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Cholangiocarcinoma (CCA) is an aggressive and multifactorial malignancy of the biliary tract. The carcinogen-
esis of CCA is associated with genomic and epigenetic abnormalities, as well as environmental effects. How-
ever, early clinical diagnosis and reliable treatment strategies of CCA remain unsatisfactory. Multiple
compartments of the tumor microenvironment significantly affect the progression of CCA. Tumor-associated
macrophages (TAMs) are a type of plastic immune cells that are recruited and activated in the CCA microen-
vironment, especially at the tumor invasive front and perivascular sites. TAMs create a favorable environ-
ment that benefits CCA growth by closely interacting with CCA cells and other stromal cells via releasing
multiple protumor factors. In addition, TAMs exert immunosuppressive and antichemotherapeutic effects,
thus intensifying the malignancy. Targeting TAMs may provide an improved understanding of, and novel
therapeutic approaches for, CCA. This review focuses on revealing the interplay between TAMs and CCA.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

Targeted therapy

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Cholangiocarcinoma (CCA) is a type of heterogeneous malignancy
that occurs in the biliary tract, which may originate from different
cell types, including hepatic stem cells, immature neural cell adhe-
sion molecule positive (NCAM") cholangiocytes, mature NCAM™
interlobular cholangiocytes, peribiliary gland cells and hepatocytes
[1]. Anatomically, CCA is classified into intrahepatic (iCCA; 10—20%),
perihilar (pCCA; 50—-60%) and distal (dCCA; 20-30%) CCA, whereby
the latter two are collectively known as extrahepatic CCA (eCCA)
[2—4]. Other characteristics such as cancer growth patterns (mass-
forming, periductal infiltrating or intraductal), histology (mixed or
mucinous) and tumor microenvironment (TME)-based subtypes

Abbreviations: CCA, cholangiocarcinoma; TAMs, tumor-associated macrophages;
iCCA, intrahepatic cholangiocarcinoma; pCCA, perihilar cholangiocarcinoma; dCCA,
distal cholangiocarcinoma; eCCA, extrahepatic cholangiocarcinoma; TME, tumor
microenvironment; LPS, lipopolysaccharide; TNF-«, tumor necrosis factor-o;; IFN-y,
interferon-y; IL, interleukin; MCP-1, monocyte chemotactic protein-1; CSF-1, colony-
stimulating factor-1; VEGF-A, vascular endothelial growth factor-A; CSCs, cancer stem
cells; EMT, epithelial-mesenchymal transition; CAFs, cancer-associated fibroblasts;
TEMs, Tie2-expressing monocytes; PD-L1, programmed cell death ligand-1; PD-1, pro-
grammed cell death protein-1; CTL, cytotoxic lymphocyte; G-MDSCs, granulocytic-
myeloid-derived suppressor cells; CD47, cluster of differentiation 47; SIRPc, signal reg-
ulatory protein o
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(immune desert, immunogenic, myeloid or mesenchymal) can also
be used for classification [5—8]. The etiology of CCA remains obscure,
while several conditions related to genetic mutations, epigenetic
alternation and environmental factors have been identified to be
involved in the pathogenesis of CCA. A variety of high-risk patho-
logical states may drive the carcinogenesis of CCA, including
cholestatic liver diseases (primary sclerosing cholangitis, fibropo-
lycystic liver diseases and congenital hepatic fibrosis), infectious
diseases (flukes and hepatitis B and C), biliary stone diseases
(cholecystolithiasis and hepatolithiasis), metabolic disorders [dia-
betes, obesity and non-alcoholic fatty liver disease (NAFLD)] as
well as drugs, toxins or chemicals (alcohol, smoking and thoro-
trast). Most pathological changes ultimately lead to chronic
inflammation and cholestasis of the intrahepatic or extrahepatic
bile duct, which possess a serious risk of transforming into pre-
malignant lesions and even invasive cancer [3,4,9]. Although CCA
is a rare type of cancer, it ranks the second-most common pri-
mary liver malignancy after hepatocellular carcinoma (HCC). Cur-
rently, Thailand, China and South Korea have the highest
incidence of CCA (>6 cases per 100,000) worldwide, with contin-
ued increasing incidence and mortality rates [3]. Due to the lack
of obvious early symptoms and reliable prognostic markers,
patients are frequently diagnosed at an advanced stage. Compro-
mised surgery and unsatisfactory chemotherapies offer dismal
results and often along with a high recurrence rate. Hence, more
effective treatment methods are urgently needed [10].
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Tumor-associated macrophages (TAMs), a group of plastic
immune cells that are infiltrated and activated at tumor sites, possess
potent protumor and immunosuppressive properties [11,12]. Macro-
phages can integrate numerous environmental signals and shape
their polarization manners accordingly. Historically, macrophages
are polarized into two distinct states: classically activated (M1 type)
and alternatively activated (M2 type) macrophages. M1 macrophages
are activated by lipopolysaccharide (LPS), tumor necrosis factor-o
(TNF-¢¢) and interferon-y (IFN-y), and exhibit pro-inflammatory and
antitumor properties. M2 macrophages are mainly stimulated by
interleukin (IL)-4 or IL-13, and facilitate tumor-promoting effects. M1
macrophages are characterized by the surface marker cluster of dif-
ferentiation (CD) 86, CD80, while M2 feature CD206 and CD163
[13—15]. However, macrophages polarization is a dynamic and fuzzy
process, new definition and classification is needed for current
investigation of TAMs. It is difficult to specifically define TAMs,
since this M1/M2 division is too simplistic to comprise all heter-
ogenous macrophages [16—18]. It is widely accepted that TAMs
prefer the M2 phenotype, which are mainly driven from circulat-
ing monocytes induced by monocyte chemotactic protein-1
(MCP-1/CCL2), colony-stimulating factor-1 (CSF-1), vascular endo-
thelial growth factor (VEGF)-A and other cytokines such as IL-18,
IL-10, IL-13 and IL-4 released by tumor and stromal cells
[11,19,20]. TAMs participate in the progression of a number of
malignancies including breast cancer, HCC and CCA [21-23].

