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Abstract
Purpose As human failure has been shown to be one primary cause for post-operative death, surgical training is of the utmost
socioeconomic importance. In this context, the concept of surgical telestration has been introduced to enable experienced
surgeons to efficiently and effectively mentor trainees in an intuitive way. While previous approaches to telestration have
concentrated on overlaying drawings on surgical videos, we explore the augmented reality (AR) visualization of surgical
hands to imitate the direct interaction with the situs.
Methods We present a real-time hand tracking pipeline specifically designed for the application of surgical telestration. It
comprises three modules, dedicated to (1) the coarse localization of the expert’s hand and the subsequent (2) segmentation of
the hand for AR visualization in the field of view of the trainee and (3) regression of keypoints making up the hand’s skeleton.
The semantic representation is obtained to offer the ability for structured reporting of the motions performed as part of the
teaching.
Results According to a comprehensive validation based on a large data set comprising more than 14,000 annotated images
with varying application-relevant conditions, our algorithm enables real-time hand tracking and is sufficiently accurate for the
task of surgical telestration. In a retrospective validation study, a mean detection accuracy of 98%, a mean keypoint regression
accuracy of 10.0 px and a mean Dice Similarity Coefficient of 0.95 were achieved. In a prospective validation study, it showed
uncompromised performance when the sensor, operator or gesture varied.
Conclusion Due to its high accuracy and fast inference time, our neural network-based approach to hand tracking is well
suited for an AR approach to surgical telestration. Future work should be directed to evaluating the clinical value of the
approach.
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Introduction

Death within 30 days after surgery has recently been found
to be the third-leading contributor to death worldwide [1].
As a large portion of deaths can be attributed to human
failure, surgical training is of the utmost socioeconomic
importance. In this context, the concept of surgical telestra-
tion has been introduced to enable experienced surgeons
to efficiently and intuitively mentor trainees during surgi-
cal training [2]. In the context of laparoscopic surgery, the
key idea is to offer the mentor the ability to highlight/point
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Fig. 1 Our telestration approach
compared to the state of the art.
a Previous approaches to
surgical telestration rely on
overlaying drawings on
laparoscopic videos, while our
concept is based on b the
augmented reality (AR)
visualization of the expert
surgeon’s hand

at anatomical structures within the surgical video to guide
the trainee during the surgery. Intuitively one would expect
senior surgeons to physically point at anatomy directly on
the display, but this comes with several restrictions regard-
ing hardware setup, surgical workflow as well as sterilization
requirements, because the mentor would need to be able to
touch the monitor that the trainee is looking at. As a result,
this approach is almost never used in practice. More recent
computer-assisted alternatives for surgical telestration [3–5]
typically require thementor to operate on a separate computer
system to draw simple overlays (e.g., lines, circles) onto the
video seen by the trainee (Fig. 1). While this approach can
even be used for remote training, it is less intuitive, slower
and challenging to implement in the presence of high organ
deformation.

To exploit the benefits of both approaches, we investigate
a concept in which the hands of the experienced surgeon
are continuously monitored and transferred as an augmented
reality (AR) overlay onto the laparoscopic video (patent
pending [6]) (Figs. 1 and 2). The mentor is then able to be in
direct interaction with the surgical trainee and provide intu-
itive guidance via handgestures seen by the trainee on the sur-
gical video. The concept is also applicable in remote settings
because the mentor does not need to be present in the OR.

Key to the performance of this new concept of surgical
telestration is an automatic accurate, robust and fast hand
tracking. In this paper, we present the first hand tracking
pipeline specifically designed for the application of surgi-
cal telestration (Fig. 2). In contrast to related approaches in
the surgical domain, that focus on coarse hand and object
tracking, localization and pose estimation [7–9], our method
simultaneously outputs a fine-grained hand segmentation as
an important prerequisite for the AR overlay. We further per-
form a comprehensive validation of the method based on a
surgical data set of unprecedented size, comprisingmore than
14,000 images and reflecting application-specific challenges,
such as changes in skin and surgical glove color.

