genetically controlled and can be considered a quan-
titative genetic trait. Microarray methods for estimating RNA
sequence abundance [1], combined with genetic methods for
identifying loci affecting quantitative traits [2-4], provide the
opportunity to survey tissues for all genetically controlled
variation in gene expression. This approach has been called
genetical genomics [5], and its feasibility has been demon-
strated in experimental crosses and human populations [6-
10].

Genetical genomics is further enhanced by using recom-
binant inbred lines as a mapping population. The use of
recombinant inbred lines allows comparison of gene expres-
sion among different tissues and the comparison of gene
expression with classical physiological and behavioral traits
from the published literature [11,12]. Public datasets and
online software at WebQTL [10,13] allow free exploration of
the characteristics of this form of analysis [14]. In addition,

recombinant inbred lines can provide both replicates from
genetically identical individuals and samples from different
segregants. Data from these define genetic and non-genetic
variation, define a measure of heritability for expression of
individual genes, and provide the basis for a new method of
data reduction for genetical genomics.

Data reduction is an issue because Affymetrix GeneChip oli-
gonucleotide microarrays assay each target mRNA with a set
of 11 to 16 pairs of 25-nucleotide DNA probes. Each pair of
probes consists of a perfect match (PM) sequence and a mis-
match (MM) sequence, the latter intended to estimate non-
specific binding. The Affymetrix software Microarray Suite
4.0 and 5.0 (MAS 4 and MAS 5) estimate expression from the
average difference of PM and MM fluorescence. Since the pio-
neering study of Li and Wong [15], however, it has been clear
that MM binding includes target-specific binding as well as
nonspecific binding, and the appropriate use of MM fluores-
cence has been an open question. In fact, a recent publication
shows that it may be more useful to use the sum of PM and
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MM values instead of their difference [16]. In short, the
behavior of oligonucleotide microarrays is not adequately
explained by models that only consider base complementa-
rity. More realistic models consider nonspecific binding, sat-
uration, the effects of fluorescent labeling and intramolecular
folding of target and probe [15,17-19].

Several alternative methods have been proposed to combine
multiple probe-specific values into a single expression esti-
mate. Three widely used alternatives are robust multiarray
average (RMA) [20], model-based expression index/intensity
(MBEI), implemented in dChip software [15], and positional-
dependent nearest-neighbor model (PDNN) [17]. RMA pro-
vides statistically robust averaging methods, dChip fits a
model that allows probe-specific binding affinities, and
PDNN fits a model that allows sequence-specific binding
affinities and nearest-neighbor stacking interactions. A
weighted-average method is also available, one which weights
probe-specific values by a cross-validation procedure [21];
this method, however, does not take advantage of replicate
microarrays and the current implementation in Bioconductor
[22] is too slow for this application. Finally, a method (SUM)
based on the sum of PM and MM values has recently been
described [16]. The rationale for this method is that MM
probes exhibit probe-specific binding as well as nonspecific
binding [15,17] and may therefore be more effective for esti-
mating specific binding than for correcting for nonspecific
binding. Indeed, the SUM method outperforms MAS5 in sev-
eral respects.

We describe here a new method, specifically designed for
application to genetical genomics. In this method, called her-
itability-weighted transform version 1 (HWT1), probe-spe-
cific data is combined in a weighted average in which the
weights are determined by an estimate of the heritability of
the data for each probe.

Results
Figure 1 provides an overview of the dataset and the data
reduction problem for QTL mapping with gene-expression
data from recombinant inbred strains. These gene-expression
data form a four-dimensional dataset. As shown in Figure 1,
the first dimension is formed by recombinant inbred strains;
the second by replicate samples from each strain; the third by
multiple probes of each probe set; and the fourth by multiple
probe sets representing different transcripts. For QTL map-
ping, dimensions 2 and 3 must be collapsed to single values
that can be compared with genotypes for each strain (in
dimension 1). Normally, dimensions 2 and 3 are collapsed by
simple averaging or by averaging probe differences.

