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Abstract: Pectobacterium carotovorum is a gram-negative bacterium that, together with other soft rot
Enterobacteriaceae causes soft rot disease in vegetables, fruits, and ornamental plants through the
action of exoproteins including plant cell wall-degrading enzymes (PCWDEs). Although pathogenicity
in these bacteria is complex, virulence levels are proportional to the levels of plant cell wall-degrading
exoenzymes (PCWDEs) secreted. Two low enzyme-producing transposon Tn5 mutants were isolated,
and compared to their parent KD100, the mutants were less virulent on celery petioles and carrot disks.
The inactivated gene responsible for the reduced virulence phenotype in both mutants was identified
as wcaG. The gene, wcaG (previously denoted fcl) encodes NAD-dependent epimerase/dehydratase, a
homologue of GDP-fucose synthetase of Escherichia coli. In Escherichia coli, GDP-fucose synthetase
is involved in the biosynthesis of the exopolysaccharide, colanic acid (CA). The wcaG mutants of
P. carotovorum formed an enhanced level of biofilm in comparison to their parent. In the hydrophobicity
test the mutants showed more hydrophobicity than the parent in hexane and hexadecane as solvents.
Complementation of the mutants with extrachromosomal copies of the wild type gene restored these
functions to parental levels. These data indicate that NAD-dependent epimerase/dehydratase plays a
vital rule in cell surface properties, exoenzyme production, and virulence in P. carotovorum.

Keywords: Pectobacterium; exopolysaccharide; cell surface properties; O-specific antigen; biofilm;
colanic acid; soft rot

1. Introduction

Soft-rot disease is caused by Pectobacterium and Dickeya genera of bacteria which are usually
referred to as soft rot Enterobacteriaceae (SRE). Species in the two genera were previously classified
under the genus, Erwinia before subsequent revisions assigned them to Pectobacterium and Dickeya
genera based on their host range, biochemical and molecular traits [1,2]. Soft rot Enterobacterieaceae
secrete large amounts of exoproteins including plant cell wall-degrading enzymes (PCWDEs) such as
pectate lyases (Pel), polygalacturonases (Peh), proteases (Prt), and cellulases (Cel) [3,4]. The exoproteins
produced by SREs are secreted through three secretion systems: pectinolytic and cellulolytic enzymes
such as pectate lyase and cellulase are secreted through the type II secretion system (T2SS) [5], proteases
are secreted through the type I system [6], and harpins and other effectors through the type III system [7].
During infection, these enzymes degrade the plant cell wall structures resulting in the maceration and
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soft rot of the host tissue. The level of these enzymes produced is positively correlated with bacterial
virulence [8].

The production of plant cell wall-degrading enzymes (PCWDEs) and therefore virulence of
Pectobacterium is controlled by a combination of bacterial regulatory genes (such as rsmA, rsmB, rsmK,
gacA, expR1, expR2, hexA, ahl, kdgR, hrpL) and host chemical signal molecules generally referred to as
inducers [4]. For example, the RNA-binding RsmA protein and noncoding RsmB RNA control the
production of extracellular enzymes (PCWDEs), antibiotics, pigments, polysaccharides, the synthesis of
flagella, and the levels of the quorum sensing signal, acyl homoserine lactone in various Pectobacterium
species [9–14].

Colanic acid (CA) is an extracellular polysaccharide (EPS) found in many species within
Enterobacteriaceae [15]. Unlike lipopolysaccharide (LPS) and capsular polysaccharide (CPS), both
of which are closely associated with bacterial surface, CA is loosely associated and forms saccharide
mesh. In Escherichia coli, CA is a polymer of repeating subunits of D-glucose, L-fucose, D-galactose,
and D-glucouronic acid and two of these sugars are covalently linked with O-acetyl and pyruvate.
The assembly of mature CA follows identical processes as O antigen of lipopolysaccharide [16,17]. In
some cases, especially in highly mucoid Escherichia coli strains, CA repeats connect to the core region
of LPS forming modified LPS (MLPS) [18]. In Escherichia coli, the product of wcaG gene which is
part of the wca operon is a dual function enzyme specifying GDP fucose synthetase, a dual function
including 3,5-epimerase-4-reductase involved in GDP fucose biosynthesis. GDP fucose synthesis
proceeds through a two-step enzymatic reaction from GDP mannose [19].