Material andmethods

Our approach to surgical telestration is depicted in Fig.
2. A camera captures the hands of the mentor who observes

the (training) operation. The camera data are processed by a
two-stage neural network, which outputs (1) a skeleton repre-
sentation comprising positions of 21 keypoints as a semantic
representation of the hand and (2) a segmentation of the hand
for AR visualization in the field of view of the trainee. The
skeleton representation is used as an auxiliary task for the
hand segmentation as well as for long-term analysis of the
application. In this paper, we focus on the hand trackingmod-
ule, which is key to the performance of our approach. The
underlying data set is described in “Data set” section. Our
approach is based on the coarse localization of the hand via
a bounding box (“Real-time hand localization” section) and
the subsequent extraction of the skeleton (“Real-time skele-
ton tracking” section) and the hand segmentation (“Real-time
hand segmentation” section).

Data set

Data acquisition

The data for development and initial validation of the hand
tracking methodology were acquired at the Heidelberg Uni-
versity Hospital using a Real Sense D435i camera (Intel;
Santa Clara, USA) in a surgical training setting. We acquired
a total of 14,102 images on 66 days between March 2020
and April 2021, featuring a variety of different hand poses,
lighting conditions as well as hand and glove colors. Our data
set comprises approx. 46% light skin, 22% blue glove, 11%
white glove, 11% green glove, 8% brown glove and 2% dark
skin. As the telestration concept should also be applicable
in settings with unpredictable background, we varied the lat-
ter, specifically with respect to the objects present. While we
allowed for multiple hands to be present in the field of view
of the camera, our concept assumes one primary hand used
for telestration by the mentor.

Data annotation

In the acquired images, a medical expert annotated the pri-
mary hand of the expert by setting 21 keypoints representing
the skeleton of the hand, as suggested in [10] and shown
in Figs. 2 and 3. Additional metadata annotations include
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Fig. 2 Concept overview.Our approach to surgical telestration relies on
a camera that continuously captures a hand of the mentor who observes
the operation either on-site or remotely. The camera data are processed
by a two-stage neural network, which outputs both the skeleton (repre-

sentedby21keypoints) and the segmentedhand.Thehand segmentation
is overlaid on the surgical screen for intuitive coaching, while the skele-
ton representation is stored for long-term analysis

handedness (left, right), the skin (light, dark) or glove color
(brown, blue, green,white) in thepresenceof the latter.A sub-
set of 499 images1 was then extracted, and a medical expert
complemented the skeleton annotations with segmentations
of the entire hand, as illustrated in Figs. 2 and 3.

Data set split

We split our data into a proportion of 80:20 for training
(including hyperparameter tuning on a validation set) and
assessment of performance. We note that videos taken on the
same day are not necessarily independent due to comparable
hardware setups. Therefore, we ensured that no data from the
same day are present in both training and test set. To prevent
data leakage, the segmentation train/test set is a subset of the
corresponding keypoint train/test set. To achieve an adequate
train/test split, we sampled days for the test set randomly,
until a proportion of 20%was reached. We repeated this pro-
cedure once for the part of the data set with segmentation
annotation and once for the part without. As we expect the
measurement days to be a major contributor to the variance
in the data set, we want to make sure that a sufficient num-
ber of measurement days in the test set. To guarantee this,

1 We aimed for 500 images, but obtained one corrupt segmentation

we excluded the three measurement days with the most mea-
surements from the test set. To split the training data into a
training and validation set, a similar procedure was followed,
but with only 10% of training data used for the validation set.
For skeleton tracking, this resulted in a data set size of 11,541
as training set (including validation) and 2561 as the test set.
For the segmentation task, a total of 395 images served as
training set (including validation), the remaining 104 images
served as test set. The validation data set was used to opti-
mize the processing pipeline (see A.1); the test data set was
used for performance assessment.