Heritability is determined by the relative expression variance
contributed by dimensions 1 and 2. The HWT1 method
described here uses this information from dimensions 1 and 2
to define weights that allow dimension 3 to be collapsed with

a weighted average. Dimension 2 is still collapsed with a sim-
ple average.

The left-hand panels of Figure 2 show the distribution of esti-
mated heritability of expression for individual PM probes,
with frequencies shown on a log scale to make the tails of the
distribution visible. Results from three organs or tissues from
BXD recombinant inbred lines are shown: brain expression
(Brn); hematopoietic stem cell expression (HSC); and cere-
bellum expression (Cer). Brain and HSC were assayed with
Affymetrix U74Av2 microarrays; cerebellum with Affymetrix
M430A and B. In all datasets, estimates range from well
below 0 to 1 or slightly above. The method used for estimating
heritability is known to yield estimates outside the natural
range expected for heritability [23]. Indeed, as shown in Fig-
ure 2, 21%, 45% and 60% of estimates are negative (for brain,
HSC and cerebellum, respectively) and a few (< 0.1%) of brain
and cerebellum estimates are above 1.0.

Although estimation methods exist that would avoid these
values, the current method is simple and serves the intended
purpose if negative heritabilities and those above 1 are
adjusted by assigning them values of 0 and 1, respectively.
When these adjusted heritabilities are normalized by the
average (adjusted) heritability of probes in each probe set, the
resulting weights are distributed as shown in the right-hand
panels of Figure 2. About 36%, 49%, and 61% (for brain, HSC,
and cerebellum, respectively) of probe weights are zero and
55%, 60%, and 66% are less than 1.0. These probes are fully
or partly excluded from any weighted average. A small minor-
ity of probes, less than 3%, receive weights above half the
maximum possible weight, suggesting that they will dominate
the average for the probe set to which they belong.

The results of QTL mapping with weighted averages are
shown in Figure 3, in which sorted P-values from a set of
microarrays is plotted against the rank of each P-value [24].
Each P-value represents the significance of the best single
QTL, that is, of the best association between expression of one
transcript and genotypes at some marker. In this plot, uni-
formly distributed P-values, from tests in which the null
hypothesis is always true, form a straight line along the diag-
onal. That is, a complete absence of QTLs would yield a
straight diagonal line. In each panel, an inset shows the entire
range of P-values, most of which do approximately form a
diagonal. The main figure shows the smallest values only. In
each main figure the line formed by the P-values bends
sharply, indicating a local excess of small P-values. Those P-
values which fall below the dotted line in each panel form a
group in which the false-discovery rate is expected to be no
greater than 20%, according to a Benjamini and Hochberg
test [25]. This criterion is used throughout this paper to
define significant QTLs.

The panels of Figure 3 compare QTLs detected after averag-
ing with Affymetrix MAS 5.0 software and QTLs detected
Genome Biology 2005, 6:R27
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with three variations of heritability-weighted averaging.
These variations differ in their use of MM probes. As tran-
script binding to MM probes seems to include both nonspe-
cific and target-specific binding [15,17,18], we tested both
subtracting MM values from PM (to remove nonspecific sig-
nal) and adding MM values to PM (to add target-specific sig-
nal). Figure 3a shows results obtained by calculating
heritability from PM probes and averaging only those probes,
Figure 3b shows results obtained by calculating heritability
from and averaging PM - MM differences and Figure 3c
shows results obtained by calculating heritability from and
averaging all probes (PM and MM) together. Using 20% false-
discovery rate as a significance cutoff, each of the heritability-
weighting methods yields more QTLs than MAS 5.0. With this
dataset, using only PM probes yielded more QTLs than the
other two weighting methods.

When weighted expression averages were randomly per-
muted among the recombinant inbred (RI) strains before
mapping, no QTLs were detected at 20% false-discovery rate
(data not shown). Since heritability estimates are unaffected
by permutation, permuting data after weighted averaging is
equivalent to permuting before averaging. Furthermore, sim-
ulation showed that heritable variation alone is not sufficient
to define QTLs. Simulated datasets were generated with her-

itable variation distributed among probes in various ways,
including one in which all heritable variation was generated
for a single probe of each probe set. In these simulated data-
sets all variation was independent of marker genotypes. No
QTLs were detected from these simulated datasets after her-
itability-weighting and QTL mapping (data not shown).

