
Structural brain networks and functional
motor outcome after stroke—a prospective
cohort study

Eckhard Schlemm,1 Robert Schulz,1 Marlene Bönstrup,1,2 Lutz Krawinkel,1 Jens Fiehler,3
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The time course of topological reorganization that occurs in the structural connectome after an ischaemic stroke is currently not

well understood. We aimed to determine the evolution of structural brain networks in stroke patients with motor deficits and relate

changes in their global topology to residual symptom burden and functional impairment. In this prospective cohort study, ischae-

mic stroke patients with supratentorial infarcts and motor symptoms were assessed longitudinally by advanced diffusion MRI and

detailed clinical testing of upper extremity motor function at four time points from the acute to the chronic stage. For each time

point, structural connectomes were reconstructed, and whole-hemisphere global network topology was quantified in terms of inte-

gration and segregation parameters. Using non-linear joint mixed-effects regression modelling, network evolution was related to le-

sion volume and clinical outcome. Thirty patients were included for analysis. Graph-theoretical analysis demonstrated that, over

time, brain networks became less integrated and more segregated with decreasing global efficiency and increasing modularity.

Changes occurred in both stroke and intact hemispheres and, in the latter, were positively associated with lesion volume. Greater

change in topology was associated with larger residual symptom burden and greater motor impairment 1, 3 and 12 months after

stroke. After ischaemic stroke, brain networks underwent characteristic changes in both ipsi- and contralesional hemispheres.

Topological network changes reflect the severity of damage to the structural network and are associated with functional outcome

beyond the impact of lesion volume.
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Germany

Correspondence to: Eckhard Schlemm, MBBS, PhD Klinik und Poliklinik für Neurologie

Kopf- und Neurozentrum, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg,

Germany

E-mail: e.schlemm@uke.de

Keywords: graph theory; ischaemic stroke; motor function; recovery; structural connectivity

Abbreviations: AIC ¼ Akaike information criterion; d ¼ days; DTI ¼ diffusion-tensor imaging; FM ¼ Fugl-Meyer; ICH ¼ intra-

cerebral haemorrhage; IQR ¼ inter-quartile range; m ¼ months; MCA ¼ middle cerebral artery; NIHSS ¼ National Institutes of

Health Stroke Scale; q50 ¼ median connectivity; rGS ¼ relative grip strength; ROI ¼ region of interest; SAH ¼ subarachnoid haem-

orrhage; SE ¼ standard error

Received October 7, 2019. Revised October 8, 2019. Accepted December 2, 2019. Advance Access publication January 10, 2020
VC The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which per-

mits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

BBRAIN COMMUNICATIONSAIN COMMUNICATIONS
doi:10.1093/braincomms/fcaa001 BRAIN COMMUNICATIONS 2020: Page 1 of 13 | 1



Introduction
With over 50 million years of healthy life lost each year

due to stroke-related death and disability, brain infarcts

contribute significantly to the burden of disease world-

wide (Bill and Foundation, 2019). Ischaemic lesions affect

neurological functions, such as motor execution and con-

trol, vision, cognition and speech, as well as functional

independence. These deficits result not only from focal

damage to cortical areas and white matter tracts at the

site of ischaemia, but also from secondary effects on

structural integrity in remote brain areas that are directly

or indirectly synaptically linked to the primary lesion

(Seitz et al., 1999; Carrera and Tononi, 2014, Cheng

et al., 2014b).

A growing body of evidence suggests that normal

neurological function does not only depend on the struc-

tural und functional integrity of specific grey and white

matter regions of the brain but is instead contingent on

the balanced interplay of activity in multiple intercon-

nected populations of neurons (Griffa et al., 2013;

Fornito and Bullmore, 2015). The structural connectome

represents fibre tracts connecting pairs of cortical areas

and forms the structural basis for this large-scale tem-

poro-spatial organization (Sporns, 2013). In order to sup-

port both segregation between groups of functionally

specialized brain areas and long-range integration of re-

mote processing units, connections in the structural con-

nectome are arranged in a small-world configuration,

balancing these two opposing organizational principles

(Watts and Strogatz, 1998; Hilgetag et al., 2000; Sporns

and Honey, 2006; Achard and Bullmore, 2007). In the

growing field of network science, the topological notions

of segregation and integration have been operationalized

in the form of graph-theoretical measures, such as modu-

larity and efficiency (Bullmore and Sporns, 2009).