The current understanding of CCA initiation and progression and
the role of the TME can provide a fundamental description of CCA.
Targeting the compartments of TME and the tumor itself together
may provide ideal approaches in clarifying and treating CCA. This
review summarizes the current knowledge of the interaction
between TAMs and CCA.

2. CCA recruits and shapes macrophages to a protumor type

Tumor cells have the ability to release different cytokines and
other factors to recruit and shape the pericellular environment to a
protumor profile. A variety of cells such as fibroblasts [recruited and
activated by platelet-derived growth factor (PDGF)-D], neutrophils
[recruited and activated by C-X-C motif chemokine ligand (CXCL) 5),
natural killer cells (deceived by MHC class I antigens) and tumor infil-
trating lymphocytes (TILs) (dampened by immune checkpoint pro-
tein) could be shaped to a protumor phenotype by CCA cells [24-27].
Apart from above these, macrophages are also the primary targets of
CCA. TAMs mainly derive from circulating monocytes instead of

resident Kupffer cells, which are one of the most abundant infiltrated
and activated stromal cells [19,28]. They are guided to the tumor
regions with the help of CCA cells and other components of the TME
by releasing multiple factors, including MCP-1/CCL2, CSF-1 and
VEGF-A [10,12,29,30]. Dwyer et al [30] revealed that TNF-like weak
inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14
(Fn14) is upregulated in CCA and can orchestrate the tumor niche by
inducing MCP-1, CX3CL1, IL-6, IL-8, macrophage colony stimulating
factor (M-CSF) and granulocyte macrophage colony stimulating fac-
tor (GM-CSF) secretion in a NF-xB-mediated way. Of which, MCP-1
facilitate macrophages recruitment and correlated with increased
CD206" TAMs marker and worse tumor behavior. After infiltrating
the tumor regions, macrophages deviate to a protumor type despite
their original function.

Cancer stem cells (CSCs) are a small subgroup of cancer cells with
self-renewal ability, which are the leading force of tumor initiation,
metastasis, recurrence and drug resistance [31]. In iCCA, the colocali-
zation of CD163* TAMs and CSC-related markers (CD44 or EPCAM) in
the tumor front supported the potential association between infil-
trating TAMs and the CSC-niche [17]. One of the most important ECM
components, periostin [secreted by CSCs and cancer-associated fibro-
blasts (CAFs)], displays a potent ability to attract CD206* TAMs
[32—34]. Moreover, in a 3D CSC culture model, CCA sphere-condi-
tioned medium acted as a strong monocytes attractor by releasing
different stem-like secretomes, including IL-13, osteoactivin (OA) and
IL-34, resulting in a mixed M1-M2 macrophage phenotype. It is
worth noting that blood specimens of patients with CCA also showed
elevated levels of IL-13, OA and IL-34, which are associated with
stem-like genes. CSC-associated macrophages possess distinctive
molecular features related to matrix remodeling and showed greater
adhesion ability and better invasion capacity (Fig. 1) [17].