A homologue of wcaG gene is also found in Pectobacterium carotovorum that encodes GDP fucose
synthetase-like protein and has been annotated as NAD-dependent epimerase/dehydratase. Recently,
the exopolysaccharide, colanic acid (CA) and lipopolysaccharide (LPS) have been reported to be
associated with virulence in Pectobacterium as the purified molecules induced pathogenicity-related
physiological responses such as cell death and generation of reactive oxygen species in host cells [20].
Here, we demonstrate that mutation in wcaG gene in Pectobacterium carotovorum strain Ecc71 reduces
PCWDEs production and virulence remarkably and affects cell surface properties including biofilm
formation and cell surface hydrophobicity. To the best of our knowledge, this report is the first genetic
evidence linking colanic acid biosynthesis to the production of PCWDEs and virulence in Pectobacterium.

2. Materials and Methods

2.1. Bacterial Strains, Media and Growth Conditions

The bacterial strains used in this study are listed in Table 1. Pectobacterium carotovorum strains were
grown in minimal salts plus sucrose medium (MM) with or without host extracts at 28 ◦C. Escherichia
coli was grown in Luria broth (LB) medium at 37 ◦C. Where required, MM media were supplemented
with 30% (v/v) celery extract (CE) or 0.2% polygalacturonic acid (PGA). Antibiotic drugs were used at
the following concentrations in (µg/mL); kanamycin (Km), 50; nalidixic (Nal), 50, tetracycline (Tc), 10.
When needed, media were solidified with 1.5% (w/v) agar before autoclaving.

Table 1. Bacterial Strains or Plasmids.

Bacterial Strain Relevant Characteristics References

Pectobacterium carotovorum
Ecc71 Wild type [21]

AC5006 Lac− mutant of Ecc71 [22]
KD100 Nalr derivative of AC5006 This study
KD250 wcaG− Kmr derivative of KD100 by mini-Tn5-Km lacZ1 mutagenesis This study
KD251 wcaG− Kmr derivative of KD100 by mini-Tn5-Km lacZ1 mutagenesis This study

Escherichia coli
HB101 proA1 lacY hsdS20 (rB− mB−) recA56 rpsL20 [23]
LE392 McrA− hsdR514 supE44 supF58 lacY1 or D(lacIZY)6 galK2 galT22 metB1 trpR55 Promega

S17-1 F2 pro recA1 rB− mB+

RP4-2 integrated (Tc::Mu) (Km::Tn7[Smr Tpr]) [24]
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Table 1. Cont.

Bacterial Strain Relevant Characteristics References

Plasmids
pUT mini-Tn5lacZ1 A λ-Pir vector containing mini-Tn5-Km lacZ1 transposon [25]

pRK2013 IncP Kmr TraRk2+ DrepRK2 repE1 [26]
pLAFR5 Tcr, cosmid cloning vector [27]

pCKD252 wcaG++ cosmid in pLAFR5 This study

2.2. Mutant Isolation by Transposon Mutagenesis

The procedure for the isolation of KD250 and KD251 has been described [28]. The two mutants,
KD250 and KD251 were isolated for having reduced extracellular protease activity in vitro on
Nutrient-gelatin agar.

2.3. DNA and Other Molecular Techniques

The construction of the genomic library of P. carotovroum Ecc71 has been described (Murata
1994). Three pairs of primers for wcaG (Table S1) were used to screen the genomic library of Ecc71.
The wcaG+ cosmid clone, designated pCKD252 was tri-parentally mated into wcaG mutants, KD250
and KD251 to complement the mutations. Transconjugants were selected on double antibiotic (Km
and Tc) selection medium.

2.4. wcaG Cloning and Sequencing

Oligonucleotide primers were obtained from MWG Operon Biotechnologies (Madison, AL, USA).
The primer Tn-LacZ P6 (Table S1) was used to sequence across the transposon junction into the flanking
genomic sequence using genomic DNA as template, and the generated DNA sequences were used to
search against genomic databases of Pectobacterium and Dickeya spp. The truncated gene in KD250 and
KD251 was designated wcaGEcc71 in keeping with the nomenclature used in Escherichia coli.