Changes in the structural brain network have been impli-

cated in a variety of conditions such as epilepsy

(Lemkaddem et al., 2014, Gleichgerrcht et al., 2015a),

schizophrenia (Fornito et al., 2012; Van Den Heuvel and

Fornito, 2014), small vessel disease (Lawrence et al.,

2014; Xu et al., 2018), dementia (Tuladhar et al., 2016;

Lawrence et al., 2018), migraine (Liu et al., 2012), mul-

tiple sclerosis (Kuceyeski et al., 2018) and Tourette’s syn-

drome (Cheng et al., 2014a; Schlemm et al., 2017).

Analysis of structural connectivity has proved particu-

larly useful in ischaemic stroke patients as a tool to as-

sess non-local changes in brain architecture (Carrera and

Tononi, 2014, Cheng et al., 2019b); as an intermediate

phenotype between the focal lesion and observed clinical

deficits (Lim and Kang, 2015); as well as a marker for

recovery potential following the acute phase (Koch et al.,

2016). In addition to alterations in the functional connec-

tome of stroke patients as studied by EEG and functional

MRI, there is also evidence for disrupted structural top-

ology in the chronic phase after stroke. The integrity of

specific cortico-cortical connections such as ipsilesional

parietofrontal pathways (Schulz et al., 2015), the superior

longitudinal fascicle (Schaechter et al., 2009), transcal-

losal (Wang et al., 2012) and dorsal premotor-primary

motor connections (Schulz et al., 2017), are all related to

residual motor function. At the global network level, tak-

ing into account the integration and segregation of all

brain regions within the structural connectome, it was

found that network communicability, a marker for the

ease of information transfer, was reduced around the

stroke lesion (Crofts et al., 2011). However, the progres-

sion of structural changes, in particular, the evolution of

topological properties of the structural connectome with

time after stroke and its relation to the clinical course is

less well understood.

Therefore, in this longitudinal cohort study, we recon-

structed structural connectomes of stroke patients with

motor symptoms in the upper limb, aiming to relate

changes in their global topology to clinical outcome. At

four time points covering the acute, subacute and chronic
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phases after stroke, we used probabilistic fibre tracking

to reconstruct whole-brain structural connectomes from

diffusion-weighted imaging and employed graph theory to

quantify aspects of their global topology. We specifically

investigated changes in the ipsi- and contralesional hemi-

spheres and hypothesized that focal stroke lesions

induce alterations in the structural connectome of stroke

patients, disrupting the balance between integration and

segregation required for normal neurological function.

Region-specific topological parameters were calculated to

localize global disruptions to distinct parts of the brain

network. We expected that the magnitude of topological

alterations would be associated with the extent of the is-

chaemic lesion and related to clinical deficits in motor

function.

Materials and methods

Study design

Patients with acute ischaemic stroke admitted to our

Stroke Unit at the Universitätsklinikum Hamburg–

Eppendorf were screened between June 2012 and

September 2017 to form the Collaborative Research

Centre (CRC) 936 stroke cohort. Inclusion criterion for

the present study was a first-ever supratentorial ischaemic

stroke (as demonstrated by MRI) with an upper extrem-

ity motor deficit. Exclusion criteria were significant cogni-

tive symptoms like aphasia or hemianopia, or cognitive

impairment rendering the patient incapable to give

informed consent or comply with instructions for clinical

testing. Also, patients with contraindications to MRI as

well as the presence of marked white matter lesions,

intracerebral haemorrhage or evidence of pre-existing

structural brain lesions were excluded. Patients with

imaging data of insufficient quality; or with extensive

cortical infarcts hindering image registration and auto-

mated cortical segmentations; or with imaging data from

fewer than two time points, were excluded from the ana-

lysis. After providing written informed consent according

to the Declaration of Helsinki, patients underwent cere-

bral imaging and clinical testing of motor function at

baseline in the acute phase (3–5 days post-stroke), as well

as in the subacute and chronic phases 30–40, 85–95 and

340–380 days after stroke. The study was approved by

the ethics committee of the chamber of physicians

Hamburg, Germany (PV 37777).