The aforementioned mechanisms result in a huge influx of TAMs,
which is often correlated with worse tumor behavior, high metastasis
and recurrence rates as well as poor prognosis. Interestingly, in CCA,
TAMs tend to gather in the tumor invasive front and perivascular
sites, implying that they may be a potential neovascular and tumor
metastasis promoter (Table 1) [13,16,32,35—40]. However, conflict
results exist in the link between TAMs and tumor behavior, some
studies demonstrated worse outcomes, while some found the oppo-
site [41]. Meanwhile, it is worth noting that macrophages contribute
scarcely to the most prevalent (47.3%) type of eCCA (mesenchymal
class) [8]. More precisely evaluation and subgroup analysis based on
tumor staging and CCA type may better explain the relationship
between TAMs and CCA.
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Fig. 1. CCA recruits and shapes macrophages to a protumor type. TAMs are recruited from circulating monocytes and polarized to a protumor type by multiple factors released by
CCA cells, CSCs, and CAFs. And they tend to gather in the invasive front and perivascular regions.
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Table 1
TAM:s infiltrate in CCA sites and are correlated with prognosis.
CCAtype  Sample number  TAMs location Marker Prognostic value References
CCA 44 Leading edge of tumor MAC387 CD14  An expansion of the CD14*CD16* monocyte in peripheral blood of CCA have [35]
tissues and perivascu- CD16 tumor-promoting characteristics and was associated with tumor origin, high
lar areas density of MAC387-positive TAMs and poor prognosis of patients
CCA 43 Tumor tissue CD68 A high density of the M2-TAMs CCA in patients is significantly associated with [38]
CD163 the presence of extrahepatic metastases
CCA 50 Leading edge and peri- MAC387 High densities of MAC387-positive cells were detected in more than 60% of the [40]
vascular areas of CCA tissues, and was significantly associated with poor prognosis
tumors parameters
CCA 23 Tumor front CD163 CD163 progressively increased along with tumor grade (G2/G3 > G1) and was [17]
significantly associated with CCA pathological grade as well as CA19-9
serum marker
iCCA 322 (tissue Tumor tissue CD68 High CD86" and low CD206" TAMs infiltration was significantly correlated [13]
microarrays) CD86 with certain favorable tumor clinicopathologic features and better prognosis
CD206 in iCCA patients, when compared to low CD86* and high CD206* TAMs infil-
tration. CD86*/CD206" TAMs model was an independent prognostic indica-
tor for iCCA, especially in CA19-9 negative patients
iCCA 39 Tumor tissue CD68 High counts of CD163" macrophages showed poor disease-free survival [39]
CD163
iCCA 88 Tumor invasive front CD68 high levels of TAMs in tumor invasive front or absence of histologic tumor [41]
necrosis are associated with a significantly improved recurrence-free and
overall survival of patients with iCCA
hCCA 47 Tumor and tumor inva- Tie2 TEMs in tumor and tumor invasive front correlated with increased survival [16]
sive front and lower tumor recurrence
hCCA 47 Tumor invasive front CD68 Patients with high density of TAMs in tumor invasive front showed signifi- [37]
cantly higher local and overall tumor recurrence, decreased overall and
recurrence-free survival
eCCA 101 Tumor tissue CD163 High number of tumor infiltrating CD163* macrophages were significantly [36]

associated with poorly-differentiated histology and nodal metastasis

3. The protumor effects of TAMs

Following recruitment to CCA sites, TAMs participate in various
processes of CCA progression, including tumor cell proliferation,
metastasis and angiogenesis (Fig. 2).

3.1. Macrophages promote CCA initiation

In studies investigating the carcinogenesis of CCA, researchers
revealed that macrophages could undergo multiple pretumor disease
processes and accelerate cancer formation. Clonorchis sinensis (C.
sinensis) infection is a major public health problem, especially in East
Asian countries, and is closely associated with CCA formation [42]. In
mouse C. sinensis infection models, macrophages showed polariza-
tion changes during different stages of infection. They tend to polar-
ize to the M1 phenotype at an early stage, while dynamically shifting
to the M2 phenotype during the late stage, especially at the fibrotic
and cirrhotic stages of infection, contributing to fibrosis and the
remodeling of bile ducts by direct contact with C. sinensis excretory-
secretory products [43]. Similarly, the excretory-secretory product of
the liver fluke Fasciola hepatica purified protein Fh12 is capable of
modulating macrophages to an alternatively activated phenotype
and up-regulates the expression of arginase-1 (Arg-1) and chitinase-
3-like protein gene (CHI3L1), thereby creating an immunosuppres-
sive environment that benefits CCA initiation [43,44]. Moreover, mac-
rophages in liver steatosis may activate the Wnt signaling pathway,
which maintains the survival and growth of tumor-initiating cells,
and further promotes the carcinogenesis of CCA [45]. Mitochondrial
dysfunction and reactive oxygen species (ROS) activation are com-
mon features of liver diseases [46]. Oxidative stress exists in the TME
of both mouse iCCA models and human samples. By mimicking this
hepatic mitochondrial dysfunction, heat shock protein family D
(Hsp60) member 1 (Hspd1) deletion mice are used to create mito-
chondrial defect models and premalignant cholangiocellular lesions.
Mitochondrial dysfunction triggers ROS accumulation and leads to
the focal infiltration of TNF-producing macrophages, which creates a

favorable environment for biliary proliferation via c-JunN-terminalki-
nase (JNK) signaling. Targeting the ROS/TNF/JNK axis or depletion of
macrophages may provide promising therapeutic strategies for iCCA
[47]. Furthermore, other CCA initiating diseases, such as congenital
hepatic fibrosis caused by polycystic kidney and hepatic disease 1
(PKHD1) gene mutation and toxin-derived DNA damage also mani-
fest macrophage participation [48,49]. Taken together, macrophages
tend to facilitate CCA initiation in the late stages of precancerous
lesions, and as the disease progresses, M2 macrophages gradually
take predominant control and manufacture a tumor-promoting envi-
ronment.

