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Effects of poor sleep on the immune cell landscape
as assessed by single-cell analysis
Xiuxing Liu 1,2, Binyao Chen1,2, Zhaohao Huang1,2, Runping Duan1,2, He Li1,2, Lihui Xie1,2, Rong Wang1,

Zhaohuai Li1, Yuehan Gao1, Yingfeng Zheng 1✉ & Wenru Su 1✉

Poor sleep has become an important public health issue. With loss of sleep durations, poor

sleep has been linked to the increased risks for diseases. Here we employed mass cytometry

and single-cell RNA sequencing to obtain a comprehensive human immune cells landscape in

the context of poor sleep, which was analyzed in the context of subset composition, gene

signatures, enriched pathways, transcriptional regulatory networks, and intercellular inter-

actions. Participants subjected to staying up had increased T and plasma cell frequency, along

with upregulated autoimmune-related markers and pathways in CD4+ T and B cells. Addi-

tionally, staying up reduced the differentiation and immune activity of cytotoxic cells, indi-

cative of a predisposition to infection and tumor development. Finally, staying up influenced

myeloid subsets distribution and induced inflammation development and cellular senescence.

These findings could potentially give high-dimensional and advanced insights for under-

standing the cellular and molecular mechanisms of pathologic conditions related to

poor sleep.
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Sleep is an indispensable attribute of life, sustaining home-
ostasis and safeguarding against various pathological
conditions1. In recent years, a shortened duration and worse

quality of sleep among populations have confronted us with the
detrimental effects of poor sleep on health and diseases2.
In addition, the poor sleep experiences, including poor sleep
quality and acute sleep loss (SL) after staying up (SU), are com-
mon among collegiate athletes3. In humans, poor sleep has been
reported to associate with higher incidences of autoimmune
diseases, tumors and infections4–6. Short-term sleep deficiency
can impair the innate and adaptive immune systems, resulting
in increased infection susceptibility and reduced vaccination
effectiveness7,8. In addition, prolonged habitual sleep deficiency
or SU all night to work can lead to chronic, systemic, low-
grade inflammation and is associated with various inflammation-
related diseases, such as diabetes, atherosclerosis, and
neurodegeneration9–11. Overall, poor sleep broadly influences the
immune system and links to higher diseases susceptibility.

Previous studies have explored the impact of SL on the
immune system12. Mice suffering from SL have elevated pro-
inflammatory cytokine levels, NF-κB pathway activation, and
exacerbated colonic mucosal injury13. In addition, sleep restric-
tion promotes brain inflammation and neural activity impairment
in mice14. In humans, flow cytometry demonstrated increased
levels of total lymphocytes as well as T cells (TCs) and B cells
(BCs) in the blood after SL15. Moreover, whole genome micro-
arrays identified that SL enhanced immune activation, like BCs
activation, NF-κB signaling activation16. However, what we know
about immune cells is primarily based on flow cytometric ana-
lysis, relying on previously described markers for pooled cell
populations. In addition, traditional sequencing methods covered
the characteristics of different cell populations and couldn’t
analyze the diversity and state heterogeneity of immune cells. The
unbiased high-throughput single-cell technologies provide unique
opportunities to uncover gene expression and gain insights into
the molecular mechanisms associated with diseases. In previous
studies, we have used single-cell techniques to construct a series
of immune atlas of aging and sex, expanding our understanding
of the mechanisms of aging- or sex-associated diseases17,18.
However, the single-cell alterations through which SU and SL
rewire the immune system and influences susceptibility to
immune diseases are poorly understood. Therefore, a compre-
hensive single-cell atlas of peripheral immune response influ-
enced by poor sleep is greatly desired.

To this end, we combined mass cytometry by time of flight
(CyTOF) and single-cell RNA sequencing (scRNA-seq) to analyze
the properties of peripheral blood mononuclear cells (PBMCs)
before and after SU all night. Overall, SU was found to contribute
to a pro-inflammatory and autoreactive state of peripheral blood
by reprogramming immune subset composition, gene expression
signatures, enriched pathways, transcriptional regulatory net-
works, and cell-cell interactions. The findings provide a com-
prehensive atlas of the effect of poor sleep on the immune system
and expand our knowledge of SU as a predisposing factor for
inflammatory or autoimmune diseases and aging-related diseases.

Results
Study design for single-cell immunophenotyping of human
blood. To map the human circulating immune system, identify
changes in the blood, and pinpoint cell-specific alterations asso-
ciated with SU, we collected blood from six healthy individuals
before and after SU all night (preSU and postSU; Supplementary
Table 1) and then performed CyTOF and scRNA-seq analysis
(Fig. 1a). FlowSOM-defined nodes in CD45+ cells were manually
annotated into four main immune cell types [TC, natural killer

(NK) cell, BC, myeloid cell [MYE, including monocyte (MC) and
dendritic cell (DC)] and then re-clustered into 25 subsets (Sup-
plementary Figs. 1 and 2, Supplementary Table 2). Using scRNA-
seq, we identified megakaryocytes (MEGA), CD34+ cells (CD34),
and five major immune cell lineages (TC, NK, BC, MC, and DC)
based on the expression of canonical lineage markers upregulated
in each cluster (Supplementary Fig. 3a). We then sub-clustered
five circulating immune cells into 25 transcriptionally classical
subsets (Supplementary Fig. 3b–f, Supplementary Table 3).

Reconstitution of the circulating cellular ecosystem by SU. To
elucidate how cell type composition changes after SU, we com-
pared the number and proportions of each major cell type
between the preSU and postSU groups, and identified many
abnormal changes (Fig. 1b, Supplementary Fig. 4a). Globally, TC
frequency increased by ~3% and MYEs decreased by ~4% in
postSU group (Fig. 1b, c). Next, we performed single-cell clus-
tering to explore changes in cell subpopulations induced by SU.
Following SU, we identified lymphocythemia due to an increase
in the frequency of CD8+ effector memory TCs (CD8 TEM),
proliferating TCs (mitotic TC, T-mito) and exhausted TCs (Tex)
in CD45+ cells (Fig. 1d, e, Supplementary Fig. 4b). Moreover,
plasma cells (PCs) were significantly upregulated (Fig. 1f). There
was also a specific pattern in MC subset frequency, where non-
classical MCs (nMC) were decreased and intermediate MCs
(iMC) were increased (Fig. 1g, h).

Next, we explored subset composition across the corresponding
cell lineages. We compared the absolute number of T-cell subsets
between the two groups to identify the effects of SU (Supplemen-
tary Fig. 4c). We found that T-mito was increased and
CD4+CD8+ double-positive T cell (DPT) was decreased. CD4+

and CD8+ TC subsets were similar among groups (Supplementary
Fig. 4c). Analysis of number and proportion of NK clusters
revealed altered subset composition, with increased NK2 and
decreased NK3 (Fig. 1i, Supplementary Fig. 4d). For BCs, the
number and percentage of PCs increased (Supplementary Fig. 4e,
f). In MYEs, both conventional and plasmacytoid DCs (cDCs and
pDCs, respectively) were increased (Fig. 1j, Supplementary Fig. 4g).
Moreover, there was increased heterogeneity in the alterations of
MC subset population after SU. Classical MCs (cMCs) and iMCs
also increased while nMCs decreased postSU compared with
preSU (Fig. 1j, Supplementary Fig. 4h).