There is little relationship between the abundance of tran-
scripts and the likelihood of detecting a QTL (data not
shown). If anything, strong QTLs tend to be found among
transcripts of moderate abundance. This tendency might be
explained if apparent interstrain variation, necessary for QTL
detection, is reduced when abundance is extreme, either near
the lower limit of detection or high enough to saturate some
oligonucleotide probes.

Probe heritability is a predictor of the existence of a detecta-
ble QTL for a probe set. Either average heritability or maxi-
mum heritability among probes in a probe set can be used as
a predictor. In either case, heritability above a threshold value
is taken to predict the existence of a QTL. Figure 4 shows the
receiver operating characteristic (ROC) curves for average or
maximum probe heritability used as a predictor of the exist-
ence of a significant QTL. The ordinate shows the fraction of
transcripts with QTLs that are correctly predicted as such by

The four-dimensional nature of microarray data used for QTL mappingFigure 1
The four-dimensional nature of microarray data used for QTL mapping. Recombinant inbred lines (strains) comprise dimension 1; the replicate arrays for 
each strain, dimension 2. Multiple probes for each probe set comprise dimension 3, and multiple probe sets (transcripts), dimension 4. Green rectangles 
represent the multiple probe- and replicate-specific expression values that must be collapsed to a single value for QTL mapping. That mapping correlates 
expression values with genotypes in dimension 1. Heritability-weighted averaging uses information in dimensions 1 and 2 to collapse dimension 3 by 
weighted averaging. Dimension 2 is collapsed by unweighted averaging.
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heritability; the abscissa shows the fraction of transcripts
without QTLs that are incorrectly predicted by heritability to
have a QTL. The curves are produced by plotting these two
quantities for various threshold values for average heritability
or maximum heritability. For a perfect predictor, the ROC
curve would follow the left and top boundaries of the figure.
For a useless predictor, the ROC curve would be a diagonal
line between the origin and the upper-right corner.

These curves show that maximum heritability is more effec-
tive than average in predicting a detectable QTL. Because
probe sets that do not define a significant QTL greatly out-
number those that do, probe sets defining a QTL are still a
minority among probe sets selected for heritability. This situ-
ation is illustrated by three points that are circled in the fig-
ure. The right-hand circled point shows that selecting for
maximum heritability greater than 0.35 selected 77% of probe
sets; 2% of these yielded QTLs composing 99% of all QTLs.
The center circled point shows that a threshold of 0.525
selected 17% of probe sets, of which 8% yielded QTLs compos-
ing 90% of QTLs. The left-hand circled point shows that a
threshold of 0.675 selected 4% of probe sets, of which 32%
yielded QTLs composing 75% of QTLs.

The availability of RNA from unrelated tissues, brain and
HSC, allowed us to consider the question of whether probe
heritabilities are specific to the tissue of origin. Raw probe

heritabilities for data from brain and HSC have a correlation
coefficient of -0.004, but that value means little because most
probe heritabilities are close to zero. A more meaningful com-
parison is between probe heritabilities for probe sets in which
at least one probe has significant heritability. Figure 5 shows
scatterplots comparing brain and HSC raw probe heritability
and probe weight for 304 PM probes (19 probe sets) in which
at least one probe from each organ had heritability greater
than 0.90. Even with this degree of selection, the correlation
for heritability or weight is only 0.59 or 0.58, respectively.
Thus, even with extreme selection, there is little correlation
between probe heritabilities from these two sources, suggest-
ing the probe heritabilities are tissue specific.