3.2. TAMs are associated with Wnt/B-catenin signaling

Canonical Wnt signaling is a complex core node that connects
with numerous other signaling cascades and is often involved in mul-
tiple carcinomas, such as colorectal cancer, pancreatic cancer and
lung adenocarcinoma. [50-52]. Activation of the Wnt/B-catenin
pathway participates in the initiation, progression, epithelial-mesen-
chymal transition (EMT) and multidrug resistance of CCA via interac-
tion with microRNAs, PI3K/AKT/PTEN/GSK-3 3, retinoic acid receptors
(RARs), dickkopf-1 (DKK1), protein kinase A regulatory subunit 1 «
(RKAR1A) pathways, SRC-like adaptor protein (SLAP), liver kinase B1
(LKB1) and CXCR4 [50]. Wnt2, Wnt3a, Wnt5a, Wnt7b and Wnt10a
are highly expressed in CCA compared with non-cancerous tissues
[53-55]. The protumor effects of Wnt signaling are predominantly
mediated by TAMs. Boulter et al [53] indicated that Wnt7b and
Wnt10a are highly expressed in human CCA tissues as well as trans-
genic and thioacetamide-induced mice CCA models. Overexpression
of Wnt7b and Wnt10a is accompanied by activating a series of genes
that are relevant to cancer progression, including cell cycle, naive
state and wound repair. Further experiments revealed that Wnt7b
was expressed in the cytoplasm of CD68* macrophages, which
appears to have an M2 phenotype that simultaneously expresses
CD206. The depletion or inhibition of macrophages results in a signif-
icant reduction of Wnt7b in animal models of CCA, thus reducing
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Fig. 2. Overview of the protumor effects of TAMs. TAMs promote CCA progression by participating in tumor initiation, proliferation, metastasis, angiogenesis, CAFs activation,

matrix remodeling as well as immunosuppression.

tumor burden and proliferation. Moreover, using phosphatase and
tensin homolog deleted on chromosome ten (PTEN)-deletion or HCV/
NS5A transgenic mice CCA models supplemented with a high-fat
diet, Debebe et al found that Wnt signaling was induced in hepatos-
teatosis development and was essential for the expansion of tumor-
initiating cells. Infiltrating CD68" macrophages are a key source of
steatosis-induced Wnt production. The depletion of macrophages
reduced the expression of several Wnt ligands (Wnt3a, Wnt7a and
Wnt10a) and resulted in smaller tumor nodules compared with the
control group [45]. These studies indicated that TAMs assist CCA
growth by producing Wnt ligands. Direct targeting of TAMs or modu-
lation of Wnt signaling may be potential treatment strategies of CCA.
Different types of treatments have been developed to target Wnt sig-
naling in other malignancies, but these have little effects due to the
complexity and multiplicity of Wnt pathways [51,56]. Therefore,
focusing on Wnt-producing TAMs may provide a promising treat-
ment strategy.

3.3. TAMs and CCA metastasis

EMT is an early metastasis event that enables tumor cells to gain
invasive properties, thus causing them to widely spread [57]. Co-cul-
ture with M2-TAMs can enhance the EMT ability of iCCA cells, result-
ing in the enhancement of cell invasion and metastatic abilities via
AKT3/PRAS40 phosphorylation [58]. This effect is also mediated by
the secretion of a series of EMT-induced cytokines and chemokines,
such as IL-6, TNF-¢, transforming growth factor-1 (TGF-1) and Wnt,
that may alter the microenvironment and promote EMT. This results
in the downregulation of epithelial markers (E-cadherin and CK19)
and increased expression of mesenchymal markers (S100A4, N-cad-
herin, vimentin, o-SMA, B-catenin and MMP9) [53,58,59]. This
migration promotion effect can also be verified in Opisthorchis viver-
rini (OV)-induced CCA hamster models, where the conversion of mac-
rophages and fibroblasts to TAMs and CAFs phenotype were
observed, along with elevated metastatic potential [38]. To summa-
rize, these studies indicated that TAMs play a vital role in CCA metas-
tasis. The inhibition of such effects of macrophages may be a
potential approach to suppress tumor metastasis.

3.4. TAMs promote angiogenesis

Neovascularization is a key step in benign-to-malignant transi-
tion. It maintains the nutrition of CCA tissues and further promotes