2.5. Growth Curve of Pectobacterium Strains

Growth curve was plotted according to Zwietering et al. [29]. Briefly bacteria were inoculated
into MM or MM + CE and incubated on a shaker at 28 ◦C. Bacterial growth was measured hourly
by culture turbid using a Klett colorimeter. The readings were recorded until the bacteria reached the
stationary phase.

2.6. Biofilm Assays

Biofilm formation was measured according to the method of Bakke et al. [30]. Bacterial cultures
were grown to A600 of 0.1 in MM with the appropriate antibiotic drug. One hundred and fifty microlitres
of culture was dispensed into each well in a 96-well plate. The plate was sealed with parafilm and
incubated in a still incubator without shaking at 28 ◦C for 20 h. The plantonic cells were removed by
rinsing with tap water slowly. Two hundred microlitres of 0.1% crystal violet was added into each
well for 15 min to stain the bacteria attached to the wells. The crystal violet was removed, and the
wells were rinsed with tap water. Two hundred microlitres of 95% ethanol was added to each well to
dissolve the crystal violet. Absorbance at 590 nm was measured using a Synergy H1 hybrid Reader
(BioTek, Winooski, VT, USA).

2.7. Pathogenicity Test and Bacterial Population Count in Host

A pathogenicity test was performed on celery petioles according to the method of Kersey et al [28].
Tissue maceration of mutants was compared with that of the parent by inoculating celery petioles or
carrot disks with 10 µL of bacterial suspension standardized to OD600 = 0.2 (approx. 7.6 × 108 CFU).
The petioles and discs were incubated in a moisture chamber at 28 ◦C for 48 h. Macerated tissue
from carrot disks was obtained by calculating the difference between the weight before and after
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washing/wiping the rotten tissue. For bacterial population count, OD600 = 0.1 (approx. 3.8 × 108 CFU)
of bacterial suspension was inoculated in celery petioles and incubated for 0 to 3 days in a moist
chamber. The infected area of the celery petioles was separated with a knife carefully and ground with
a mortar and pestle. Ground petioles were serially diluted in 0.5× PBS and plated on LB media.

2.8. Quantitative Exoenzyme Assay

Quantitative enzyme assays were performed for Pel and Prt as previously described [28].
Quantitative Pel activity was spectrophotometrically (Synergy H1, Biotek) determined for pectate
degradation using polygalacturonic acid as substrate. Assays for Prt activity were conducted using
azocasein (2%) as substrate. The enzymatic activities were corrected for bacterial growth measured by
optical density at 600 nm.

2.9. Hydrophobicity Test

A hydrophobicity test was performed as described by Rosenberg [31] with some modifications.
Bacterial strains were grown in liquid MM and diluted to A600 = 0.5 using 0.5× Phosphate-buffered
saline (PBS). An equal volume (5 mL) of bacterial suspensions and nonpolar solvents (hexane and
hexadecane) was mixed in a glass tube and vortexed for 2 min. Glass tubes were allowed to stand for
10 min for phase separation. The optical density of the aqueous phase was measured at 600 nm.

2.10. Multiple Sequence Alignment and Phylogenetic Tree Analysis

Amino acid sequences of WcaG of all species were obtained from GenBank (www.ncbi.nlm.nih.gov).
Multiple sequence alignment was then performed using Clustal Omega, an alignment platform from
European Bioinformatics Institute. A phylogenetic tree was constructed based on the DNA sequences
of wcaG gene of all species using the Maximum likelihood method in Molecular Evolutionary Genetics
Analysis (MEGA) [32].

3. Results

3.1. Isolation and Characterization of wcaG Mutant

Random mutagenesis was performed on P. carotovorum strain KD100 by using mini- Tn5 lacZ1
to isolate the mutant with altered levels in extracellular protease (Prt) production on nutrient gelatin
(NG) medium [28]. Several mutants were selected of which the mutants, designated KD250 and
KD251 showed low extracellular protease activity (less than 0.5-fold) compared to the parental level.
The growth of the mutants KD250, KD251 was similar to that of the parent KD100 (Figure 1). The mutants
even had a slightly shorter log phase in host extract (CE)-supplemented medium. We assayed for
Pel (Figure 2) and Prt (Figure 3) activities quantitatively from the culture supernatants when the
mutant KD250, KD251 and parent KD100 were grown in MM, MM with celery extract (MM + CE) and
MM with polygalacturonic acid (MM + PGA). As expected, in comparison to MM medium, the host
extract-supplemented media induced the bacteria to produce more Pel and Prt in both the mutants and
parent. This also suggests that the mutants are still responsive to induction by the signal from the host
extract. However, the level of exoenzymes in the mutants was still low in comparison to parent KD100.