Altogether, the CyTOF analysis results revealed complex cell
dynamics in the circulation and further support the notion that
this abnormal activity destabilizes blood immune homeostasis.

Alteration of gene expression changes across subjects after SU.
To identify the molecular events associated with SU, we separated
the effects of SU on each individual in this study. We generated
an UpSet diagram of differentially expressed genes (DEGs) from
blood immune cells in the postSU group compared with the
preSU group, and found that all six participants showed an
increase in some inflammatory genes, including AP-1 family
genes (JUN, FOS), DNA damage markers (DDIT3, GADD45B),
IFNG, and interferon-related developmental regulator 1 (IFRD1)
(Supplementary Fig. 4i, j). We next explored the biological
implications of upregulated and downregulated DEGs through
gene ontology (GO) and pathway analysis for each subject. The
commonly upregulated genes across participants after SU were
enriched in AP-1 pathway, leukocyte activation, and cellular
responses to stress (Fig. 2a). Notably, SU enhanced the activation
of cellular senescence. SU also led to the downregulation of
multiple pathways involved in metal ion homeostasis and
detoxification (Fig. 2b). We next sought to define the cell type
specificity of these DEGs across individuals. As indicated by the
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Fig. 1 The experimental design and changes in cell proportions after SU. a Schematic of the experimental design for mass cytometry by time of flight
(CyTOF) and single-cell RNA sequencing (scRNA-seq). Peripheral blood mononuclear cells (PBMCs) of six healthy individuals were collected before and
post the 24-h sleep loss, then processed CyTOF and scRNA-seq for the subsequent studies. b Pie charts showing relative cluster abundance in the preSU
and postSU groups. The percentage of TC and MYE (c), CD8 TEM (d), T-mito (e), PC (f), nMC (g) and iMC (h) in CD45+ immune cell between preSU and
postSU groups (n= 6 /group). i The percentage of NK2 and NK3 subsets in NK between preSU and postSU groups (n= 6 /group). j The percentage of
cMC, nMC and cDC in MYE between preSU and postSU groups (n= 6 /group). Significance in d–h was calculated using two-tailed paired t-test;
significance in c, i and j was calculated using the “diffcyt-DA-GLMM” method as implemented in the “diffcyt” function in view of the subjects pairing;
*P < 0.05, **P < 0.01, ****P < 0.0001. The full names of the 25 cell types in CyTOF see Supplementary Fig. 1.
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varying circle sizes, the effects of SU were not only subject-
specific but also cell type-specific (Fig. 2c, d). Globally, TCs, BCs,
and DCs were the cell types most strongly affected by SU among
individuals according to their upregulated DEG number. Notably,
GADD45B, JUN, and FOSB were the top three upregulated DEGs
across all five major immune lineages of the six subjects after SU
(Fig. 2e, f).

The increase in inflammatory pathway activity and specific
gene expression after SU demonstrate that SU induces general
oxidative stress and an inflammatory state. To assess the extent of
these phenomena that are enhanced by SU, we calculated the
score for each subject. We found that all participants exhibited a
upregulation in the inflammatory response score after SU, with
MYEs showing the highest inflammatory response score (Fig. 2g).
In addition, we also found that in all subjects there was an
upregulation of reactive oxygen species (ROS) and senescence-
associated secretory phenotype (SASP) scores in the postSU group
compared with the preSU group (Supplementary Fig. 4k, Fig. 2h).

SU results in autoimmune-associated changes in effector lym-
phocytes. Lymphocytes, including CD4+ TCs and BCs, play
important roles in the development of inflammation and
autoimmunity19. Using CyTOF, we identified an increase in
lymphocytes, especially TCs, after SU. Next, we explored func-
tional marker expression across the corresponding cell lineages.
Among the CD4+ TCs, the elevated markers included the Th17
markers CCR6, CXCR3, cell proliferating marker KI67, and
apoptotic marker CD279. CD127 and GATA3 were down-
regulated in the postSU group (Fig. 3a, Supplementary Fig. 5a). In
BCs, levels of CXCR3, CCR6, and the autoimmune-related BC
(ABC) marker T-bet were increased after SU (Fig. 3b, Supple-
mentary Fig. 5b). In addition, upregulation of CD38 was asso-
ciated with an increase of PCs in BCs (Supplementary Figs. 4f and
5b). These results indicate that SU induces autoimmune-
associated protein expression patterns.

We next explored the transcriptional patterns of SU and found
that SU-induced immune activation of CD4+ TCs and BCs
(Supplementary Fig. 5c, d). Accordingly, we performed an
integrated comparative analysis of DEGs to determine subtype-
specific gene signatures. The T-mito subset was the most affected
by SU across TC subsets (Supplementary Fig. 5e). Notably, SU
reduced CD27 expression and increased the expression of genes
related to inflammatory activation (FOS, JUN, NFKBIA), JAK
signaling (IFNG, IL2RB, TIMP1, GRB2, CCND3), and DNA
damage (DDIT3, GADD45B) in T-mito subset (Fig. 3c). The Treg
and TEM were the subsets most altered by SU in CD4+ TCs, while
PCs were the most influenced by SU across BC subsets according
to the upregulated DEG number (Supplementary Fig. 5e, f). By
generating an UpSet plot of upregulated DEGs (Supplementary
Fig. 5g), we found CD4 TEM as a unique subset with increased
levels of PIM1 and TNF, which were involved in Th17
differentiation and autoimmune activation20,21. Notably, genes
related to Th17 differentiation, including PIM2, FOS, FOSB, JUN,
NFKBIA, were increased in Treg (Supplementary Fig. 5h). In
addition, all BC subsets showed an increased expression of genes
associated with an inflammatory state, including NFKBIA, JUN,
and COX5A. Moreover, we identified subtype-specific expression
patterns, including KLF6 and HSPA5 in ABCs; XBP1, IRF4, JAK1,
and IGHA1 in PCs; and BACH2 and IGHV4-34 in naive BCs
(NBCs) (Fig. 3d).

To understand the biological implications of SU-related
transcriptional changes, we performed GO and pathway enrich-
ment analysis using the upregulated DEGs (Fig. 3e). The
commonly upregulated DEGs after SU were enriched in protein
processing and apoptosis. Notably, SU upregulated the activity of

IFN-γ production, p38MAPK, and the IL-17 signaling pathway in
CD4 TEM and Treg (Fig. 3e). The JAK-STAT signaling pathway
and adaptive immune system were overrepresented in T-mito
cells from SU blood. Protein processing was also markedly
enhanced in PCs (Fig. 3e). These processes and pathways are
closely related to autoimmune activation22. SU also accelerated
cellular senescence. In a supervised manner, we found that SU
also enhanced the expression of immunomodulatory genes
(TIGIT, IL10RA, TGFB1) in Treg (Supplementary Fig. 5i). In
addition, we found that Th17 differentiation key transcription
factor (TF) (STAT3) and IL6R were increased in Treg, while
IL6ST was increased in CD4 TEM. The expression of RORC and
IL17RA in CD4 TEM was similar between the two groups
(Supplementary Fig. 5j). To explore the possibility of SU-induced
immune dysfunction underlying human diseases, we employed
the COVID and DisGeNET databases to predict DEG-associated
diseases. SU was found to increase COVID-19 risk, which was
mainly attributed to the modulation of PCs and CD4 TEM

(Supplementary Fig. 5k). In addition, SU-enhanced DEGs were
associated with an increased risk of autoinflammatory disease,
Behcet syndrome, and lupus erythematosus.