CCA metastasis [60]. TAMs infiltrate the perivascular sites, and higher
TAMs levels are associated with elevated levels of angiogenic factor-
related genes such as epiregulin, VEGF-A and CXCL3 [35,39]. Conflict-
ing data exist regarding the exact phenotype of angiogenesis-pro-
moting macrophages [61]. Furthermore, a special subset of Tie2-
expressing monocytes (TEMs) has previously been shown to be asso-
ciated with tumor angiogenesis [62]. In patients with CCA, circulating
CD14*CD16" monocytes express Tie2, and high levels of growth and
angiogenic factor-related genes (epiregulin, VEGF-A and CXCL3). At
the same time, a high density of newly recruited MAC387* macro-
phages were found in the leading edge of the tumor, especially
within perivascular areas [35]. The later study further confirmed that
TEMs and angiopoietins showed homogenous distribution in tumor-
infiltrating fronts and perivascular areas, indicating that TEMs mani-
fest angiogenic properties, of which its particular mechanism still
requires further investigation [16]. It is worth noting that macro-
phages have also been show to induce lymphangiogenesis. Vascular
endothelial growth factor receptor-3 (VEGFR3)-expressing macro-
phages serve as both the source and target of VEGF-C and VEGF-D.
These two growth factors could not only upregulate reparative mac-
rophage-related genes (mannose receptor and Fizz1), but also induce
lymphangiogenic by activating VEGFR3 of lymphatic endothelial cells
(LECs) [63,64]. Besides, podoplanin-expressing tumor-associated
macrophages (PoEMs) have also been proved to attached to LECs
thus stimulating lymphangiogenesis, and facilitate breast cancer cell
lymphoinvasion [65]. However, the pro-lymphangiogenesis effects of
macrophages have not been studied in cholangiocarcinoma, compre-
hensive view of distinctive effects on blood and lymphatic angiogen-
esis is worth being considered.

4. TAMs interact with CAFs and remodel the TME

CCA, together with its environment, is a complete entity. TAMs
help CCA to foster an environment that benefits tumor growth, which
simultaneously requires close collaboration with other members of
the TME. CAFs are a type of well-known stromal cell, which play an
important role in CCA growth [66]. CAFs in iCCA could be divided to
five subpopulations [vascular CAFs (vVCAFs), matrix CAFs (mCAFs),
inflammatory CAFs (iCAFs), antigen-presenting CAFs (apCAFs), EMT-
like CAFs (eCAFs)] based on their diverse marker genes. Of which
iCAFs is involved in immune modulation [67]. TAMs activate CAFs by
releasing transforming growth factor-8 (TGF-8), fibroblast growth
factor (FGF) and PDGF [3,68]. CAFs can then secrete a number of
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signaling molecules such as stromal cell derived factor-1 (SDF1), IL-
18, PDGF-B, heparin-binding EGF-like growth factor (HB-EGF), Notch
3 and Hedgehog signals that promote the proliferation, metastasis
and neovascularization of CCA [29,69,70]. Conversely, macrophage
recruitment is also supported by CAFs-deriving factors such as peri-
ostin, IL-6, SDF1, M-CSF, CCL2, CHI3L1 [29,33,39]. Therefore, there
exists a regulatory loop between CAFs and TAMs, whereby the two
activate each other and amplify tumor-promoting effects.

Furthermore, TAMs may remodel the TME by releasing different
extracellular matrix and adhesion molecules such as osteopontin
(OPN), OA, fibronectin (FN), metalloproteinase ADAM (AD10, AD17)
and matrix metalloproteinase 2 (MMP2) [17,33]. These components
alter the CCA stroma and create a type of “desmoplastic matrix” of
CCA, and are closely related to CCA metastasis and serve as promising
prognostic indicators. Of which, OPN has been proven to be a reliable
biomarker with a similar prognostic performance as existing bio-
markers (CEA and CA19-9) for CCA. And could promote CCA metasta-
sis in a mitogen-activated protein kinase 1 (MAPK1) and B-catenin
dependent way (Fig. 3) [71,72].

5. TAMs promote cancer immunosuppression

Immunotherapy is a promising strategy for future cancer treat-
ment. The application of immune checkpoint blockade (ICB) which
blocks the interactions between receptors and/or ligands, such as
programmed cell death ligand-1 (PD-L1) and cytotoxic T-lympho-
cyte-associated protein-4 (CTLA-4) involved in T-cell function, dem-
onstrates potential clinical benefits in several tumors (including HCC,
non-small-cell lung cancer and melanoma), while this has little effect
in CCA [27,73-75]. The immunological environment varies in differ-
ent tumor types. CCA may be classified into immune “hot” and “cold”
types based on its cytotoxic lymphocyte (CTL) density. The immune
“hot” type has a high density of CTLs and is associated with higher
response rates to ICB, and vice versa [28,52]. Multiple immune escape
mechanisms mediated by tumor and stroma cells weaken the effects
of the antitumor defense in our body and immune targeted drugs.
Hence, targeting TAMs warrant further investigation.