Clinical testing

At each of the four time points, global stroke severity

was assessed using the National Institutes of Health

Stroke Scale (NIHSS) (Lyden, 2017). Motor function in

the affected hand was operationalized as whole-hand grip

strength relative to grip strength in the unaffected hand

(rGS). Absolut grip strength in each hand was obtained

from averaging three consecutive measurements using the

Strength JAMAR hand evaluation kit (Elite healthcare,

UK). Active movement range and synergies of proximal

and distal muscles were further quantified on the ordinal

upper extremity Fugl-Meyer (FM) scale (Fugl-Meyer

et al., 1975).

Imaging

We acquired imaging data on a 3T Siemens Skyra MRI

scanner (Siemens, Erlangen, Germany). A 32-channel

head coil was used to measure both diffusion-weighted

and high-resolution T1-weighted anatomical images. For

diffusion-weighted imaging, 75 axial slices were obtained

covering the whole brain with gradients (b¼ 1500 s/mm2)

applied along 64 non-collinear directions with the se-

quence parameters: repetition time (TR) ¼ 10 000 ms,

echo time (TE) ¼ 82 ms, field of view (FOV) ¼
256� 204, slice thickness (ST) ¼ 2 mm and in-plane reso-

lution (IPR) ¼ 2� 2 mm2. The complete dataset consisted

of 2� 64 b1500 images and additionally one b0 image at

the beginning and one after the first 64 images. For ana-

tomical imaging, a 3D magnetization-prepared, rapid ac-

quisition gradient-echo sequence (MPRAGE) was used

with the following parameters: TR ¼ 2500 ms, TE ¼
2.12 ms, FOV ¼ 240� 192 mm2, 256 axial slices, ST ¼
0.94 mm and IPR ¼ 0.94� 0.94 mm. In addition, fluid-

attenuated inversion recovery sequences were acquired in

the acute phase 3–5 days after stroke for delineation of

ischaemic lesions (TR ¼ 9000 ms, TE ¼ 90 ms, TI ¼
2500 ms, FOV ¼ 230� 230mm2, ST ¼ 5 mm and IPR ¼
0.7� 0.7mm2).

Network construction

Undirected, weighted networks were constructed based on

high-resolution structural imaging, diffusion-tensor imag-

ing and probabilistic tractography to approximate white

matter fibre tracts as described previously (Schlemm

et al., 2017). In summary, diffusion-weighted images

were analysed using the FSL software package 5.1 (http://

www.fmrib.ox.ac.uk/fsl). All datasets were corrected for

eddy currents and head motion. Structural T1-weighted

anatomical images were processed using the FreeSurfer

software package 5.3.0 with standard procedures and

parameters resulting in a parcellation of the cerebral grey

matter into 33 cortical and 3 subcortical regions per

hemisphere (Desikan et al., 2006; Behrens et al., 2007).

For cortical regions, masks from automated parcellation

by Freesurfer were refined to delineate the grey–white

matter boundary underlying the cortical areas to increase

anatomical accuracy for DTI fibre tracking. Therefore,

surface maps of the boundary between grey and white

matter were generated by FreeSurfer and applied to con-

strain parcellation masks to a ribbon directly underlying

the cortical grey matter. All resulting masks were

visually checked for plausibility and accuracy. In total,

Structural brain networks after stroke BRAIN COMMUNICATIONS 2020: Page 3 of 13 | 3

http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl


72 masks (36 per hemisphere) were created as listed in

Supplementary Table 1. Processing of diffusion data

included application of a probabilistic diffusion model

modified to allow estimation of multiple (n¼ 2) fibre

directions using the program bedpostX. From each seed

ROI voxel, 5000 streamlines were initiated through the

probability distribution of principle fibre directions.

Structural connectivity between two regions was meas-

ured by masking the results of each seed ROI by each of

the remaining ROIs. Weighted connectivity matrices were

computed by defining the strength of the connection

from ROI s to ROI t as the raw number of streamlines

starting in s and running through t, divided by the sum

of the volumes of s and t (Hagmann et al., 2008).

Network reconstruction resulted in whole-brain connect-

ivity matrices of dimension 72� 72, which were symme-

trized by averaging with their own transpose. Intra-

hemispheric networks were defined as induced subgraphs,

corresponding to the upper and lower diagonal blocks of

the whole-brain connectivity matrix. Lesion volumes were

measured on fluid-attenuated inversion recovery data at

the first time point, 3–5 days after stroke, as described

previously (Cheng et al., 2015). The density of a network

was defined as the proportion of theoretically possible

connections with a positive weight.