To understand the transcriptional regulatory networks under-
lying SU, we used the TRRUST database23 to predict the core TFs
regulating upregulated DEGs in lymphocytes (Fig. 3f). We found
that TF activity was markedly upregulated after SU in CD4 TEM

and T-mito subsets. The main Th17-related TF STAT3 was
activated by SU, especially in CD4 TEM (Fig. 3f). In addition, two
inflammation-related TFs, NFKB1 and RELA, were upregulated
by SU. Transcriptional regulatory network analysis indicated the
unique upregulation of CDKN1A, S100A9 and TNF in CD4 TEM

was regulated by CEBPB (Fig. 3g, h, Supplementary Fig. 5g). We
tracked the networks and identified STAT3 as the key TF
regulating autoimmune-related genes (PIM1, FOS and JUNB)
(Fig. 3g). In order to strengthen the conclusion, we next
performed motif-enrichment to predict upstream regulators by
using the RcisTarget tool, which is based on the methods
previously implemented in i-cisTarget and iRegulon24. These
results showed that PIM1 was also regulated by the cis-regulatory
module banded by STAT3 and STAT1 (Supplementary Fig. 6a).
All the 10 TFs regulated CDKN1A expression. Notably, we found
CD4 TEM was the only subset to show an increase in CDKN1A
and PIM1 levels, and SU increased FOS expression in all subsets
including CD4 TEM (Fig. 3h, Supplementary Fig. 5g). Collectively,
these findings indicate that SU reprograms the proteomic and
transcriptional profile of circulating lymphocytes and induces an
autoimmune-related phenotype.

SU induces immune dysregulation in cytotoxic cells. As the key
goalkeeper in the antitumor and antivirus response, cytotoxic
cells (including NK and CD8+ TCs) are influenced by a lack of
sleep25,26. Using CyTOF, we found that SU affects NK differ-
entiation. The CD57+ NK3 subset, with high cytotoxic and
mature characteristics27, was shrank in postSU NK (Fig. 1i,
Supplementary Fig. 4d). We next explored functional marker
expression across the NK and CD8+ TC subsets. SU decreased
the expression of T-bet (Fig. 4a, b), which is the key TF governing
the differentiation and function of cytotoxic cells, and mildly
reduced the expression of the NK-related chemokine CCL5
(Fig. 4a). Corresponding with the increase in CD8 TEM frequency,
effector marker CCR6 expression was also increased in CD8+

TCs (Fig. 4b).
We further explored the transcriptional signatures altered by

SU. As shown in the volcano plot (Supplementary Fig. 6b, c), SU
decreased GZMB expression and upregulated genes related to
inflammatory activation (FOS, JUN, NFKBIA, DUSP2, JAK1,
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Fig. 2 Changes in transcriptional profiles among subjects. Representative GO biological process and pathways enriched in upregulated (a) and
downregulated (b) DEGs based on functional enrichment analysis among subjects. Dot plots showing the distribution of upregulated (c) and
downregulated DEGs (d) in each major cell type of all six participants, the size indicates the numbers of DEGs, and the different colors annotate different
cell type. Bar plots showing the frequencies of the top 15 upregulated (e) and downregulated (f) genes observed across all cell types in six participants.
Violin plot of inflammatory response score (g) and SASP score (h) for each sample and immune cell lineage, different participants were represented in
different colors, with darker colors representing after SU. For the box plot within each violin plot, middle lines indicate median values, boxes range from the
25th to 75th percentiles. Significance in g and h was calculated using two-sided Wilcoxon test as implemented in the function “compare_means” with
default parameters; ****P < 0.0001.
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PIM1), tumor immunity (CD47, PCBP2, EIF5A, PDIA3, EGR1),
and DNA damage (H2AFX, DDIT3, GADD45B). Additionally, SU
upregulated PFN1, which is a negative regulator of the killing and
migratory functions of cytotoxic cells28. We next assessed the cell
subtype-specific gene signatures altered by SU. Based on the
number of DEGs, TC and NK subsets showed heterogeneous
transcriptional changes after SU, with the most affected being
NK3 and CD8 TEM cells (Fig. 4c, Supplementary Fig. 6d). We
next generated an UpSet plot of upregulated DEGs and found
that SU upregulated a set of genes including PFN1, NFKBIA,
H2AFX, JUNB, and FOS (Fig. 4d). Moreover, in some subsets
including CD8 TEM, SU increased the level of tumor immunity-
related genes, including CD47, PCBP2, EIF5A, and PDIA3
(Fig. 4d). These results indicate that cytotoxic cells in postSU
blood show specific transcriptional profiles associated with the
increase in inflammation and decrease in cytotoxic activity.

GO and pathway analysis of each subset demonstrated that the
common SU-induced upregulated biological processes and path-
ways included cellular responses to stress, apoptosis, and AP-1
pathway (Fig. 4e). SU also mediated cell differentiation and
cellular senescence. We found that these pathways were especially
enhanced in CD8 TEM subset. Through DEG-disease relationship
analysis, we found that SU increased the risk of infection, such as
influenza A or COVID-19 (Supplementary Fig. 6e). In addition,
DEGs upregulated by SU were characterized by an increased risk
of T-cell lymphoma, tumor immunity, and inflammatory
disorder (Supplementary Fig. 6e).

We then employed TRRUST and RcisTarget to predict the core
TFs involved in upregulated DEGs among cytotoxic cells (Fig. 4f).
The CD8 TEM and NK3 subset showed the highest upregulation
of TF activity after SU. Four central TFs (NFKB1, RELA, STAT3,
and ATF2)29,30 in the activation of inflammation were upregu-
lated by SU. By tracking the transcriptional regulatory networks
(Fig. 4d, g, h, Supplementary Fig. 6f), we found that the unique
upregulation of EGR1, ATF3, CDKN1A in CD8 TEM was
regulated by NFKB1, while STAT3, NFKB1 and MYC were
identified as regulators of JUNB. In addition, SU upregulated
JUNB in all subsets including CD8 TEM (Fig. 4d, h). These results
indicate that after SU, cytotoxic cells lose their immune activity
and upregulate a phenotype associated with infection, tumor
development, and inflammatory disorders.