Real-time hand localization

Inspired by the MediaPipe model [10], we use a bounding
box detection step prior to both skeleton tracking as well as
segmentation. Our reference bounding boxes were derived
from the skeleton points by first constructing a tight bound-
ing box that encloses all skeleton points and then enlarging
this box by a factor of two and squaring it. Using the cropped
image as input for the skeleton extraction and segmentation
ensures a relatively constant size of the hand and enables us to
phrase the skeleton extraction task as a regression task based
on the 21 keypoints. While MediaPipe uses a single shot
palm detector [10], we apply YOLOv5s [11] as our detec-
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Fig. 3 Overview of the models used for real-time hand tracking. Our
approach comprises three core components. (1) a bounding box mod-
ule using the YOLOv5s architecture, (2) a skeleton tracking module
using an EfficientNet B3 and (3) a segmentation module using a FPN-

EfficientNet B1. (2) and (3) operate on images cropped to the respective
bounding boxes (see “Real-time hand localization”, “Real-time skele-
ton tracking”, “Real-time hand segmentation” section)

tion model to predict the bounding boxes as we identified
YOLOv5s being a good compromise between accuracy and
speed [12]. The predicted boxes are post-processed using
the Non-Maximum-Suppression (NMS) algorithm with an
Intersection over Union (IoU) threshold of 0.5. UnlikeMedi-
apipe, where bounding boxes are only inferred if a detection
is considered lost, we employ the bounding box model con-
tinuously. This is possible due to the short inference times
of the YOLOv5s model in conjunction with our hardware
setup. The box with the highest confidence score is used in
the downstream tasks.

We use the training procedure as presented in the offi-
cial implementation [11] with a stochastic gradient descent
(SGD) optimizer, learning rate of 0.01 and binary cross-
entropy as the loss function. The augmentations used for
training stem from the official implementation, namely: hue,
saturation, value, and mosaic augmentations, and horizontal
flips. We save the weights based on the epoch with the best
mean average precision (mAP).

Real-time skeleton tracking

Our skeleton tracking architecture operates on the cropped
images generated by the bounding boxmodel.Weuse anEffi-
cientNet B3 [13,14] loaded with Noisy Student pretrained
weights [15] as the backbone for our regression model with
an L1 loss for optimization. The model is trained using the
Adam optimizer with an automatically set learning rate [16].
We save the model weights based on the mean regression
accuracy on the validation set, which is the mean Euclidean

distance between annotated reference and model prediction
of the skeleton joints. During training, we use random offsets
and alter the size of the reference bounding box to account for
the fact that the regression and segmentation models will not
be providedwith perfect bounding boxes at inference time. In
addition, we use the following augmentations implemented
in the Albumentations library [17] namely: brightness and
contrast, RGB channel shuffle, RGB shift, hue saturation,
Gaussian noise, blur, rotation. The aforementioned augmen-
tations are activated with per sample probability p = 0.15.

Real-time hand segmentation

Baseline model

As for the hand skeleton, we utilize cropped images based
on bounding boxes for the segmentation. Our segmenta-
tion model uses a Feature Pyramid Networks FPN [18]
with an EfficientNet B3 encoder loaded with Noisy Student
pretrained weights [15] as a backbone and is trained by opti-
mizing the binary cross-entropy loss using an adamoptimizer
with a learning rate of 10−4. We utilize the same augmenta-
tions in the Albumentations [17] as for the skeleton training.

Model with auxiliary task

In a variant of this approach, we use the skeleton tracking
task as an auxiliary task for our model. To this end, the 21
keypoints regressed by our skeleton tracking model are used
as additional input (one channel per keypoint) of the hand
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tracking module. Each channel contains a two-dimensional
isotropic Gaussian centered at the keypoint location and a
standard deviation of 5 px. To account for the different input
channels, while being able to utilize pretraining, we add three
CNN layers thatmerge theRGBwith theGaussian input prior
to the actual backbone.