www.ncbi.nlm.nih.gov
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Figure 2. Quantitative assays for enzymatic activities of extracellular pectate lyase from wcaG+ and
wcaG− P. carotovorum strains. Cultures were grown in liquid MM, MM + CE and MM + PGA at 28 ◦C
for 16 h. Pel activities were determined from cultural supernatant. The cosmid, pCKD252 (carrying
wild type wcaG clone in pLAFR5) was used to complement the mutants KD250, KD251. Values are the
mean (from four replicates) ± standard deviation.
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Figure 3. Quantitative assays for enzymatic activities of extracellular protease from P. carotvorum strain
KD100 and its wcaG− mutants KD250 and KD251. The parental strain, KD100 and wcaG mutants KD250,
KD251 were cultured (three replicates were taken from culture tube of each strain) in MM supplemented
with celery extract. Supernatants of these cultures were used to measure protease activities using
azocasein as a substrate. Values are the mean (from three replicates) ± standard deviation.

3.2. Identification and Characterization of wcaGEcc71

We sequenced the genomic DNA of the mutants KD250, KD251 across the transposon junction to
determine the transposon insertion region and what gene might have been truncated. Interestingly,
the transposon inserted in the different region of same gene (Figure 4) in both mutants KD250 and
KD251. Based on the sequence in this region, the truncated gene was wcaG gene. In Escherichia coli, the
gene is also referred to as fcl and it encodes GDP fucose synthetase [33]. The homologue of wcaG is at
PC1_01313 from P. carotovorum PC1 and PC21_013440 from P. carotovorum PC21 genomes. In Ecc71 wcaG
orf is 960 base pairs (bp) long and encodes 320 aa protein. It is 96% and 88% identical to the wcaG gene of
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P. carotovorum strains PCC21 and PC1, respectively. Gene wcaGEcc71 has 99%, 99%, 78% sequences identity
and its predicted product WgaGEcc71 had 100%, 100%, 99% identity with their respective homologues
from P. carotovorum PC1, P. carotovorum PCC21 and Escherichia coli K-12 sub-strain MG1655, respectively
(Figure 5B). The multiple alignments of the deduced amino acid sequence of wcaG from P. carotovorum
Ecc71 was carried out with those from P. carotovorum PC1, P. carotovorum PCC21, and Escherichia coli K-12
(sub-strain MG1655). Both the multiple sequence alignment and phylogenetic tree (Figure 5A,B) show a
close relationship among P. carotovorum PC1, P. carotovorum PCC21, and Escherichia coli K-12.
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Figure 5. (A) Phylogenetic tree of predicted P. carotovorum Ecc71 WcaG with other Enterobacteriaceae
family members. The phylogenetic tree reveals that the WcaG protein of Escherichia coli is evolutionarily
close to those from Pectobacterium species. (B) Multiple sequence alignment of WcaG protein sequences
from Escherichia coli and Pectobacterium strains. The alignment was made with deduced amino acid
sequences of WcaG of P. carotovorum Ecc71 and its homologs from strains PC1, PCC21 and Escherichia
coli K12. The alignment reveals almost similar or identical deduced amino acid sequences.
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3.3. Pathogenicity Assays and Bacterial Population in Planta