Myeloid cell plasticity reflects inflammation activation in SU
blood. Human peripheral blood MYEs, including MCs and DCs,
promote antigen presentation and inflammatory process. The
increase in cMCs and decrease in nMCs frequency (Fig. 1j)
indicated that monocyte differentiation is restrained by SU. In
addition, the increase in cMCs percentage was considered to
result from an enhanced innate immune response, as evident by
the increase in CXCR3 and CD38 levels (Fig. 5a). Thus, we
analyzed the transcriptome gene expression in MYEs after SU. In
MCs, SU downregulated EGR1 and EGR2 (Supplementary
Fig. 7a), which are negative regulators in the differentiation and
inflammatory activation of myeloid cells31,32. Moreover, SU was
associated with the upregulation of several inflammatory genes,
including TNF, IL1B, PYCARD, CXCL8, S100A8, and S100A9
(Supplementary Fig. 7a, b).

We next assessed the SU-altered transcriptional signatures of
MYE subsets. As the inflammatory response score increased in
the blood after SU (Fig. 2g), we measured the score of each MYE
subpopulation. cMCs, which account for the majority of MYEs in
peripheral blood, were the most inflammatory MYE, while
cDC2 showed the highest inflammatory response score among
DCs (Fig. 5b). To identify dissimilarities in MYE subgroup
response to SU, we performed correlation analysis of the

upregulated DEGs among each subset and found that
cDC2 showed the strongest correlation with MC subsets in
postSU blood (Fig. 5c). Via UpSet plots (Fig. 5d), we identified a
set of genes whose expression (especially that of cDC2) was
increased in MYE subsets, indicative of DNA damage (DDIT3,
H2AFY, GADD45B) and inflammatory activation (S100A8, IL1B,
PYCARD, TNF, CXCL8). Consistent with these findings, the
CD11C+ myeloid cells expressing TNF and IL-1β were
accumulated in postSU blood confirmed by the CyTOF results
(Supplementary Fig. 7c, d).

Enrichment analysis further identified cellular responses to
stress as the commonly upregulated process across cell subsets
(Fig. 5e). Moreover, cDC2 and MCs shared several upregulated
inflammatory pathways, such as the TNF, IL-18, NF-κB, ATF2,
and MAPK signaling pathways. Similar to that in lymphocytes,
SU also induced the hallmarks of cellular senescence in MYEs,
suggesting a close relationship between SU and aging (Fig. 5e).
We also found that SU induced the expression of SARS-CoV-2
associated molecule CD26 (encoded by DPP4) in the cDC1 subset
(Supplementary Fig. 7e). Indeed, DEG-disease relationship
analysis demonstrated that SU-induced upregulated DEGs were
associated with an increased risk of infection (Supplementary
Fig. 7f). SU also induced an increased predisposition to vascular
inflammation, atherosclerosis, and autoinflammatory disease
(Supplementary Fig. 7f). Functional analysis of SU-related DEGs
among the MYE subsets further supports the role of SU in
promoting proinflammatory pathways, apoptosis, and cellular
senescence, all of which are processes contributing to inflamma-
tory disorders.

The core TFs regulating upregulated DEGs in MYEs were then
assessed (Fig. 5f). TF activity was the most upregulated after SU
in the cDC2 and cMC subsets, with the NF-κB, ATF/CREB, and
AP-1 families predominant in the top 20 TFs. SU upregulated
several TFs that are associated with inflammation activation,
including NFKB1, RELA, JUN, and ATF2. Moreover, the NF-κB
family (NFKB1, RELA) was involved in the regulation of several
inflammatory genes, including chemokines (CCL3, CCL4, CXCL2,
CXCL8) and inflammatory cytokines (IL1B and TNF) (Fig. 5g).
These results were confirmed by performing the motif-
enrichment analysis with RcisTarget tool (Supplementary Fig. 7g).
Notably, IL1B and TNF expression were especially elevated in
postSU cDC2 (Fig. 5h). Altogether, these results demonstrate the
key role of cDC2 in the SU-induced activation of inflammation.

Aberrant cell-cell communication patterns support the
immune dysfunction observed after SU. Although immune
dysfunction has been emphasized in studies related to poor sleep
experiences, the specific SU-induced cell-cell interactions in the
circulating immune system have not been investigated. Complex
cellular responses start with the binding of a ligand to its cognate
receptor and the activation of specific cell signaling pathways. To
identify the cellular interactions affected by SU, we first explored
cell-cell communication under the condition of SU using iTALK
and CellChat33,34. We compared the number of interactions
between cells among groups and found that the number of pre-
dicted interactions was increased in the postSU group compared
with the preSU group (Fig. 6a).

Next, we identified potential cell-cell interactions in the blood
and their alterations after SU; some were specific to this abnormal
state (Fig. 6b). SU induced several interactions that were mainly
involved in the inflammatory activation of lymphocytes to other
cells and chemotaxis of MYEs to other cells. Specifically, the
postSU group showed unique intercellular communication,
including IL18-IL18R1 between TCs and DCs; IL23A-IL23R
between NKs and TCs; IL12B-IL23R between BCs and TCs; and
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TNF-LTBR in the crosstalk between MYEs and other cell types
(Fig. 6b). Using iTALK, we found that SU increased the score of
several combinations, which were shared by the preSU and
postSU groups (Fig. 6c, d). The secreted cytokines—encoded by
IL1B, CXCL8, TNF, and IFNG, all of which play a role in
autoimmune and inflammatory diseases—may activate other
immune cells expressing their cognate receptors (Fig. 6c, d).

Moreover, the ephrin family (EFNA1, EFNA3, EFNB1, EFNB2)
and their receptor EPH family (EPHB3 and EPHB6) were over-
represented in the intercellular interactions of the postSU group
(Fig. 6d). As receptor tyrosine kinases, EPHs are involved in
inflammation development and disease pathogenesis, including
optic nerve injury and atherosclerosis35.
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Using CellChat to explore the SU-induced signaling pathways,
several pathways were found with abundant signaling interactions
among cells, with a higher contribution by TCs in the postSU
group compared to in the preSU group. These signaling pathways
included the ACTIVIN, BMP, SELPLG, FASLG, and PARs
pathways (Fig. 6e, f, Supplementary Fig. 8a–c), which play
important roles in inflammatory processes and disorders. More-
over, CellChat detected TNF, IFN-γ, and THY1 signaling path-
ways in the postSU group (Fig. 6g, h, Supplementary Fig. 8d), but
not in the preSU group, indicating that they were activated by SU.
The EGF signaling pathway also showed heterogeneous output
between the preSU and postSU groups, with MC in the preSU
group and DCs in the postSU group (Supplementary Fig. 8e).
Altogether, these findings reveal the specific interactions induced
by SU and highlight the signaling pathways implicated in
autoimmune and inflammatory disorders.

Discussion
Here, we focused on the comparison of differences before and
after SU all night in view of the subjects pairing. We evaluated the
systemic effect of poor sleep on immunity in terms of cell type
composition, subset-specific gene expression, enriched pathways,
transcriptional regulatory networks, and cell-cell communication
in an unbiased and global fashion. Using CyTOF and scRNA-seq,
we obtained a comprehensive depiction of the impact of SU on
various immune parameters at the single-cell proteomic and
transcriptomic levels. The major findings of the present study
include: 1) the expression of autoimmune-related markers and
enriched pathways increased in effector CD4+ TCs, which
induced a strong autoimmune predisposition following SU; 2) SU
induced a pro-inflammatory status of peripheral blood by
remodeling the composition of immune subsets, gene expression
signatures, and cell-cell communication; 3) Cytotoxic cells lost
their immune activity and exhibited a phenotype associated with
infection, tumor development, and inflammatory disorders after
SU; and 4) DNA damage-associated genes and aging-related
processes were elevated following SU, indicating accelerated cel-
lular senescence.