5.1. TAMs express PD-L1 and exert immunosuppressive effects

PD-L1 is a member of the B7 family molecules that are expressed
on the surface of malignant cells and tumor-associated antigen-pre-
senting cells. It facilitates immune evasion effects via its interaction
with programmed cell death protein-1 (PD-1) on T cells [76]. Several
cohort studies have investigated PD-L1 expression in CCA tissues.
Due to the diversity of included sample sizes, cancer location, statisti-
cal cut-offs and different antibodies, the expression levels of PD-L1
showed high discrepancy between different studies. However, the

consensus is that higher expression of PD-L1 is associated with worse
tumor behavior, poor differentiation and prognosis. The percentage
of PD-L1-positive expression in TAMs is much higher in CCA cells of
both mice models and human tissues [77—81]. Higher PD-L1 expres-
sion in CCA cells is accompanied by abundant infiltration of tumor-
associated neutrophils (TANs) and TAMs [79,82]. This indicated that
TAMs may play a role in CCA immune escape by forming a barrier
that dampen CTL attack through PD-1/PD-L1 interactions. Conse-
quently, individualized ICB treatment should be applied to those who
show a high PD-1/PD-L1 expression profile. Adaptive immune
response components of TME present dynamic changes with CCA
progression. And PD-L1 expression has been linked to an increase in
apoptotic TILs. Single-cell RNA sequencing analysis (scRNA-seq) has
shown advantages in revealing cellular diversity and intercellular
interaction at single-cell resolution. It illuminates a comprehensive
way to dissect the complex tumor and adaptive immune system
landscapes, which would be of great help for our further exploration
of CCA and TME immunity [83,84]. However, Loeuillard et al [80]
found that inhibiting TAMs by CCR-2 deficiency or CSF-1R inhibition
did not affect tumor burden, but instead promoted the compensatory
infiltration of granulocytic-myeloid-derived suppressor cells (G-
MDSCs), thus counteracting the potential antitumor effects of elimi-
nating protumor macrophages in murine CCA models. These immu-
nosuppressive elements, particularly TAMs and MDSCs, coordinate to
foster an immune “cold” environment by suppressing CD8* T cell
infiltration, which facilitates a protumor effect. Besides, TAMs and
MDSCs may also serve as guiding forces of cancer cell stemness which
intensify resistance to anticancer treatments [85]. Therefore, elimi-
nating existing TAMs together with a potential TAMs source (such as
G-MDSCs) is necessary to potentiate anti-PD-1 therapy in CCA and
has been proven to enhance the antitumor effects of anti-PD-1 ther-
apy in CCA models. Besides, CD 40 on macrophages and dendritic
cells (DCs) could drive the infiltration and activation of myeloid, CD4*
T, CD8* T, and NK cells. Combination of CD40 agonist and anti-PD-1
therapy has shown significantly antitumor effect compared to control
or either monotherapy groups [86]. Hence, a comprehensive under-
standing of the regulation network between macrophages and other
immune components is needed when applying immunotherapy.
However, it is still unknown as to why there is such a discrepancy in
the PD-L1 expression profile. We speculate that a balance between
cancer and immunity exists in CCA progression and this immunosup-
pressive trait can be inherited during proliferation of CCA cells.

5.2. Other immune escape mechanisms
Cluster of differentiation 47 (CD47) is an antiphagocytic molecule

that discriminates between host cells and damaged or foreign cells. It
is a transmembrane glycoprotein that is ubiquitously expressed on



6 M. Zhou et al. / EBioMedicine 67 (2021) 103375

Immune “hot”

NK cells
cD4oL

Immune “cold”

oy ‘ ‘ 7 T mA
CD40 agonist 8
CcD40 E . -
Macrophage
" repolartzation
Myeloid w2 = =
DAoL e = CD47-SIRPa
cells i M1 blockage

CSF-1, =

MCP;1 &*‘,L,.
Anti-CSF1R
Anti-MCP-1

Anti-Ly6G ~f .

s

Macrophages depletion

\ ~————— G-MDSCs Monocytes «— Ba w2 -0

Fig. 4. TAMs exert an immune regulation effect and can be pharmacologically targeted. TAMs and CCA cells express PD-L1 which interact with PD-1 on CTLs thus dampen the anti-
tumor immunity. The CD47-SIRP« interaction of TAMs and CCA can also help CCA to escape phagocytosis. Combination of TAMs reprogramming with immunotherapies may have a

cooperative effect in CCA treatment.

the surfaces of various cell types. CD47 interacts with transmem-
brane protein signal regulatory protein « (SIRP«) on the surface of
myeloid cells, such as macrophages and DCs [87]. CCA cells express
higher CD47 than HCC and serve as a “don’t eat me signal”, thus
deceiving macrophages by binding to macrophages SIRP«. The block-
age of CD47-SIRP« interactions by anti-CD47 results in increased
macrophage infiltration and potentiated macrophage phagocytosis,
leading to decreased cancer colonization in mice models [88].
Besides, macrophages have complex regulation effects on other
immune cells of the TME. Hypoxia conditions augmented macro-
phage-mediated T-cell suppression in breast cancer via iNOS and
arginase 1 (Arg1) releasing in a HIF-1oe depend manner, which could
be a potential immune regulation point in further investigations of
TAMs and immune escape [89]. Other cytokines released by TAMs
can also exert immune escape in CCA TME [90]. Some researchers
showed that IL-10 released by TAMs can suppressing the activity of
antigen presenting cell (APCs), DCs, cytotoxic T-cell and CD8" T-cells
[91]. TAMs-derived TGF-8 contributed to exclusion of CD8" T-cells
and blocked the acquisition of the Th1 effector phenotype [92]. Thus,
TAMs have potential and powerful immune suppression ability via
interacting with other immune subtypes, which should be taken seri-
ously in CCA immunomodulation. (Fig. 4).