The insertion of the transposon in two locations and therefore disruption wcaG gene in P. carotovorum
led to reduction in the production of exoenzymes. Therefore, we wanted to determine if the levels
of exoenzymes would affect tissue maceration as well. Both wcaG mutants macerated less tissue of
celery petioles and carrot root discs in comparison with the parental strain. Figure 6 shows that, 24 h.
post inoculation, the mutants visibly macerated less celery petioles relative to their parental strain.
We measured the amount of macerated tissue of carrot root disc to quantify the differences seen in
virulence between wcaG− mutants and their parent. The amounts of macerated tissue in carrot discs
inoculated with parent strain KD100 were 21.5% and 26.7%, respectively, of the original weight of the
disc. By contrast, their respective wcaG− mutants KD250 and KD251, macerated only 6.4% and 5.8%,
respectively (Figure 7). We also considered whether besides the effects on exoenzymes production,
wcaG mutants might also be negatively affected in multiplication or survival in the host plant tissues.
For this, we checked survival and multiplication ability of wcaG mutants and their parent in celery
petioles. We recovered similar levels of bacteria in macerated tissues of the wcaG− mutant to the parent
after starting with approximately the same levels of inocula (Figure 8). This indicates that the mutation
did not affect the survival and multiplication ability of the pathogen.
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Figure 6. Celery petioles maceration by P. carotovorum strain KD100 and its wcaG mutants KD250 and
KD251. Infection of KD250, KD251 was compared with parent KD100 and also with complemented
mutants. (1) Column (A) indicates infection of KD250, KD251, and KD100 carrying extrachromosomal
copies of wcaG in pCKD252; Column (B) infections of KD250, KD251, and KD100 carrying pLAFR5;
Column (C) infections of KD250, KD251, and KD100. (2) Maceration caused by strain KD100 was
compared with the negative control.

Microorganisms 2019, 7, x FOR PEER REVIEW 7 of 13 

 

3.3. Pathogenicity Assays and Bacterial Population in Planta 

The insertion of the transposon in two locations and therefore disruption wcaG gene in P. carotovorum 

led to reduction in the production of exoenzymes. Therefore, we wanted to determine if the levels of 

exoenzymes would affect tissue maceration as well. Both wcaG mutants macerated less tissue of celery 

petioles and carrot root discs in comparison with the parental strain. Figure 6 shows that, 24 h. post 

inoculation, the mutants visibly macerated less celery petioles relative to their parental strain. We 

measured the amount of macerated tissue of carrot root disc to quantify the differences seen in 

virulence between wcaG− mutants and their parent. The amounts of macerated tissue in carrot discs 

inoculated with parent strain KD100 were 21.5% and 26.7%, respectively, of the original weight of the 

disc. By contrast, their respective wcaG- mutants KD250 and KD251, macerated only 6.4% and 5.8%, 

respectively (Figure 7). We also considered whether besides the effects on exoenzymes production, 

wcaG mutants might also be negatively affected in multiplication or survival in the host plant tissues. 

For this, we checked survival and multiplication ability of wcaG mutants and their parent in celery 

petioles. We recovered similar levels of bacteria in macerated tissues of the wcaG- mutant to the parent 

after starting with approximately the same levels of inocula (Figure 8). This indicates that the 

mutation did not affect the survival and multiplication ability of the pathogen. 

 

Figure 6. Celery petioles maceration by P. carotovorum strain KD100 and its wcaG mutants KD250 and 

KD251. Infection of KD250, KD251 was compared with parent KD100 and also with complemented 

mutants. (1) Column (A) indicates infection of KD250, KD251, and KD100 carrying extrachromosomal 

copies of wcaG in pCKD252; Column (B) infections of KD250, KD251, and KD100 carrying pLAFR5; 

Column (C) infections of KD250, KD251, and KD100. (2) Maceration caused by strain KD100 was 

compared with the negative control. 

 

Figure 7. Tissues maceration capacity of each mutant was compared to the parental strain KD100. 

Bacteria cells were inoculated with 1.3 × 109 CFU/mL in carrot disks and weight of macerated tissue 

was determined after 48 h of incubation at 28 °C. Data represents mean percentage weights of 

macerated tissue (from four replicates) ± standard deviation. 

Figure 7. Tissues maceration capacity of each mutant was compared to the parental strain KD100.
Bacteria cells were inoculated with 1.3 × 109 CFU/mL in carrot disks and weight of macerated tissue was
determined after 48 h of incubation at 28 ◦C. Data represents mean percentage weights of macerated
tissue (from four replicates) ± standard deviation.
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Figure 8. Survival capacity of P. carotovorum strains. Bacterial population was measured in celery
petioles to determine the survival response in the host plant. Approximately 3.8 × 108 CFU/mL
of bacterial suspension was used to inoculate celery petioles. Bacterial cell count was taken of
infected celery on days 0, 1, 2, and 3 post inoculation. Values are the mean (from three replicates) ±
standard deviation.