QTLs for gene expression can be classified according to the
chromosomal location of the QTL relative to the location of
the gene being expressed. Those for which the location of the
QTL and gene are tightly linked are characterized as cis QTLs;
those for which the locations are different are trans. In this
study the location of a QTL is defined by the location of the
marker achieving the highest likelihood ratio statistic (LRS),

Distribution of heritability of probe intensities and of probe-specific weights derived from heritabilityFigure 2
Distribution of heritability of probe intensities and of probe-specific 
weights derived from heritability. Frequencies are shown on a log scale to 
make the tails of the distributions visible. Expression is in BXD RI lines 
from the tissue indicated; HSC, hematopoietic stem cells. The left-hand 
panels show the distribution of raw heritability estimates for individual 
Affymetrix probes. The right-hand panels show the distribution of probe-
specific weights derived from those heritability estimates.
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MM values combined; (d) PM-MM differences averaged by Affymetrix MAS 
5.0 software.
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a marker defined by a simple-sequence repeat whose location
is known in the mouse sequence. Cis QTLs are, somewhat
arbitrarily, defined as those for which this marker is within 10
megabases (Mb) of the location of the probe sequence by
which the gene expression is measured.

QTLs can also be classified according to the direction of the
effect on gene expression. We adopt the convention that QTLs
are labeled '+' if the DBA/2J allele is associated with higher
apparent expression and '-' if the C57BL/6J allele is associ-
ated higher apparent expression. Assuming that Affymetrix
probe sequences were largely designed for the C57BL/6
sequence, sequence differences between C57BL/6 and DBA/
2 in the sequence recognized by a probe will tend to make
DBA/2 hybridize more poorly than C57BL/6. That is, varia-
tion in sequences complementary to probe sequences can cre-
ate artifactual QTLs, reflecting a difference in hybridization
rather than a difference in expression. Such artifactual QTLs
would be expected to be cis -.

Figure 6 summarizes classification of QTLs detected by herit-
ability-weighting methods. The three panels of the figure
show data from brain, HSC and cerebellum. Each dataset
confirms previous results that each of the heritability-
weighted methods detects more QTLs than MAS 5.0. How-
ever, the HSC dataset differs from the other two in that

weighted PM - MM differences detected more QTLs than PM
probes alone.

For all methods in all datasets, cis - QTLs outnumber cis +
QTLs, in some cases by two- or threefold. This excess could be
explained by polymorphisms in sequences targeted by
Affymetrix probes, polymorphisms reducing the hybridiza-
tion of DBA/2J RNA. For Brn and HSC the weighting proce-
dure made some attempt to reduce this type of artifact by
assigning a weight of 0 to 614 probes having known single-
nucleotide polymorphisms (SNPs) in the probe target
sequence. The excess of cis - QTLs remaining in Brn and HSC

Probe heritability as a predictor of a detectable QTL for a probe setFigure 4
Probe heritability as a predictor of a detectable QTL for a probe set. The 
figure shows receiver operating characteristic (ROC) curves for 
prediction of existence of a detectable QTL by either average heritability 
or maximum heritability among probe-specific data in a probe set. The 
true-positive fraction on the ordinate is the fraction of probe sets with a 
significant QTL that are identified as such by selection at a given maximum 
heritability. The false-positive fraction is the fraction of probe sets without 
a significant QTL that are selected as having a QTL at the same maximum 
heritability. Triangle symbols show ROC curve for average heritability; 
circle symbols show ROC curve for maximum heritability. Circled points 
are explained in the text
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in spite of this procedure suggests that there may be addi-
tional effects from polymorphisms not included in our list.

The cerebellum dataset yielded a large number of significant
QTLs. In part this yield was expected because the number of
probe sets for M430 microarrays is 3.6-fold larger than for
U74Av2. However, the QTL yield for the cerebellum data is
about 10-fold higher than for brain or HSC, or about 2.7-fold
higher relative to the number of genes represented on the
microarrays. As discussed further below, the cerebellum data
were obtained in two unbalanced batches, and a difference

between these batches might create artifactual QTLs on chro-
mosome 2. However, although 475 significant QTLs, 16% of
the total, appear on chromosome 2, this number is too small
to fully explain the large number of the cerebellum QTLs.