The dysregulation of immunity caused by poor sleep (SU and
SL) involves the breakdown of immunologic self-tolerance36,37,
thus exposing people with sleep disorders or night shift work to a
higher risk of autoimmune diseases, such as systemic lupus ery-
thematosus (SLE) and rheumatoid arthritis (RA)4,38. In an
experimental model of SLE, sleep deprivation promoted the onset
and progress of lupus in mice37. However, the detailed mechan-
isms underlying this causality have not yet been elucidated.
Pathologic effector CD4+ TCs, including Th1 and Th17, and
their cytokine production (IFN-γ, IL-17, TNF-α) have been
implicated in inflammation and autoimmunity19,39. In this study,
we obtained a comprehensive classification of immune subsets,
with alterations in immune components at a high resolution and
precision. Following SU, autoimmune-related genes (JAK1, PIM1,
TNF, IL6R) and pathways (JAK-STAT, IL-17) were widely
upregulated in lymphocytes, especially in the CD4 TEM and

T-mito subsets. In addition, SU upregulated autoimmune-related
biomarkers (CXCR3, CCR6, IGHV4-34). CXCR3 contributes to
the pathogenesis of RA by regulating TC recruitment and Th17/
Treg balance40. In addition, CXCR3+ BCs, recruited by proin-
flammatory IL-17+ cells, induce macrophage polarization in
human hepatocellular carcinoma41. Apart from promoting che-
motaxis, the CCR6/CXCL20 axis induced Th17/Treg imbalance
and orchestrates multiple autoimmune diseases42. As for BCs,
early CCR6 expression modulates germinal center kinetics and is
crucial for efficient antibody responses43. Furthermore, CCR6
expression on BCs is upregulated in SLE patients44. IGHV4-34 is
associated with reactivity against self-epitopes in autoreactive
BCs. Such autoantibody-producing IGHV4-34+ BCs are enriched
in the blood of SLE patients and the synovium of RA
patients45,46. These highly expressed genes and markers that have
been confirmed to be involved in the onset of autoimmune dis-
eases probably account for the autoimmune susceptibility of
sleep-deprived populations.

Aging is accompanied by subtle but broad changes in the
immune system that increase susceptibility to infections, cancer,
and other age-related diseases47,48. Recently, we elucidated the
aging immune landscape by multimodal studies, and found that it
is characterized by TC polarization towards memory and cyto-
toxic phenotypes, along with increased expression of inflamma-
tory genes and SARS-CoV-2-related genes (including DPP4)17. A
link between poor sleep experiences and accelerated cellular aging
was initially demonstrated in animal experiments. In sleep-
deprived rats, cellular stress and oxidative DNA damage were
observed in multiple organs and plasma49. Moreover, the JAK/
STAT pathway regulates cellular senescence and some aging-
associated alterations; indeed, the JAK1/2 inhibitor ruxolitinib
alleviates age-related bone loss and adipose tissue inflammation
in mice and rescues some premature aging phenotypes in pro-
geria mouse models50,51. However, animal models fail to sum-
marize the human immune environment adequately. Due to
technical limitations previously, high-dimensional cellular and
molecular mechanisms underlying the upregulated senescence
induced by poor sleep are lacking. Here, we extended these
findings to human blood to the best of our knowledge, as single-
cell transcriptomics revealed SU upregulated DNA damage-
related gene expression (H2AX, GADD45B, DDIT3), JAK-STAT
pathway activation, SASP, autophagy, and apoptosis in lympho-
cytes and MYEs. Recently, the important role of CD38 in aging
has also been emphasized. Senescence-induced inflammation
promotes the accumulation of CD38 in immune cells, decreasing
NAD+ levels52. Similarly, we found that SU increased CD38
marker expression in MYEs, which may reduce NAD+ levels and
promote cellular senescence. In addition, in mice ovary, cell
apoptosis and DNA damage were reported to be enhanced by
light-exposure at night53. Overall, the loss of sleep durations and
light exposure during SU promotes DNA damage and cellular
senescence in the transcriptome, presumably accelerating aging.

SU all night to work and SL have been reported to be asso-
ciated with increased cancer and infection susceptibility54,55.

Fig. 3 Changes in proteomic and transcriptional profiles of CD4+ TC, T-mito and BC. a Violin plot showing the expression of CCR6, CXCR3, KI67,
GATA3 in CD4+ TC between preSU and postSU groups in CyTOF. b Violin plot showing the expression of CXCR3, CCR6 in BC between preSU and postSU
groups in CyTOF. c Volcano plot showing DEGs of T-mito between preSU and postSU groups. d UpSet Plot showing the integrated comparative analysis of
upregulated DEGs in BC subsets. e Representative GO biological process and pathways enriched in upregulated DEGs based on functional enrichment
analysis in CD4+ TC, T-mito and BC subsets. f The heatmap showing the enhanced activity of TFs predicted by TRRUST analysis in CD4+ TC, T-mito and
BC subsets. g Network visualization of the predicted transcriptional regulatory networks enhanced by SU using TRRUST tool. h Violin plot showing the
expression of CDKN1A, PIM1, FOS in CD4 TEM between preSU and postSU groups in scRNA-seq. For the box plot within each violin plot, middle lines
indicate median values, boxes range from the 25th to 75th percentiles. Significance in a, b and h was calculated using two-sided Wilcoxon test as
implemented in the function “compare_means” with default parameters; **P < 0.01, ****P < 0.0001.
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Shorter sleep durations or poor sleep quality may be the facets
associated with the development of aggressive tumor
characteristics56. In addition, it’s reported that light exposure at
night could reduce bactericidal activity of blood57 and accelerate
tumor growth in animals58. Experiments on sleep-restricted mice
demonstrated that the oncogenicity of SL is partly attributable to
decreased cytotoxic cells (NK and CD8+ TCs) in the tumor

environment and blood25. However, what we know about
immune cells primarily depends on previously described markers
for pooled cell populations. Herein, by using single-cell technol-
ogies, we described the key cellular and molecular alterations
involved in impaired cytotoxic function and increased inflam-
mation. Within the NK populations, CD57+ NKs are dis-
tinguished by their mature phenotype, high cytotoxic capacity,
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and cancer surveillance function27. Consistently, high frequencies
of peripheral or tumor-associated CD57+ NKs have been linked
to reduced disease severity and better outcomes in cancer
patients59,60. The CD57+ NK population shrank after SU, sug-
gesting blocked differentiation and maturation of NKs. Moreover,
the expressions of key regulatory factors, such as T-bet and PFN1
that regulate cell-killing and migration of cytotoxic cells, were
altered. PFN1 is a negative regulator of the cytotoxic cell-
mediated elimination of target cells, and in vitro downregulated
PFN1 promotes cytotoxic TC invasion into mimical tumor
environment28. In addition, increased PCs frequency and cell
communication may act as compensatory mechanisms for pro-
tection from infection, but these changes also promote auto-
immunity and inflammation on the other hand. Interestingly, the
proinflammatory TF families AP-1 and NF-κB, along with their
target genes, are reported to be highly expressed across tumor
samples, and promote the development of oncogenic processes
such as angiogenesis, cell migration and pro-tumoral
inflammation61. The elevated AP-1 and NF-κB network after
SU might expose people to higher risk of cancers. Therefore, the
reduced cytotoxic cell populations along with the altered gene
expression jointly form an impaired immune defense against
infections and tumors in blood environment after SU.