3.4. Measurement of the Cell Surface Properties

Previous studies in Escherichia coli had shown that defects in colanic acid biosynthetic genes alter
the cell surface properties including hydrophobicity and adhesion [34,35]. We therefore considered
whether WcaG− mutants of Pectobacterium might also be similarly affected in cell surface properties
such as hydrophobicity and biofilm formation in vitro. We measured cell hydrophobicity in vitro using
two non-polar solvents, hexane and hexadecane in contrast to water. Both wcaG mutants showed more
hydrophobicity relative to their parent (Figure 9). WcaG deficiency caused about two-fold higher
hydrophobicity compared to their parental wgaG+ strains. In Escherichia coli it has been shown that
colanic acid is necessary for the development of typical biofilm activity [36]. We wanted to check
whether the defect in the wcaG gene had any effect in biofilm formation of mutants. We measured
biofilm activities using the crystal violet method as previously described [30]. Surprisingly, both wcaG
mutants produce more biofilm than their parent KD100 (Figure 10).
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Figure 9. Cell surface hydrophobicity of P. carotovorum strains. Hydrophobicity was compared
between mutants and parent. Bacterial suspensions in 0.5× PBS (aqueous phase) were mixed with
non-polar solvent hexane and hexadecane. The bars represent the percentages of bacteria remaining
in the non-polar phase in contrast to aqueous phase. Values are the mean (from three replicates) ±
standard deviation.
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Figure 10. (A) Quantitative detection of biofilm formation in polystyrene 96-well plates. Biofilm
formation was determined using the absorbance ratio of A590 and A600. (B) Visualization of biofilm
formation by crystal violet staining. Biofilm in microtiter wells were observed with crystal violet
staining after incubation of bacterial strains for 20 h at 28 ◦C (More than three microtiter wells were
used to quantify biofilm production for each bacterial strain, Values are the mean ± standard deviation).

4. Discussion

In this study, we showed through several lines of evidence that the gene, wcaG, is involved in
virulence and cell surface properties in Pectobacterium carotovorum. wcaG encodes NAD-dependent
epimerase/dehydratase, an enzyme involved in colanic acid biosynthesis. First, two transposon
mutants with insertions in different regions of the gene had a similar phenotype. They both produce
low levels of PCWDE, which act as the main virulence factors of the organism. Second, consistent
with the role of PCWDEs in virulence, the mutants had reduced virulence in comparison with their
parent. Third, the mutants were similarly affected in the cell surface properties of biofilm formation
and hydrophobicity. Finally, extra-chromosomal copies of the genomic segment containing the wild
type and functional wcaG gene restored the mutant phenotype back to parental levels.

The mutants produced less PCWDE than the parental strain. The levels of all the major PCWDEs,
pectate lyase, polygalacturonase, cellulose, and protease were reduced in both mutants. Such mutants,
which are globally affected in PCWDE production, tend to be mutants in regulatory genes that control
the expression of enzyme genes. However, the product of wcaG has been annotated as an enzyme
involed in colonic acid biosynthesis. It is not immediately clear at what level of gene expression PCWDE
production is affected in the mutants. Enzyme production could be affected at the transcriptional,
post-transcriptional, translational, or at the secretion level. However, the fact that different enzymes,
protease, cellulose, and pectinase are affected suggests that the effect of the mutation might not be
through secretion. The affected enzymes are secreted through at least two different secretion pathways.
While protease is secreted through type I secretion system, pectate lyase, polygalacturonase, and
cellulase are all secreted through type II secretion system [4,37,38]. We therefore think it is improbable
that the wcaG mutation is affecting both type I and type II secretion systems. We have initiated
experiments to determine among other things, whether the production of exoproteins such as harpins
which are secreted through the type III pathway is equally affected in wcaG mutants. Further studies
are also underway to measure promoter activity and the levels of transcripts or enzyme genes.