Figure 7 shows that the HWT1 method using only PM probes
allowed the detection of more QTLs than the dChip, RMA, or
PDNN data reduction methods. Compared with these meth-
ods, HWT1 detected larger numbers of QTLs in all QTL
classes, but the increase in cis - QTLs was disproportionately
large. As explained, many of those cis - QTLs could be arti-
facts caused by polymorphisms.

The number of probes that contribute to weighted averages
varies considerably between probe sets. The effective number
of probes can be defined, as described in Materials and meth-
ods, by a measure which is the reciprocal of a weighted
average of the weights. The measure varies from 1.0, if all
weights but one are zero, to the number of probes (usually
11.0 or 16.0), if all probes are weighted equally.

Figure 8 shows, in boxplot form, the distribution of effective
probe number for weighted averages of brain data. Five
classes of probe sets are compared, those that do not define
QTLs and those that define cis -, cis +, trans -, and trans +
QTLs. In each plot, the central box shows the range between
the 25th and 75th percentiles. The line across the box gives
the median location, and the shaded area gives the 95% con-
fidence interval for the median.

Number and types of QTLs in the three tissues defined by four methods of data summaryFigure 6
Number and types of QTLs in the three tissues defined by four methods 
of data summary. PM, HWT1 weighting of PM values only; Diff, HWT1 
weighting of PM-MM differences; All, HWT1 weighting of PM and MM 
values combined; MAS 5, PM-MM differences averaged by Affymetrix MAS 
5.0 software. cis, QTL location within 10 Mb of transcript location; trans, 
QTL location further than 10 Mb from transcript location; -, B57BL/6 
allele associated with higher expression signal; +, DBA/2 allele associated 
with higher expression signal.
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The data in Figure 8 allow three conclusions. First, a substan-
tial fraction of probes contribute to weighted averages that
define QTLs. In each case, the central half of QTLs falls into
the 7- to 13-probe interval. Although the groups do not differ
significantly, there is a possible tendency for + QTLs to
involve more probes than - QTLs. Finally, only the cis - group
includes QTLs defined by fewer than four probes. QTLs that
depend on so few probes are most likely to be artifactual QTLs
caused by polymorphisms in the probe target sequences.

Discussion
The heritability-weighted averaging method described here
successfully summarizes oligonucleotide microarray meas-
urements of gene expression in a way that facilitates detection
of QTLs affecting that expression. It is a heuristic method, one
that is not derived from an explicit statistical model. Never-
theless, the rationale is simple and rests on three facts: first,
heritable variation is necessary (but not sufficient) to define a
QTL; second, probes within a probe set differ greatly in the
heritability of their expression estimates; and third, probes
within a probe set differ greatly in their ability to detect a
QTL. These facts suggested that a simple weighted average
would summarize probe set data without obscuring the signal
of those probes which could detect a QTL.

HWT1 is designed specifically for QTL mapping. In its present
form, it does not apply to the more common experimental sit-
uation designed to estimate expression differences between
samples. In that experimental situation, this method would
be circular, weighting probes according to an estimate of the
quantity to be estimated. QTL mapping, in contrast, does not
depend directly on the differences between samples, but on
the correlation of those differences with a genetic marker.
Indeed, the data of Figure 4 imply the existence of a few
probes with high heritability that nevertheless yield no signif-
icant QTL.

Although we designed this weighting to reflect heritability, it
may, depending on the experimental design, involve more
than heritability. The heritability estimate is based on the
variance between strains (which includes genetically deter-
mined variance) and the variance within strains, as an esti-
mate of non-genetic variance. This estimate is closely related
to other size-of-effect measures, such as repeatability, ω2, η2,
or ε2 [26-29]. Although we have not tested weighting with
these alternative measures, we expect any of them would pro-
vide a similar benefit for QTL mapping. However, the opti-
mum weighting for this application is not yet determined.