Graph theory

The median edge weight q50 was calculated as a numeric-

al measure of global connectivity for each intra-hemi-

spheric network. Subsequently, topological properties of

individual connectomes were summarized by the com-

monly used global graph parameters ‘efficiency’ as a

measure of integration, and ‘modularity’ as a measure of

segregation (Bassett and Bullmore, 2009). Global effi-

ciency is defined as the average inverse shortest path

length in the network, modularity quantifies the extent to

which a network can be partitioned into non-overlapping,

relatively weakly interconnected sub-networks. These

measures are known to reflect important organizational

principles of the brain connectome (Bertolero et al.,

2015) and are sensitive to detecting structural and func-

tional network changes in a variety of neurological disor-

ders (Singh et al., 2013; Ajilore et al., 2014; Tuladhar

et al., 2016), including ischaemic stroke (Yang et al.,

2015; Siegel et al., 2016, 2018). For the main analysis,

graph parameters were computed for dense weighted con-

nectomes without thresholding (Civier et al., 2019). The

effect of removing a proportion of weak connections to

enforce lower network densities ranging from 10% to

90% was explored in a sensitivity analysis (Buchanan

et al., 2019).

Local connectivity in the networks was summarized by

computing, for each node, the sum of the weights of the

incident connections (strength), as well as the efficiency

of the sub-network induced by itself and its neighbours,

and local clustering (Rubinov and Sporns, 2010). All

graph-theoretical computations were performed in the

Brain Connectivity Toolbox for Matlab (Rubinov and

Sporns, 2010).

Statistical analysis

Numerical processing of network matrices and calculation

of graph measures was carried out in Matlab version

R2017a (The MathWorks, 2017). All statistical analyses

were performed in the R language for statistical comput-

ing, R version 3.5.3 beta (R Core Team, 2019). P-values

in the main text are reported unadjusted as a continuous

measure of strength of evidence with values less than

0.05 occasionally, and in agreement with common prac-

tice, referred to as statistically significant. However, given

the lack of a pre-registered analysis protocol, no formal

statistical tests were carried out in this study. Where ap-

plicable in the case of mass-univariate multiple testing,

Bonferroni corrections were used to aid interpretation of

our results. No imputation for missing data was

performed.

Clinical data

Lesion volume was transformed logarithmically and ana-

lysed for differences between left- and right-hemispheric

infarcts using a two-sample t-test. Clinical outcome meas-

ures of symptom burden (NIHSS score) and motor im-

pairment (relative grip strength, FM score) at each of

four time points between the acute (3–5 days after stroke)

and chronic (1 year after stroke) phases were assessed for

association with side and volume of the lesion, as well as

age and sex of the patient. Simple linear regressions were

used for gip strength. Poisson regressions with a logarith-

mic link were used to model NIHSS and FM scores as

approximate count data; in the presence of over-disper-

sion conditional variances were modelled as linear func-

tions of the conditional means (Ver Hoef and Boveng,

2007).

It is known that recovery of motor function after is-

chaemic stroke follows a non-linear trajectory with the

largest improvement occurring until 3–6 months post-

stroke and only marginal further gain in motor function

after 6 months (Kelly-Hayes et al., 1989; Nakayama

et al., 1994; Jørgensen et al., 1995; Hendricks et al.,

2002; Verheyden et al., 2008). After visual inspection of

the evolution of outcome parameters in our patients

(Fig. 1), the course of clinical improvement was, there-

fore, modelled by exponential functions of time as done

previously (Abela et al., 2012) and compared with linear

models using the Akaike information criterion (AIC)

(Akaike, 1974). In the model equation,

Outcomet � aþ D 1� e�b tð Þ;
t 2 f3� 5 days; 1; 3 and 12 monthsg;

(1)

the parameter a can be identified as the initial severity of

symptoms; D is the difference in outcome between the
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acute and late chronic phase; and b represents a nuisance

parameter that can be interpreted as the rate of recovery.

The model included a random subject-specific intercept to

account for the longitudinal design of the study and was

fit using non-linear mixed-effects regression (Pinheiro et al.,

2019). Residuals were assumed to be normally distributed

and uncorrelated both within and between subjects.