6. Targeting TAMs in CCA treatment

The high heterogeneity CCA refers to its location and genetic
mutation. Due to its complex classification and etiology, treatment
cannot be generalized. In addition to palliative surgery, conventional
chemotherapy is often accompanied with unpredictable results.
Combination immunotherapy strategies have been launched in order
to get positive treatment responses. By analyzing registered clinical
trials on CCA, anti-PD-1 drugs plus anti-CTLA-4, ATR inhibitor, CSF-1
inhibitor, histone deacetylase inhibitor or vascular endothelial
growth factor receptor 2 (VEGFR-2) inhibitor are ongoing
(NCT04238637, NCT04298008, NCT04642664, NCT04301778,
NCT03250273). Combination two kinds of ICB nivolumab (anti-PD-1)
and ipilimumab (anti-CTLA-4) in phase II clinical trial patients with
advanced biliary tract cancers showed improved clinical outcomes

[93]. Moreover, PD-1 monoclonal antibody camrelizumab in combi-
nation with VEGFR-2 inhibitor apatinib can also achieve controllable
safety and good efficacy in primary liver cancer based on multicohort
phase Ib/II trial [94]. As the revealing of protumor effects of TME com-
ponents, especially, stable elements, such as TAMs, are comparative
invariants and are regular visitors during cancer formation, which
can thus be targeted.

Given the importance of macrophages in carcinogenesis and CCA
promotion, corresponding methods have aimed at TAMs recruitment,
inhibition, depletion or repolarization [95]. The aforementioned
strategies include the intervention of toll-like receptor (TLR) agonists,
a series of cytokines, antibodies, RNAs and other small molecules.
And with the help of nanoscale drug carriers, targeting TAMs have
shown promising effects on non-small cell lung cancer, breast, pros-
tate and pancreatic cancer xenograft models [96—104]. In CCA mouse
models, inhibiting CSFR1 activation prevented monocytes differentia-
tion into macrophages and depleting macrophages in xenograft mice
models reduced CCA cell proliferation and accelerated cell apoptosis,
which relieved tumor burden in a Wnt7b-dependent manner [53].
Except CSFR1, MCP-1 is also a strong TAMs activator. By using multi-
ple injections of anti-MCP-1 antibody, significantly smaller tumors
were observed in SNU-1079-generated human CCA cell xenografts
mice. TWEAK/Fn14 pathway is capable of inducing the releasing of
MCP-1, CX3CL1, IL-6, IL-8, M-CSF and GM-CSF in a NF-kB dependent
way, blocking the TWEAK/Fn14 pathway of CCA cells and CAFs
resulted in a reduction of MCP-1 expression, thus reduced TAMs
recruitment and CCA xenograft growth [30]. However, the aforemen-
tioned methods could also influence M1 macrophages, which have a
positive effect [105]. Thereby, the pros and cons should be further
weighed. Another strategy focusing on macrophage repolarization,
which induces M2 macrophages to a pro-inflammatory phenotype,
may exert an antitumor effect. Gao and colleagues provided a macro-
phage repolarization example by infusion of methotrexate-contain-
ing plasma-membrane microvesicles derived from apoptotic human
tumor cells into the bile-duct lumen, which led to the abundant
recruitment of antitumor neutrophils and the pyroptosis of eCCA
cells, thereby relieving biliary obstruction in 25% of the patients.
Treating macrophages with supernatants from pyroptotic CCA cells



Table 2

Targeting TAMs in CCA treatment.