The frequencies of cis QTLs detected in this study (31-77%)
fall within the wide range of frequencies detected in other
studies. The most closely comparable study is that of mouse
liver transcription, in which the frequency of cis QTLs varied
from 34% for moderately significant QTLs (log odds score
(LOD) > 4.3) to 71% for more significant QTLs (LOD > 7.1)
[8]. However those results were based on microarrays of 60-
nucleotide probes, which would be expected to be less sensi-
tive than Affymetrix probes to the effects of single-nucleotide
polymorphisms. The same study reported a frequency of 80%
for the more significant QTLs (LOD > 7.0) for maize leaves.
For yeast transcription assayed with cDNA arrays, Brem and
co-workers estimated 36% cis QTLs [7], and for a human cell
line assayed with Affymetrix arrays Morley and co-workers
reported 18% [9].

Variance within strains usually includes non-genetic biologi-
cal variation, but that was not true for the HSC dataset, for
which replicates were derived from a single biological sample.
In that dataset, heritability estimates were presumably higher
than if replicates had been derived from separate biological
samples. Nevertheless, HWT1 weighting was clearly useful for
detecting QTLs in this set.

Systematic differences among strains can affect weighting in
either of two ways. Batch effects that are balanced within
strains (partly true in the cerebellum data) will contribute to
the within-strain variance and will deflate heritability esti-
mates. This effect may explain why cerebellum raw probe
weights include many more negative values than do brain or
HSC (Figure 2). On the other hand, systematic non-genetic
differences between strains (such as the batch effect in HSC

Distribution of effective number of probes in heritability-weighted averagesFigure 8
Distribution of effective number of probes in heritability-weighted 
averages. Boxplots show the distribution for probe sets that do not define 
significant QTLs (QTLs at 20% false-discovery rate) and for those that 
define QTLs of different types. In each plot, the central box shows the 
range between the 25th and 75th percentiles. The line across the box 
gives the median location, and the shaded area gives the 95% confidence 
interval for the median. Lines above and below the box give the range for 
all data except outliers, which are plotted singly beyond the range defined 
by the terminal crossbars. trans QTLs are those for which the QTL is 
more than 10 Mb distant from the location of the transcript whose 
expression defines it. + QTLs are those for which the DBA2/J allele is 
associated with higher expression.
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data) will inflate heritability estimates. For heritability esti-
mates, the HSC batch effect was avoided by using data from
one batch.

Such batch effects may also affect QTL mapping, causing a
higher frequency of false positives in areas of the genome
where a batch effect fortuitously correlates with marker alle-
les. In fact, if the batch number in cerebellum is treated as a
trait, it associates with three areas on chromosome 2 (none of
which, however, reaches a suggestive level of significance).
These effects could be controlled by using batch as a cofactor,
both in the analysis of variance that estimates heritability and
in the subsequent QTL mapping. However, these refinements
go beyond what is needed to introduce the HWT1 method.
Thus, in the cerebellum dataset, QTLs mapping to chromo-
some 2 may include false positives caused by a difference in
microarray processing batch. This batch effect, however, can-
not explain the exceptional number of QTLs detected in the
cerebellum dataset. The excess number of QTLs detected for
cerebellum (compared with brain or HSC) greatly exceeds the
total number of QTLs on chromosome 2.

The comparison of heritability-weighting with other data
reduction methods (Figure 7) should be considered as prelim-
inary because they are based on results from only one set of
data. More important, that comparison does not imply
anything about their suitability for other purposes. In addi-
tion, modifications of any of those methods might make them
more suitable for QTL mapping.

It is not clear why probes of a single probe set should vary so
greatly in the heritability of their expression estimates. We
suggest three possibilities. First, changes in RNA concentra-
tion will result in greatest changes in fluorescence if RNA con-
centrations are close to the effective binding constant for a
probe. Since effective binding constants of probes vary [17-
19], sensitivity to changes will vary. Second, nonspecific
hybridization of probes with RNA species that do not vary
among strains will reduce specific hybridization that might
define a QTL. If probes differ in nonspecific hybridization,
they will differ in their ability to define a QTL. Third, since
probes assay different parts of the target transcript, alterna-
tive splicing and differential degradation will affect probes
differently.