Structural network properties

In a first step, the effect of time on numerical global

intra-hemispheric connectivity was modelled via both lin-

ear and exponential functions. Models were compared

using the AIC. In the exponential model, differences in

the time course between stroke and intact hemispheres

were examined by allowing the model parameters a and

D to vary according to whether or not the hemisphere

was containing the stroke lesion (ipsilesional or contrale-

sional hemisphere, subsequently referred to as ‘hemi-

sphere condition’). Statistical significance was assessed

using t-tests as implemented in the nlme package for R

(Pinheiro et al., 2019). Time courses in stroke and intact

hemispheres were then quantified separately by perform-

ing individual exponential growth curve analyses.

Similarly, the time courses of the global graph parame-

ters efficiency and modularity after stroke were modelled

non-linearly as exponential functions of time. The inter-

action between time and hemisphere condition was

accounted for as above via hemisphere-condition-depend-

ent model parameters.

The effect of time on local network architecture was

investigated by a mass-univariate non-linear regression

analysis of strength, local efficiency and local clustering

of individual nodes in the connectome. Brain regions

with an accelerated decline of local network integrity

were identified by a statistically significant effect of

hemisphere condition on the model parameter D in a

mixed-effects exponential regression analysis as before.

Relation of network properties to lesion volume

After quantifying the time course of numerical connectiv-

ity as well as global and local network topology and

assessing differences between ipsi- and contralesional

hemispheres, we investigated the effect of lesion volume

on patterns of post-stroke changes in the structural con-

nectome. To this end, exponential mixed-effects regres-

sions using the R function nlme were performed,

including the logarithm of lesion volume as an additional

linear predictor for the total structural network change

between acute and chronic phase (model parameter D).

Relation of network properties to clinical outcome

measures

We hypothesized that changes in structural brain network

architecture are associated with clinical outcome. In prin-

ciple, simple linear and quasi-Poisson regressions were

used to assess the relation between change in numerical

connectivity, global graph measures and clinical parame-

ters 1, 3 and 12 months after stroke. Specifically, obser-

vations from these time points were pooled using a two-

stage approach (Laird and Ware, 1982; Zhang et al.,

2007). First, a mixed-effects regression with subject-spe-

cific random intercept was performed to estimate the ef-

fect of time on structural network change. In a second

step, NIHSS values and motor function scores (relative

grip strength and upper extremity FM) were regressed

against subject-specific predicted network change from

the first step at each time point. The effect of lesion vol-

ume as a potential confounder was examined by includ-

ing it as a nuisance regressor at the second stage. This

two-step method takes into account the relationship be-

tween serial observations on the same subject as well as

the time-varying nature of both clinical outcome and net-

work topology. At the same time, it obviates the need for

a computationally intensive joint modelling of predictor

and response in a Bayesian setting (Rizopoulos, 2012;

Sayers et al., 2017). For adequate comparison, we also

examined associations between absolute value of global

network properties and clinical outcome.

Data availability

Clinical data and global graph measures analysed in this

study are included in Supplementary Appendix A and as

a separate CSV file. Further data, including code used for

the analyses, are available upon reasonable request from

the corresponding author.

Results
Forty-eight patients were considered for inclusion in the

study. At the end of the recruitment period, 18 patients

Figure 1 Temporal profiles of clinical outcome

parameters. Horizontal axes indicate time after stroke.

Thin lines represent linearly interpolated profiles for individual

patients. Diamonds and triangles indicate patients with left- and right-

sided lesions, respectively. Circles and bars denote cross-sectional

means and asymptotic standard errors, respectively. Thick lines

visualize the non-linear model, Outcomet � aþ Dð1� expð�b tÞÞ.
d ¼ days; m ¼ months; NIHSS¼ National Institutes of Health

Stroke Scale.
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were excluded from the analysis for reasons detailed in

Supplementary Fig. 1. In summary, 1 patient demon-

strated extensive stroke lesions preventing reliable regis-

tration and automated cortical segmentations and 17

patients were lost to follow-up. In total, clinical and

imaging data from the remaining 30 patients as detailed

in Supplementary Table 2 were included in the analysis.

Imaging and clinical testing in the acute phase took

place after a median of 4 [inter-quartile range (IQR) 3–5]

days. Assessment in the early to late subacute and chron-

ic phases was performed 5.0 (4.3–6.1), 14.5 (13.3–16.0)

and 51.9 (49.3–53.4) weeks after stroke, respectively.