Type of treatment Target Agent Mechanisms Experimental models Major effects References
TAMs Ablation Macrophage depletion Lipclod Macrophages depletion Xenograft model of human CCA Decrease CD68" macrophages, reduced expression of [53]
cell lines, TAA-induced rat CCA Wnt7b and human pro-proliferation genes (BIRC5,
model CCND2, and CCNE), increased expression of apoptosis
gene BAX1, increased apoptosis, less tumor burden
CSFR1 inhibition W2580 or AZD7507 Preventing macrophages recruit-  Xenograft model of human CCA Decreased CD68* and CD163" macrophage, downregula-
ment and activation cell lines, TAA-induced rat CCA tion of Wnt7b, CTNNB1, cell cycle related genes (Ccnd1,
model Ctgf, Hedgehog receptors Ptch1 and Smo), progenitor
phenotype genes (Jag1 and KIf5), reduced tumor load
Anti-MCP-1 antibody 2H5 Preventing macrophages recruit- ~ SNU-1079-generated human Reduced F4/80" and CD206" macrophages, significantly [30]
ment and activation CCA cell xenografts smaller tumors
TWEAK/Fn14/NF-kB pathway  Fn14 knockout Reduction of MCP-1 expression TAA-treated mice Reduced PanCK* tumor epithelia cells and F4/80" and
CD206" macrophages
TAM s repolarization Macrophage stimulation Pyroptotic CCA cells Activate macrophages to release Activate macrophages to release Production of various cytokines (IL-6, CCL2, CCL3 and [106]
supernatants induced proinflammatory factors proinflammatory factors CCL20) and neutrophil attractants (CXCL1, CXCL5 and
by MTX—TMPs TNF)
CCA patients’ biliary drainage Upregulated production of CCL2, CCL3, CXCL1, CXCL5, IL-
analysis 1B and IL-6
G-MDSCs and TAMs G-MDSCs inhibition Clone 1A8 or GW3965 Elimination immunosuppressive YAP-driven mouse CCA model Reduced G-MDSCs and TAMs in the tumor site, increased [80]
inhibition com- G-MDSCs CD8" T cell infiltration and activation, significantly
bined with anti- Anti-CSF1IR AFS98 Preventing macrophages recruit- lessen tumor burden, prolonged the survival of mice
PD-1 therapy ment and activation bearing SB tumors
Anti-PD-1 antibodies G4 Promote anti-tumor immunity of
CTLs
CDA40 agonist and Agonistic anti-CD40 Clone FGK4.5 Induction of effective anti-tumor ~ Subcutaneous and intrahepatic Reduced of tumor growth and improved survival, [86]
anti-PD-1 therapy immune responses tumor injection model, AKT increased CD4*, CD8* and NK cell infiltration, enhanced
Anti-PD-1 antibodies Clone 29F.1A12 Promote anti-tumor immunity of 250 and YAP-driven mouse response to chemotherapy
CTLs CCA model
Cytotoxic agents Gemcitabine and Cell cycle inhibition and DNA
Cisplatin replication inhibition
CD47-SIRPo Anti-CD47 antibodies B6H12.2 Enhance macrophage Transplenic intrahepatic metas- Reduced cancer colonization, increased phagocytic indi- [88]
blockage Anti-SIRPa SE5A5 phagocytosis tasis mouse model ces of resting, M1, M2, and TAM-like MDMs
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induced macrophages to produce proinflammatory cytokines IL-6
and CCL2, as well as neutrophil and T cell attractants including TNF,
IL-18, CCL3, CCL20 and CXCL5, triggering a secondary wave of neu-
trophil and naive T cell migration to the bile duct. In addition, TAMs
could change their polarization states in response to eCCA pyroptosis
and further promote TME transition to a proinflammatory state
[106]. Besides, as mentioned above, TAMs showed a complex interac-
tion with other immune cells, combination of TAMs reprogramming
with other immunotherapies (such as ICB) may have a cooperative
effect in treating malignancies, especially drug-resistant malignan-
cies, such as CCA. However, these hypotheses are still in the experi-
mental stage, with their relevant effects still remain unclear. Further
studies are required to reveal the practicability of these strategies
(Table 2).

7. Outstanding questions

TAMs play an important role in tumor progression via compli-
cated interplay with CCA and other TME components. They play an
important role in carcinogenesis, including cancer cell proliferation,
metastasis, angiogenesis and immune suppression. Due to highly
malignancy and severe drug-resistance, seeking more efficient treat-
ment strategies for CCA are urgently needed. As the revealing of
diversity protumor effects of TME, a new era of anti-tumor therapy
has arrived. Targeting TME and tumor as a whole should be regarded
as an integral therapy policy [107]. In particular, TAMs in tumor have
shown great plasticity and tumor-promoting potential. It should be
of great importance to suppress tumor cells and shape macrophages
in the meantime. Future investigations targeting TAMs will likely
clarify the comprehensive understanding and novel therapy of CCA.
However, there remains several problems to be solved. First, the
mechanisms of the interaction between TAMs and CCA has not been
elucidated, and currently available studies are relatively rare and can-
not provide us a complete network system for the interaction
between TAMs and CCA. The regulation network of tumor and its
TME covers a very wide range includes cytokines, exosomes, non-
coding RNAs, as well as metabolites [108—110]. There still exist
many unknown fields to be explored. Second, since studies targeting
TAMs and CCA are relatively small than other tumors, whether the
role of TAMs in other tumor processes has the same effects in CCA
remains to be further determined. Third, the definition of TAMs may
need to be improved. Although the M2 type does have tumor-pro-
moting effects, as aforementioned, apart from M2, the atypical phe-
notypes of macrophages that may encourage CCA growth. And new
markers such as TREM-1*, TREM-2*, GATA6", VEGFR3 and podoplanin
emerge as the in-depth study of TAMs in liver diseases
[63,65,111—113]. Jumping out the stereotype of M2 macrophages
equals TAMs may help to explain current dilemma and find out more
about TAMs and CCA. Thus, further effort should be made to clarify
the interaction between TAMs and CCA before targeting this interac-
tion in clinical practice.

Search strategy and selection criteria

Data for this review were identified by searches of MEDLINE,
PubMed, and references from relevant articles using the search terms
“macrophage”, “cholangiocarcinoma”, and “tumor microenviron-
ment”. Abstracts and reports from meetings were included only
when they related directly to previously published work. Only
articles published in English between 2010 and 2020 were included.
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