In the absence of an infectious challenge, adequate sleep con-
tributes to inflammatory homeostasis; however, poor sleep
induces an inflammatory milieu, as evidenced by the upregulation
of pro-inflammatory cytokine production and NF-κB
activation62,63. It is generally accepted that serum levels and
intracellular production of TNF-α and IL-1β are elevated after
SL62,64. Single-cell technologies open new ways in many research
fields. More importantly, they are particularly important for
analyzing the impact of poor sleep on human cells. In addition to
the common cytokines above, we provided broader proteomic
and transcriptomic signatures in blood environment after SU. In
this study, we found that inflammatory cMC and cDC accounted
for higher proportions in CD45+ cells, and TC cellular functions
skewed towards effector phenotypes following SU. The upregu-
lated inflammatory cytokines (IL1B, TNF), chemokines (CCL3,
CCL4, CXCL8), TFs (NF-κB, ATF/CREB, and AP-1 family), and
pathways (NF-κB, AP-1, and MAPK) involved in inflammation,
demonstrated the inflammatory status induced by SU. In mice
brain, the elevated DNA-binding activity of NF-κB after sleep
deprivation was reported to be mediated by adenosine-induced
NF-κB nuclear translocation65,66. Moreover, the NF-κB- and AP-
1-dependent networks mediated microglia activation and
inflammatory tissue destruction67. EGR1, a repressive regulator of
the pro-inflammatory activities of myeloid cells by binding to
inflammatory enhancers31, was found downregulated after SU.
Moreover, we identified the key role of cDC2 in SU-induced
inflammation in terms of inflammatory response score, gene
expression profiles, GO enrichment and regulatory networks. It is
known that sleep deficiency is associated with an increased risk of
various inflammatory diseases, such as diabetes, atherosclerosis,
and neurodegeneration9–11. In addition, mice showed the

exacerbation of inflammatory responses and neuroinflammatory
damage after dim light exposure at night68. Thus, our finding of
the pro-inflammatory effect of SU offers a potential explanation
for its immune mechanisms.

By simulating the condition of SU all night, we focused on the
impact of poor sleep on the immune system. There are several
important limitations in the study design. First, we didn’t perform
a 2-week interval between two experimental nights in this study.
Considering the objective of this study, which is exploring the
impact of staying up and acute sleep loss on immune system, the
2-week interval may present confounding factors, including
changes in diet, mood state, and menstrual cycle. We believe that
our efforts can minimize the influence of confounding factors
such as food consumption and ambulation during the study.
Second, the design of this study didn’t employ with a randomized
and balanced order of conditions. Third, considering the parti-
cularity and high cost of single-cell technologies, the sample size
included in this study is small.

In summary, we represent the first high-dimensional single-
cell analysis to obtain a comprehensive human circulating
immune cells atlas of poor sleep by employing CyTOF and
scRNA-seq. In describing key cellular and molecular differences
before and after SU, such as effector CD4+ TC, NK3 and
cDC2 subsets, we elucidate the potential contributions of SU—
enhancing the inflammatory, cellular senescence, and auto-
reactive signatures—to immune dysfunction. The first applica-
tion of single-cell technologies we conducted in this study
provides a comprehensive profile of the effect of poor sleep on
the immune system and expands our knowledge of related
pathologic conditions.

Materials and methods
Human subjects and ethics statement. Six healthy participants (aged 39–52, BMI
19–25, 3 males and 3 females) were recruited for the study (Supplementary
Table 1). To be eligible for study participation, subjects met the following inclu-
sionary criteria: age range from 35 to 55 years; physical and psychological health;
no clinically significant abnormalities in blood chemistry; regular sleep habits and a
steady sleep time of ~8 h (22.00-06.00). Exclusion criteria included any physiolo-
gical or psychiatric pathology, medication, smoking, obesity, binge drinking, or
excessive caffeine use (>3 cups per day), extreme morningness, extreme evening-
ness, sleep or circadian disorders. The study was approved by the Ethics Committee
of Zhongshan Ophthalmic Center, China. Written informed consent was obtained
from all participants and all procedures were performed according to the
Declaration of Helsinki.

Study protocol. When screening the volunteers (two weeks before the study), we
asked them to spend a habituation night in the laboratory at Zhongshan Oph-
thalmic Center to make sure they met the requirements of the study and to
acclimate them to the environment. Then, participants were required to follow a
strict sleep-wake schedule (22:00-06:00) two weeks prior to the start of the
experiment by checking the sleep logs. All participants completed the two condi-
tions (normal sleep on day 1 and staying up (SU) all night on day 2, identified here
as preSU and postSU). After 8 h of sleep (22:00-06:00) on one habituation day (day
1) in the laboratory, the 24 h periods of sleep loss were conducted began at 06:00-
07:00 and lasted 24 hours (day 2). Throughout the 2-day study, laboratory con-
ditions were highly controlled in terms of environmental conditions, including
ambient light and temperature. Except for no light in the 8 h of normal sleep time
(22:00-06:00) on day 1, the light was kept on to simulate the real condition of SU all