Clinical data

Baseline demographics

Of the 30 stroke patients included for analysis, 12 were

female; age was 64.7 6 12.5 years (mean 6 standard de-

viation); 16 (53.3%, CI95 [34.6, 71.2]%) had a lesion in

the left hemisphere; the infarct volume as measured at

the first time point, 3–5 days after stroke, ranged from

0.6 to 69.2 ml (median 3.4 ml, IQR 1.7–16.5 ml). The

lesions were predominantly located in subcortical brain

areas, involving the centrum ovale, the corona radiata

and the internal capsule (Supplementary Fig. 2). Lesions

in the left and right hemispheres were of comparable size

(P¼ 0.27).

Initial severity of stroke symptoms ranged from 0 to 13

on the NIH Stroke Scale (median 3, IQR 2–7). In this

group of clinically mildly to moderately affected patients,

quasi-Poisson regressions indicated that patients with

larger infarct volumes were affected more severely in the

acute phase (P3–5d ¼ 0.04), but not at the later time

points at 1, 3 or 12 months after stroke. There was no

effect of side of the lesion, nor age or sex of the patient,

on stroke severity.

Impairments in motor function and residual function of

the affected hand were quantified in the acute phase as

relative grip strength ranging from 0 to 1.12 (median

0.68, IQR 0.26–0.83) and FM score ranging from 4 to

66 (median 56, IQR 32–63). In these motor specific out-

come measures, there was no statistically significant asso-

ciation with infarct size or side of the lesion, nor with

age or sex of the patient.

Given these baseline results, and to increase the parsi-

mony of our models, side of the lesion, age and sex of

the patient were not included as covariates in subsequent

non-linear regression analyses.

Time course of symptom severity and motor

function

Over the observation period, most patients improved clin-

ically as demonstrated in Fig. 1. Frequently, no relevant

clinical deficits were observed 1 year after stroke: The

median NIHSS score improved to 0 (IQR 0–2.25), me-

dian ratio of grip strength to 0.91 (IQR 0.82–1.02) and

median FM score to 66 (IQR 57.5–66). Growth curve

analyses indicated statistical superiority of exponential

models (AICNIHSS
exp ¼ 490.2, AICrGS

exp ¼ -17.2, AICFM
exp¼

877.2) over linear fits (AICNIHSS
lin ¼ 524.2, AICrGS

lin ¼
10.7, AICFM

lin ¼ 905.2) for the time course of each of the

three outcome variables (Table 1).

Network properties

The mean intra-hemispheric network density, i.e. the pro-

portion of non-zero connections, was 95.7% 6 1.6%

with no significant differences between ipsi- and contrale-

sional hemispheres or between time points.

Effects of time and hemisphere condition on global

graph measures

During the acute stage, 3–5 days after stroke, no differ-

ences in median edge weight q50 or topological graph

measures were observed between ipsi- and contralesional

hemispheres. Analysis of numerical measures of intra-

hemispheric connectivity revealed that, based on the AIC,

the time course of q50 was better described by an expo-

nential than a linear model (AICexp ¼ �1038.3, AIClin ¼
�992.2). The temporal profiles of intra-hemispheric q50

(Fig. 2) did not differ significantly between ipsi- and con-

tralesional hemispheres with a trend towards larger de-

cline in stroke hemispheres (Dipsi¼�0.0060 6 0.0038,

P¼ 0.11). Subgroup modelling showed a significant expo-

nential decline of median edge weight in stroke hemi-

spheres (D ¼ �0.0076 6 0.0037, P¼ 0.04; AICexp ¼
�544.1, AIClin ¼ �523.0), but did not reveal a signifi-

cant effect of time on q50 in contralesional hemispheres

(D ¼ �0.0038 6 0.0045, P¼ 0.39; AICexp ¼ �509.2,

AIClin ¼ �486.7). Further details, including estimates of

the nuisance model parameters a and b are given in

Supplementary Table 3.