In the pathogenicity test, both mutants, KD250 and KD251 were less virulent than the parental
strain, KD100 in host tissue maceration. This was expected since the mutants produced reduced levels
of exoenzymes. Recently it has been shown that deletion of wcaJ, another gene whose product is
involved in colonic acid (CA) biosynthesis in Edwardsiella tarda, a Gram-negative bacterium, leads
to reduced virulence [39]. Colanic acid has also been shown to act as avirulence factor for many
Enterobacteriaceae including, E. amylovora, Salmonella [16,40,41] and to also have a high influence
in the production of slime layer, capsule, and biofilm [42,43]. Studies in Erwinia amylovora have
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demonstrated that mutants of two-component rcs regulatory system, rcsB, rcsC, and rcsD are affected
in CA biosynthesis and these mutants are non-pathogenic on immature pear fruit [44]. This suggests
that CA contributes to pathogenesis on host plant in E. amylovora. In Escherichia coli, CA plays a role in
protecting the bacterium from unfavorable pH [45]. Consistent with this protective role, unfavorable
conditions including low temperature and oxidative stress upregulate CA biosynthesis in Escherichia
coli [41]. In this study, we did not study the survival of the mutants and parent under various adverse
conditions including pH. We are therefore unable to speculate if CA might have a similar role in host
infectivity in Pectobacterium although the parent and mutants colonized host tissues to the same levels.
As a result, we cannot tell whether the observed effect of wcaG mutation on virulence is through the
observed low enzyme production or through reduced, modified, or deficient colonic acid production.

The Rcs phosphorelay signal transduction system regulates biosynthesis of CA [46,47]. The
sensor kinases, RscC and RscD perceive and transmit the environmental signal through simultaneous
phosphorylation and dephosphorylation with the response regulator, RscB, in a process that also
involves the ATP-dependent Lon protease. Interestingly, this same Rcs system has also been
demonstrated to regulate virulence factors in Pectobacterium [48]. The Rcs system negatively regulates
PCWDEs production indirectly via RcsB’s negative effect on FhlDC and RsmB but not directly on
PCWDE genes [49]. However, while Rcs genes code for regulators, the mutant gene in KD250 and KD251
is a structural gene that encodes an enzyme, NAD-dependent epimerase/dehydratase. We therefore
cannot speculate how its deficiency will result in a global negative effect on PCWDE production.

The WcaG mutants of Pectobacterium acquired cell surface properties of higher cell surface
hydrophobicity and ability to form biofilms. Neither the wild type Ecc71 nor the parental strain,
KD100 form any significant amount of biofilm on abiotic surfaces. This suggests that the mutant cell
surfaces became more hydrophobic and therefore able to stick together and on other surfaces. We are
not sure whether disruption of wcaG in this study completely blocked CA biosynthesis. However,
hydrophobicity testing gave us some clues because the mutants were more hydrophobic than the
parent. We speculate that, defective CA biosynthesis resulted in immature CA production which
causes loss of acid function and so hydrophilicity. This gain of functions such as biofilm formation
and hydrophobicity by the mutants contrasts with the loss of PCWDE production and virulence by
the mutants. Attachment and cell surface hydrophobicity are often required for full virulence in
organisms such as P. aeruginosa and Xanthomonas axonopodis pv. citri [50]. In addition, CA plays a
significant role during development of biofilm on the biotic host surface of Salmonella [42] where
attachment is important. In Escherichia coli, CA is essential for building a multidimensional structure of
biofilm development although it does not play a role in the initial attachment stage during the biofilm
production [36]. Interestingly, in P. carotovorum mutants described in this study, these properties are
rather associated with loss of virulence. Recently, it has been shown that transposon insertion in wcaG
and several other CA biosynthetic genes in another strain of Pectobacterium carotovorum led to resistance
to infection by phage POP72 in the family Podoviridae [51]. Unfortunately, these phage-resistant mutants
were not tested for PCWDE production or their surface properties, beside susceptibility to phage
infection. We are therefore not able to learn much from those mutants on the effect of colonic acid on
virulence in Pectobacterium.

In conclusion, we demonstrated in this study that WcaG plays a role in PCWDE production, cell
surface properties, and virulence in Pectobacterium carotovorum. Pectobacterium carotovorum strains with
mutations in wcaG produced less PCWDEs, had more hydrophobic cell surfaces, formed more biofilm
on abiotic surfaces, and were ultimately impaired in host tissue maceration. Further confirmation of
the WcaG role comes from the restoration of these phenotypes through complementation with wild
type wcaG+ clones. Further investigation is required to determine how a mutation in EPS biosynthetic
gene would produce such global changes in Pectobacterium.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/7/6/172/s1,
Table S1: Names and sequences of oligonucleotide primers used in this study.

http://www.mdpi.com/2076-2607/7/6/172/s1
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