The primary purpose of our study was to assess the accu-
racy, robustness and speed of our hand tracking pipeline in
the surgical training setting. Specifically, we investigated the
regression accuracy for the keypoints making up the skeleton
of the hand (“Real-time skeleton tracking” section), as well
as the segmentation accuracy (“Real-time hand segmenta-
tion” section) set whose distribution was similar to that of the
training set. In a second, prospective study, we assessed the
generalization capabilities of our method, by including men-
tors, gestures and cameras that were not part of the training
data (“Assessment of generalization capabilities” section).

Assessment of speed and accuracy

As an initial retrospective validation of ourmethod, we deter-
mined the speed and accuracy for the skeleton tracking and
hand segmentation using the test set of the data set described
in “Data set” section. The workstation for the assessment of
the inference time was equipped with a Nvidia Geforce RTX
3090 and an AMD Ryzen 9 3900X 12-Core Processor.

Real-time skeleton tracking

Experiments

To assess the skeleton tracking accuracy, we determined
descriptive statistics over the mean keypoint distance on the
test set, using MediaPipe [10] as our baseline, because it is
widely used and was specifically developed for integration
of hand tracking in third-party applications. The hierarchi-
cal structure of the data was respected by aggregating over
individual frames of one acquisition day before performing
the aggregation over all acquisition days. As the MediaPipe
method struggled in the presence of dark skin and gloves,
we (1) additionally assessed the performance grouped by
skin/glove color and (2) divided the performance assessment
into the steps of successful hand detection and the keypoint
regression performance. We approximated a successful hand
detection by comparing the center of gravity of the regressed
skeleton joints with the corresponding center of gravity of
the reference skeleton joints. A distance below 100 px was
regarded as amatch.To enable a fair comparison,we compen-
sated for the fact that MediaPipe has no notion of a primary
hand. To this end, we chose the bounding box out of the four
bounding boxes with the highest confidence, that was closest
to the reference bounding box. The analysis of the regres-

sion performance was then only computed for successful
localizations. Note that there is a tradeoff between regression
accuracy and detection accuracy depending on the threshold.

Results

The results of ourmethod compared to theMediaPipemethod
are shown in Fig. 5. We achieved a successful localization
rate of 98% and a corresponding mean keypoint regression
accuracy of 10.0 px, averaged over all samples (after hierar-
chical aggregation). Compared to the baseline method with
a successful localization rate of 60% and keypoint regres-
sion accuracy of 16.5 px, this corresponds to a relative
improvement of 63%(detection) and 39%(regression). The
mean interquartile range (IQR) per video was 4.5 px (light
skin), 3.6 px (dark skin), 3.8 px (brown glove), 4.2 px (blue
glove), 2.7 px (green glove) and 6.5 px (white glove) for
our method (averaged over all videos). On average, the IQR
was three times higher for MediaPipe. Notably, the baseline
method failed almost completely in the presence of colored
(blue, green) gloves, while our method achieved relatively
high detection performance despite the low number of train-
ing samples for these classes. Representative examples for
our method are shown in Fig. 4. Failure cases of our method
occurred primarily due to ambiguity in the identification of
the primary hand and handedness as illustrated in Fig. 6. The
inference time was approximately 16 ms/frame for bounding
box detection and 12 ms/frame for skeleton tracking.

Real-time hand segmentation

Experiments

To assess the hand segmentation performance, we deter-
mined the Dice Similarity Coefficient (DSC) between the
algorithm output and the corresponding reference annota-
tion. The hierarchical structure of the data was respected
as described in the previous paragraph. We investigated our
method as described above using the sole RGB images as
input (1) and (2) using the hand skeleton as additional input
(“Real-time skeleton tracking”).