The QTLs described in this report were detected by fitting a
single-QTL model, a statistical model assuming that all QTLs
contribute to a trait with independent effects. This model can
be misleading if linked and/or interacting QTLs contribute to
a trait. Nevertheless, since many traits are largely controlled
by one QTL or few unlinked QTLs, these results are reliable
and useful. They further suggest that it may be fruitful to
adapt the principle of heritability-weighting to QTL searches
with multi-QTL models.

Conclusion
To summarize expression data for individual transcripts, the
HWT1 method combines probe-specific data in a weighted
average in which weights are determined by the heritability of
the probe-specific data. It provides a useful way to summarize
datasets for genetical genomics because it places weight on
probe-specific data having variation that could define a quan-
titative trait locus.

Materials and methods
Brain RNA
Brain RNA was obtained from 32 strains of BXD recombinant
inbred mice, the parental strains C57BL/6J and DBA/2J, and
(C57BL/6 × DBA/2)F1 hybrid. Data from parental and F1 ani-
mals were included in the heritability estimates but were not
used for QTL mapping. Each individual array experiment
used a pool of brain tissue (forebrain plus the midbrain, but
without the olfactory bulb) that was taken from three adult
animals usually of the same age. More detailed information is
available at WebQTL [10]. All results derive from the 100-
array December 2003 data freeze.

Hematopoietic stem cell (HSC) RNA
Bone marrow cells were stained with lineage-specific anti-
bodies and purified by flow cytometry. A stem-cell population
was defined as the 5% cells showing least lineage-specific flu-
orescence [30]. Replicate samples of RNA were separately
amplified from a single cell preparation for each BXD strain,
and these samples were processed in two batches of 22 and
eight strains. These data are described at WebQTL [10] as the
March 2004 data freeze.

Cerebellum RNA
Each individual microarray assay used Affymetrix MOE 430A
and MOE430B GeneChip pairs to assay RNA from a pool of
intact whole cerebella taken from three adult animals usually
of the same age. RNA samples were processed in two large
batches. The first batch consisted of single samples from 17
BXD strains. The second batch consisted of biological repli-
cates for 10 strains, additional technical replicates for two
strains, single samples for four additional strains, and dupli-
cate samples for five additional strains. RNA was extracted at
the University of Tennessee Health Science Center and all
samples were processed at the Hartwell Center (St. Jude Chil-
dren's Research Hospital, Memphis). These data are
described at WebQTL [10] as the SJUT Cerebellum January
2004 data freeze.

Microarrays
Brain and HSC data were obtained from Affymetrix U74Av2
microarrays, which provide more than 12,000 probe sets,
almost all of which are represented by 16 PM probes and 16
MM probes. The cerebellum data were obtained from Affyme-
trix 430A and 430B microarrays, which provide more than
Genome Biology 2005, 6:R27
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45,000 probe sets, almost all of which are represented by 11
PM probes and 11 MM probes.

Microarray data reduction
In addition to the HWT1 method, microarray data were proc-
essed with Microarray Suite 5.0 (MAS5) software [31,32],
RMA [20], PDNN [17] and dChip [15].

HWT1 weighting
Individual probe intensities from Affymetrix U74Av2 micro-
arrays were log2-transformed and normalized to a standard
array-wide mean and standard deviation. For each probe,
mean squared deviations within strains (MSw) and between
strains (MSb) were calculated by analysis of variance of the
log-transformed, normalized expression. In the interests of
speed, age and sex of animals were not included as cofactors
in the analysis of variance. Raw heritability was estimated as
(MSb - MSw)/(nMSt), where n is the average number of repli-
cates per strain and MSt is total variance (excluding strains
without replicates, if any) [33]. Adjusted heritability was
derived from raw heritability by assigning values of 0 and 1,
respectively, to raw heritability values below 0.0 or above 1.0.
Weights for each probe were calculated by dividing the
adjusted heritability by the mean adjusted heritability for all
probes in the probe set. Finally, expression estimates for each
probe set and strain were calculated by an unweighted aver-
age of replicates within each strain and a weighted average of
those probe-specific means, using the weights just described.
To avoid division by zero, and to avoid using weights based on
very small heritabilities, probes in a probe set were assigned
a weight of 1.0 if the average adjusted heritability of those
probes was less than 0.01. That is, expression for those probe
sets was calculated from an unweighted average. The number
of probe sets affected by this treatment was 5 (0.04%), 33
(.26%) and 4,178 (9.3%), respectively, for the Brn, HSC and
Cer datasets. The large number of affected probe sets for cer-
ebellum is consistent with the high number of negative raw
heritability estimates for this dataset.