Fig. 4 Changes in proteomic and transcriptional profiles of cytotoxic cells. a Violin plot showing the expression of T-bet and CCL5 in NK between preSU
and postSU groups in CyTOF. b Violin plot showing the expression of T-bet and CCR6 in CD8+ TC between preSU and postSU groups in CyTOF. c Number
of DEGs between preSU and postSU groups within each TC cluster projected onto the t-SNE map. d UpSet Plot showing the integrated comparative
analysis of upregulated DEGs in cytotoxic cell subsets. e Representative GO biological process and pathways enriched in upregulated DEGs based on
functional enrichment analysis in cytotoxic cell subsets. f The heatmap showing the enhanced activity of TFs predicted by TRRUST analysis in cytotoxic cell
subsets. g Network visualization of the predicted transcriptional regulatory networks enhanced by SU using TRRUST tool. h Violin plot showing the
expression of EGR1, ATF3, JUNB in CD8 TEM between preSU and postSU groups in scRNA-seq. For the box plot within each violin plot, middle lines indicate
median values, boxes range from the 25th to 75th percentiles. Significance in a, b and h was calculated using two-sided Wilcoxon test as implemented in
the function “compare_means” with default parameters; **P < 0.01, ****P < 0.0001.
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Fig. 5 Changes in proteomic and transcriptional profiles of myeloid cells (MYEs). a Violin plot showing the expression of CXCR3 and CD38 in MYE between
preSU and postSU groups in CyTOF. b Violin plot of inflammatory response scores for each MYE cluster, different clusters were represented in different colors.
c Heatmap showing the correlation analysis of upregulated DEG in MYE subsets. d UpSet Plot showing the integrated comparative analysis of upregulated DEGs in
MYE subsets. e Representative GO biological process and pathways enriched in upregulated DEGs based on functional enrichment analysis in MYE subsets. f The
heatmap showing the enhanced activity of TFs predicted by TRRUST analysis in MYE subsets. g Network visualization of the predicted transcriptional regulatory
networks enhanced by SU using TRRUST tool. h Violin plot showing the expression of IL1B, TNF in cDC2 between preSU and postSU groups in scRNA-seq. For the
box plot within each violin plot, middle lines indicate median values, boxes range from the 25th to 75th percentiles. Significance in a, b and h was calculated using
two-sided Wilcoxon test as implemented in the function “compare_means” with default parameters; **P<0.01, ****P<0.0001.
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night. In order to parallel normal behavior, subjects were outdoors at least three
times in the daytime (06:00-18:00) under surveillance of a research assistant.
Participants were restricted from exercising or engaging in strenuous activities,
while they were allowed to do nonvigorous activities (reading, watching television,
playing calm games, surfing the internet, talking with each other) and consume
food and drink. Specially, participants were asked to keep quiet and weren’t
allowed to consume food, watch television, walk around and talk with each other
during 22:00-06:00. Under constant monitoring of three study staff members,
participants weren’t allowed to close their eyes to ensure wakefulness on day 2.
After the study, the participants were assessed for their mental state and found to
be anxious and sleepy subjectively, which indicated that humans didn’t easily
habituate to SU.

After participants sitting for half an hour, blood samples were obtained at the
beginning of the experiment (06:00-07:00) and after 24 h of sleep loss. PBMCs were
isolated by standard density gradient centrifugation. Trypan Blue was used to
identify the viability and quantity of PBMCs in single-cell suspensions; cell viability
of all samples exceeded 90% with >1 × 107 viable cells. A proportion of PBMCs was
allocated for scRNA-seq analysis and another was used for mass cytometry. To
elucidate how SU affects cellular frequency, we measured single-cell protein
expression using a 38-marker CyTOF panel (n= 12; Supplementary Table 2A). In
scRNA-seq, a total of 12 libraries were sequenced, and 96,465 cells (preSU: 45,797
cells; postSU: 50,668 cells) were collected for subsequent analyses. By combining
CyTOF and scRNA-seq, we created a comparative framework detailing the impact
of SU on cell type distribution, gene expression changes, and cell-cell interaction
analyses.

scRNA-seq
scRNA-seq data alignment, processing, and sample aggregation. Single-cell sus-
pensions were converted to barcoded scRNA-seq libraries using the Chromium
Single Cell 5′ Library (10X Genomics, Genomics chromium platform Illumina
NovaSeq 6000), Gel Bead and Multiplex Kit, and Chip Kit (10X Genomics). The
Chromium Single Cell 5′ v2 Reagent Kit (120237; 10X Genomics) was used to
prepare single-cell RNA libraries according to the manufacturer’s instructions.
FastQC software was used to check library quality. Preliminary processing of
sequenced data was performed using CellRanger software (version 4.0; 10X
Genomics). The count pipeline in the CellRanger Software Suite was applied to
demultiplex and barcode the sequences. Based on the calculation of the single-cell
expression matrix by CellRanger, filtration, normalization, dimensionality reduc-
tion, clustering, and differential gene expression analysis were conducted using the
Seurat package (version 3.0)69. Before filtration using the Seurat package, we
removed the cell population expressing HBB, HBA1, and several light and heavy
chain transcripts, which are considered red blood cell-contaminated17. Next, cells
with fewer than 200 genes detected and a mitochondrial gene ratio of greater than
15% were excluded. A total of 96,465 cells (preSU, 45,797 cells; postSU, 50,668
cells) were analyzed after quality control.

Dimensionality reduction and clustering analysis. The “NormalizeData” function
was used to log-normalize the counts of each cell (1+ counts per 10,000). The top
10 most variable genes were extracted by the “FindVariableGenes” function in
Seurat with the default parameters. Dimensionality was achieved by “RunPCA”
function. The “FindNeighbors” and “FindClusters” functions were used to identify
significant clusters at an appropriate resolution. Cells were visualized using a
2-dimensional t-SNE algorithm based on the “RunTSNE” function. The function
“FindAllMarkers” was used to identify marker genes of each significant cluster.

Differential expression analysis. For each cell type between different groups, dif-
ferential expression analysis was performed using the Wilcoxon rank-sum test as
implemented in the “FindMarkers” function of the Seurat package (version 3.0).
Before performing differential expression analysis, the cell types that were missing
or had fewer than three cells in the two groups were filtered out. A SU-related DEG
dataset was established (P value <0.05, |Log2FC| >0.25) after identification of DEGs
between groups. In some cases, we compared the expression of specific genes (like
immunomodulatory genes) in the two groups with lower criteria (P value <0.05, |
Log2FC| <0.25). The detailed DEGs dataset was provided in Supplementary
Data 1–6.

Gene functional annotation. The Metascape webtool (www.metascape.org) was
used to conduct GO biological process and pathway analysis as well as the Dis-
GeNET and COVID databases, allowing us to visualize the functional patterns of
DEGs and conduct statistical analysis70. We visualized the top 10 of 30 GO bio-
logical process and pathway terms associated with SU enriched among participants
and cell types, which were drawn using the ggplot2 R package.

Scoring of biological processes. Individual cells were scored for their expression of
gene signatures representing certain biological functions by calculating the average
normalized expression of corresponding genes. Functional signature with the full
gene list is provided in Supplementary Data 7. For instance, we determined the
inflammatory response score by calculating the average expression of genes in the
GO term “inflammatory response” (GO: 0006954). The SASP score was measured

by the upregulation of the Reactome Gene Sets “Senescence-Associated Secretory
Phenotype (SASP)” (R-HSA-2559582). ROS-related genes were obtained from the
CTD Gene-Chemical Interactions dataset “Reactive Oxygen Species” (D017382).

Transcription factor-target gene network analysis. Core regulatory transcription
factors were predicted based on the scRNA-seq data. As a web-based portal,
Metascape (www.metascape.org) was used to conduct TRRUST analysis with the
input of upregulated DEGs70. In addition, TF-binding motifs were identified via
the RcisTarget R package (version 1.8.0) of the SCENIC workflow using default
parameters24,71. RcisTarget was used to identify enriched transcription factor-
binding motifs and to predict candidate target genes based on the hg19 RcisTarget
database containing motifs with genome-wide rankings. Only the transcription
factor targets with high-confidence annotation were selected and the transcrip-
tional regulatory networks were visualized with Cytoscape (version 3.8.2)72.