Results

TheDSC averaged over all samples (after hierarchical aggre-
gation) was 0.95 (interquartile range (IQR): 0.02) both for
our method with and without leveraging keypoints as aux-
iliary input. Representative examples are shown in Fig. 4.
Failure cases of our method occurred primarily due to pri-
mary hand ambiguity (as for skeleton tracking) and multiple
hand overlap, as illustrated in Fig. 6. The inference time was
approximately 65 ms and 11 ms per frame for segmentation
with and without auxiliary skeleton input, respectively.
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Fig. 4 Representative results for a diverse set of gestures. The outputs of the three models for bounding box prediction (top) as well as skeleton
tracking and segmentation (bottom) are shown

Fig. 5 Skeleton tracking performance for our method (orange) vs.
MediaPipe (blue) as the baseline. Fraction of successful localizations
(left) and mean regression distance (right) for successful localizations

and validated with respect to the different hand properties. Note that
for MediaPipe there are only very few successful localizations for blue
gloves and none for green ones

Fig. 6 Representative failure cases of the skeleton extraction model (top row) and the segmentation model (bottom row)
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Assessment of generalization capabilities

Experiments

To assess the generalization capabilities of our method with
respect to newmentors, gestures and cameras, we performed
a prospective quantitative validation, for which a total of 705
video frames from three differentmentors, two different cam-
eras and two different gestureswere acquired and annotated.2

None of the subjects and only one of the cameras had been
part of the data set used for method development. For each
subject and camera, we recorded two surgical gestures in a
surgical training setting, namely pointing along a circular
shape and pinching. This resulted in 12 video clips com-
prising a total of 705 frames. In all frames, the skeleton and
outline of the primary hand were annotated, resulting in a
test set both for the skeleton tracking as well as the hand
segmentation.

Results

The results for skeleton tracking and segmentation are consis-
tent with those obtained in the retrospective study, as shown
in Fig. 7, where we used the segmentation model with aux.
keypoints. Only minor differences in performance for differ-
ent sensor, mentors or gestures could be observed, namely
6.2 px vs. 7.6 px mean regression distance and 0.95 vs. 0.95
DSC for the previous vs. unseen sensor.

Discussion

Surgical telestration is evolving as a promising tool in surgi-
cal education and telesurgery. Todate, however, themeans for
communicating instructions to the trainee have been rather
limited and focused on manual drawing, e.g., as illustrated
in Fig. 1a. To address this bottleneck, this work is the first to
explore the automatic tracking of the mentor’s hand with the
goal of rendering it directly in the field of view of the trainee.

The potential advantages of this approach are manifold.

Real-time feedback: The mentor does not lose time generat-
ing the drawings.

Complexity of instructions:As the mentor can use their own
hands, arbitrarily complex gestures can be transmitted to
the trainee.

High robustness: There is no need for the error-prone task
of dynamically updating the drawings within the field of
view of the trainee in the presence of organ deformation.

2 Due to the mounting system of the camera the videos were recorded
sequentially.

According to a comprehensive validation study involving
14,102 annotated images acquired in a surgical training set-
ting, our method is highly accurate, yielding a hand detection
accuracy of over 98% and a keypoint regression accuracy of
10.0 px. Our approach to skeleton extraction also outper-
formed the widely used MediaPipe [10] by a large margin,
which can mainly be attributed to the presence of colored
gloves in our application setting. We speculate that our per-
formance advantage stems from the combination of the large
dataset and the introduction of recent state-of-the-art models
in our pipeline. To which extent the individual parts con-
tribute to the overall performance remains to be determined
once a direct comparison with state-of-the-art approaches
is feasible. It should be noted in this context, that it is not
straightforward to reproduce a training of MediaPipe on our
own data because (1) the official repository is intended for
inference and (2) the authors specifically attribute part of
their performance to the presence of simulated data stem-
ming from a commercial hand model. To the best of our
knowledge, open-source work that is related to MediaPipe
only utilizes the MediaPipe pipeline for downstream tasks,
i.e., without retraining; we are not aware of open-source code
that implements the full pipeline which would allow to com-
pare the performance of this algorithm on our data. We did
compensate for the effect that MediaPipe was not trained to
detect only a primary hand as we chose the hand that was
closest to the reference hand. While the detection thresh-
old of 100 px could be considered arbitrary, we observed no
major effect when changing it reasonably.3

We obtained a high segmentation accuracy (DSC 0.95)
despite the availability of only 395 training images. Using
auxiliary keypoints did improve performance in some chal-
lenging cases but did not yield to a substantial boost in mean
accuracy. Our prospective quantitative robustness validation
did not show major degradation of performance when (1)
an unseen sensor recorded the frames or (2) unseen mentors
were recorded.