As explained under Results, polymorphisms between C57BL/
6J and DBA/2J in probe target sequences would be expected
to affect hybridization of Affymetrix probes, generating an
apparent QTL mapping to the location of the transcript. To
reduce the effect of this type of artifact, we prepared, from
sequence information for the two strains, a list of 614 probes
having polymorphisms in target sequences of probes on the
U74Av2 microarray. During the weighting procedure
described above, these probes were assigned a weight of 0,
removing their contribution from any QTL for their probe set.
This procedure was not applied to the cerebellum data, which
came from a different microarray.

Among the HSC data, a systematic difference between the
first and second batches described above would have greatly
inflated all heritability estimates. To avoid this problem, her-
itability estimates were based on the first batch only, but all

data were weighted and used for QTL mapping. Among cere-
bellum data, weighting was necessarily based only on repli-
cated samples, most of which consisted of one sample from
each batch. Any systematic batch difference would decrease
heritability estimates. As with HSC data, cerebellum data
from all strains was included in QTL mapping, weighted
according to heritability estimates based on the strains with
replicated samples.

QTL mapping
Heritability-weighted averages were evaluated by regression
against marker genotypes, where alleles at markers were
coded as -1 or 1. In the interest of speed, regression was per-
formed only at marker locations, but the limitations of this
restriction were minimized by using 779 markers (described
as the BXD genotype set at WebQTL [10]). Although WebQTL
includes values for parental lines and F1 related to the BXD RI
lines, these were not used in QTL mapping [26]. For each
microarray trait value, the locus yielding the maximum LRS
[3] and the LRS itself were retained. An empirical P-value was
then calculated for this LRS by a permutation test [34].
Microarray trait values were permuted randomly among the
progeny individuals 1,000 times and the regression analysis
is repeated for each permuted dataset. If the original LRS fell
within the distribution so that at least 10 values from per-
muted sets were greater, a P-value was calculated from the
rank of the original LRS in the distribution. If a P-value could
not be calculated, additional permutations are performed,
until a P-value could be calculated or until 1,000,000 permu-
tations had been performed. For each microarray trait, four
data values were retained, the locus yielding the highest LRS,
the LRS and regression coefficient at that locus, and the P-
value of the LRS. To evaluate significance, all results from one
microarray experiment were sorted by P-value, and the sig-
nificance of the smallest P-values was determined by the
method of Benjamini and Hochberg [25], using a false-dis-
covery rate of 20%.

Mapping was performed with custom software, called QTL
Reaper, written in Python and C for Linux. This software will
be described fully in a subsequent publication but is currently
available from SourceForge [35]. Calculations were per-
formed on an eight-node Linux cluster, which achieved
processing rates of about 5,000 genome scans per cpu-sec-
ond. Most processing time was spent on the small fraction of
probe sets requiring more than 105 permutations.

Effective number of probes
Within a probe set, the weight of each probe may vary from 0
to the number of probes in the set, n. The effective number of
probes f in a weighted average is defined as

f w wi
i

i
i

=








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2

2/
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where wi is the weight of probe i. This index varies from 1 to
n. It is equal to k if k of the probes are weighted equally, and
it is less than k if k of the probes are weighted unequally (with
zero weight for the n - k remaining probes).

Data availability
The HSC dataset has been placed in GEO. The accession
number is GSE2031, and the arrays are GSM36673 to
GSM36716. The Brn and Cer datasets are now both accessible
from WebQTL [13].
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