Determination of cell-cell interactions. Based on the scRNA-seq data, cell-cell
communication between different cells was predicted with the help of iTALK
(https://github.com/Coolgenome/iTALK) and CellChat (https://github.com/sqjin/
CellChat) R packages33,34. Communication was considered absent if the ligand and
receptor were not detected; thus, only receptors and ligands expressed in at least
10% of specific cells were further analyzed. TBtools (www.tbtools.com) was applied
to normalize the data and draw a heatmap. The differences in cellular commu-
nication between different groups were also analyzed and visualized using iTALK.
In addition, CellChat, an R package that quantitatively analyzes intercellular
communication networks and predicts major signaling inputs and outputs for cells,
was used to analyze and visualize signaling pathway networks.

Mass cytometry
Antibodies and reagents. Monoclonal anti-human antibodies for mass cytometry
(Supplementary Table 2A) were either acquired preconjugated to heavy metal
isotopes (Fluidigm, South San Francisco, CA) or conjugated via the MaxPar X8
Chelating Polymer Kit (Fluidigm).

Live cell barcoding and surface staining. A live cell barcoding methodology was
applied to decrease inter-sample staining variability, sample handling time, and
antibody consumption. The barcoded and combined samples were stained with 0.5
μmol/L viability dyes (cisplatin-195pt; 201064; Fluidigm), vortexed for 2 min at
room temperature (RT), and then the reaction was terminated using Maxpar Cell
Staining Buffer on a rotating shaker (400 rcf) at RT. The cells were then washed
and fixed in 1.6% paraformaldehyde in PBS for 10 min at RT on a rotary shaker
(500 rpm). The cells were resuspended in pre-cooled Maxpar Cell Staining Buffer
to slow the fixation reaction, followed by washing twice with PBS/bovine serum
albumin and once with double-distilled water. Finally, the cells were resuspended
in 400 μL surface antibody mixture and incubated at 37 °C for 30 min on a rotating
shaker (500 rpm) for surface staining. The samples then stored in freshly diluted
2% formaldehyde in PBS containing 0.125 nmol/L iridium 191/193 intercalator
(Fluidigm, 201192) at 4 °C overnight.

Intracellular factor staining. The cells were washed twice with permeabilization
buffer [0.5% saponin, 2% bovine serum albumin, and 0.01% sodium azide (all
Sigma-Aldrich) in PBS]. Cells were resuspended in 400 μL intracellular antibody
mixture in permeabilization buffer for 1 h at 4 °C on a rotary shaker (500 rpm). The
samples were then washed, the supernatant removed, and the cells resuspended in
1X iridium intercalator solution (Fluidigm) overnight. Finally, the sample was
washed twice with PBS/bovine serum albumin and once with double-distilled water
before acquisition.

Mass cytometry acquiring, processing and quality control. CyTOF data were
obtained from a SuperSampler fluidics CyTOF2 system (Victorian Airships, Alamo,
CA), at an event rate of <400 /s, and then normalized with Helios normalizer
software (version 6.7.1016; Fluidigm). Quality control and tuning of the CyTOF2
mass cytometer (Fluidigm) was performed daily. Cytobank software (version 7.0;
https://mtsinai.cytobank.org) was used to deconvolute barcoded samples and filter
cross-sample doublets. Based on event length and live cell (195Pt) and DNA (191Ir
and 193Ir) channels, Cytobank was used to sequentially remove dead cells, cali-
bration beads, debris, and barcodes of CD45+ PBMCs. The FCS files were then
exported for downstream analysis. All cytometry data were transformed with an
inverse hyperbolic sine (arcsinh) function (mass cytometry: cofactor of 5) using R.
We analyzed 240,000 cells with an average of 20,000 cells per sample.

Mass cytometry visualization and clustering. We used FlowCore to read and process
the FCS files for further analysis. For samples with more than 20,000 cells, we
randomly selected 20,000 cells to ensure that samples were equally represented.
The CATALYST R package was used to integrate data for analysis. All FlowSOM-
based clustering and subclustering were performed on the dataset to identify
specific populations73. Mass cytometry datasets derived from all individuals for
each cell type were created for analysis. We created downsampled datasets of
64,813 T cells, 24,113 NK cells, 6,807 B cells, and 24,267 MYEs in the preSU group,

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02859-8

12 COMMUNICATIONS BIOLOGY |          (2021) 4:1325 | https://doi.org/10.1038/s42003-021-02859-8 | www.nature.com/commsbio

http://www.metascape.org
http://www.metascape.org
https://github.com/Coolgenome/iTALK
https://github.com/sqjin/CellChat
https://github.com/sqjin/CellChat
http://www.tbtools.com
https://mtsinai.cytobank.org
www.nature.com/commsbio


Fig. 6 Enhanced cell chemotaxis and inflammatory activation in cell-cell communication in SU blood. a Heatmap depicting the number of possible
interactions between the clusters analyzed in preSU and postSU groups. b Heatmap depicting selected cell-cell interactions enriched in postSU group but
absent in preSU group. c Circle plot showing upregulation in cellular interaction of cytokine type predicted in iTALK package. d Circle plot showing
upregulation in cellular interaction of other type predicted in iTALK package. e Circle plot showing the inferred ACTIVIN signaling networks. f Circle plot
showing the inferred BMP signaling networks. g Circle plot showing the inferred TNF signaling networks in postSU group. h Circle plot showing the inferred
IFN-γ signaling networks in postSU group.
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and 68,590 T cells, 24,771 NK cells, 7,174 B cells, and 19,465 MYEs in the postSU
group for analysis. The detailed cell counts are provided in Supplementary Data 8.

Differential abundance (DA) analyses. We plotted the abundance changes and
median expression of markers between preSU and postSU groups using boxplots
with jittered points of the sample-level cluster proportions overlaid as well as
heatmaps with z-score normalization. We used the diffcyt R package to perform
differential analyses of the CyTOF data. Accounting for the subjects pairing, we set
the mixed model formula using the createFormula() function. Then, we used the
“diffcyt-DA-GLMM” method for DA analysis.

Statistics and reproducibility. For analyzing cluster abundance, groups were
compared using two-tailed paired t-tests, and GraphPad Prism (version 8.0.2;
GraphPad Software Inc., La Jolla, CA) was used for data analysis and presentation.
For comparing percentage changes in subset composition between groups in
CyTOF, adjusted P values for each cluster was calculated using the “diffcyt-DA-
GLMM” method as implemented in the “diffcyt” function of diffcyt R package in
view of the subjects pairing. For comparing the level of markers or genes between
groups, P value was calculated using two-sided Wilcoxon test as implemented in
the function “compare_means” of ggpubr R package with default parameters. In
calculating the GO biological process, pathway, COVID and DisGeNET terms, P
values were derived by a hypergeometric test with the default parameters in
Metascape webtool. Details of the size of biological replicates and the assays are
given in each figure legends. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request. The scRNA-seq data is deposited in the Genome Sequence Archive
in BIG Data Center, Beijing Institute of Genomics (BIG, https://bigd.big.ac.cn/gsa-
human/), Chinese Academy of Sciences, under the Project Accession No. PRJCA004314
and GSA Accession No. HRA000604. Experimental protocols and the data analysis
pipeline used in our work follow those described on the 10X Genomics and Seurat official
websites. The analysis steps, functions, and parameters used are described in detail in the
Materials and Methods section. The source data underlying plots shown in figures are
provided in Supplementary Data 9.
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