A limitation of our work could be seen in the fact that we
did not leverage temporal data for our hand tracking task.
This is in line with previous work in the field of surgical
video analysis [19,20], but should be investigated in future
work. In particular, this holds true for explicit tracking in
long video sequences in which the identities should be pre-
served (e.g., Zhang et al. output processed bounding box
tracking [7], Louis et al. incorporate temporal information
in the model input [9]). Similarly, inclusion of depth infor-
mation is a promising next step that would, however, put

3 We note that during the review process a new version of MediaPipe
was released. The results presented in this work are based on Medi-
aPipe version prior to v0.8.9. Preliminary results on version v0.8.9
show improved although not comparable performance, the drop in per-
formance for blue and green colored gloves persisted.
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Fig. 7 Results of the
prospective validation study.
Skeleton tracking performance
(upper row), quantified by mean
regression distance and hand
tracking performance (lower
row), quantified by the dice
similarity coefficient (DSC) are
shown for the camera used in the
training data set (D435i) as well
as a previously unseen camera
(L515). Each color corresponds
to a different mentor. No notable
differences were obtained for
the different gestures

restrictions on the camera used. Furthermore, incorporating
synthetic data is an interesting approach to increase the data
set diversity [8].

It should be noted that the DSC, while being commonly
reported in the field of medical imaging [21], might not be
the optimal choice to assess the performance of our segmen-
tation model in the present environment. We found that the
part of the segmentation at the position of the wrist is some-
times ambiguous andwas not always consistently labelled by
our annotators. In our application of surgical telestration, the
end of the hand towards the wrist is not as important as the
accurate prediction at the edges of the fingers of the mentor.
Therefore, the DSC could be considered a lower bound to
our performance, but a study on inter-rated variability needs
to confirm this hypothesis.

Hand tracking is a highly relevant task that has been tack-
led by many authors from various fields [22–25]. However,
our validation results on the popular Google MediaPipe [10]
demonstrate that the surgical domain comes with unique
challenges (e.g., surgical gloves) that havenot been addressed
by current work. Prior work in the specific field of surgi-
cal data science is only recently upcoming. It has focused

on bounding box tracking and hand pose estimation based
on video data [7–9], alternative approaches utilize external
(wearable) sensors [26]. In this paper, we went beyond the
state of the art by (1) providing a complete pipeline for surgi-
cal hand localization, skeleton extraction and segmentation
and (2) validating the benefit of our approach in the specific
application context of surgical telestration.

With a frame rate of 20 fps and 11 fps for our entire
pipeline with and without using the skeleton extraction as
auxiliary task for the segmentation, our pipeline allows for
fast inference. As a next step, we will not only optimize
the segmentation processing with auxiliary task to achieve
real-time performance but also determine the latency of our
approach in a realistic application scenario including the
actual rendering of the hand. Note in this context that we
have decided to first apply the proposed concept in a surgical
training environment. Once the approach has been optimized
in this setting,we canmove on to themore complex operating
room.

In conclusion, we (1) presented a novel concept to sur-
gical telestration that tracks the mentor’s hand to overcome
major challenges associated with state-of-the-art telestration
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concepts and (2) validated the performance of its core com-
ponent based on a very large application-specific data set.
Owing to the near-optimal performance and fast inference
times obtained for the hand tracking pipeline in our valida-
tion study,we are nowplanning to evaluate the clinical benefit
of the hand tracking in a real surgical telestration setting.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-022-02637-
9.
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