Growth curve analysis of whole-hemisphere global

graph parameters using non-linear mixed-effects regres-

sion modelling revealed consistent effects of time (Fig. 2,

Table 2). Global efficiency declined exponentially over

Table 1 Statistical details of clinical time course

Clinical outcome Point estimate SE P

NIHSS a 4.552 0.520 1.75e-13

b 1.199 0.341 7.00e-04

D �3.033 0.320 6.03e-15

rGS a 0.482 0.072 3.26e-09

b 1.040 0.333 2.52e-03

D 0.288 0.036 8.71e-12

FM a 41.690 4.224 1.06e-15

b 5.093 21.090 8.10e-01

D 10.860 1.430 3.98e-11

Point estimates, standard errors and P-values for model parameters a (initial value), b

(rate of change) and D (total amount of change) obtained from fitting the exponential

model (1) to temporal profiles of clinical outcome parameters. Standard errors and P-

values result from non-linear mixed-effects regressions fit using the R package nlme. P-

values for D of less than 0.05 are marked in bold.

FM ¼ Fugl-Meyer; NIHSS ¼ National Institutes of Health Stroke Scale; rGS ¼ relative

grip strength; SE ¼ standard error.
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time in the ipsilesional hemisphere but not the contrale-

sional hemispheres. Modularity increased significantly in

both hemispheres, with a numerically larger effect ipsile-

sionally. These effects were not sensitive to the choice of

network density and persisted over a wide range of

thresholds (Supplementary Figs 3 and 4). Inclusion of age

and sex as nuisance regressors did not substantially

change the results (not shown).

As detailed in the Supplementary Tables 4 and 5,

changes in the local graph parameters strength, efficiency

and clustering were larger in ipsilesional than contrale-

sional hemispheres, and most pronounced in parts of the

frontal, parietal and limbic lobes involving primary

motor, premotor and supplementary motor areas as well

as the cingulate cortex.

Association of network properties with lesion

volume

Global network measures at different time points after

stroke are depicted in relation to lesion volume in Fig. 3.

Non-linear mixed-effects modelling revealed a significant

positive association between lesion volume and global

connectivity decline in ipsilesional but not contralesional

hemispheres (Pinteraction ¼ 4.90� 10�5). Specifically,

greater loss of ipsilesional median connectivity was

observed in patients with larger stroke lesions. Analogous

effects were observed for markers of global network top-

ology with higher lesion volumes being associated with a

larger decline in ipsilesional efficiency and larger increase

in ipsilesional modularity. There was no evidence of a re-

lationship between size of the infarct and contralesional

network metrics. Statistical details are provided in

Table 3. These effects were stable across network den-

sities imposed by proportional thresholding of network

matrices (Supplementary Figs 5 and 6). Paralleling global

topology, change in local network integrity on the side of

the lesion, but not contralesionally, was modulated by le-

sion volume (Supplementary Tables 6 and 7).

Table 2 Statistical details of time course of global graph measures

Joint model Ipsilesional Contralesional

Estimate SE P Estimate SE P Estimate SE P

Efficiency a 7.024 0.030 1.29e-238 7.008 0.032 3.82e-114 7.039 0.035 4.97e-111

b 1.094 1.114 0.3272 1.092 1.072 0.3117 1.096 1.913 0.5683

D �0.017 0.021 0.4101 �0.050 0.019 0.0110 �0.031 0.021 0.1465

Dipsi �0.047 0.020 0.0215

Modularity a 0.021 0.001 1.64e-34 0.021 0.002 1.11e-23 0.021 0.002 1.13e-20

b 0.997 0.595 0.0952 0.996 0.536 0.0668 0.998 0.956 0.2994

D 0.003 0.001 0.0045 0.005 0.001 1.04e-05 0.003 0.001 0.0098

Dipsi 0.002 0.001 0.0663

Point estimates, standard errors and P-values of model parameters obtained from fitting the exponential model (1) to temporal profiles of intra-hemispheric global graph parame-

ters. In the joint model, the parameter of topological change, D, was allowed to vary between stroke and intact hemispheres. Standard errors and P-values result from non-linear

mixed-effects regressions fit either jointly (‘joint model’) or separately for stroke (‘ipsilesional’) and intact (‘contralesional’) hemispheres, using the R package nlme. P-values of D
(separate) and Dipsi (joint) of less than 0.05 are marked in bold.

SE ¼ standard error.

Figure 2 Time course of global graph measures. Temporal

profile of intra-hemispheric global network measures in

ipsilesional (red) and contralesional (blue) hemispheres.

Horizontal axes indicate time after stroke. Circles and bars

represent cross-sectional means and standard errors, respectively.

Solid lines visualize modelled exponential change. d ¼ days; m ¼
months; q50 ¼ median connectivity.

Figure 3 Association between global topology and infarct

size. Relation between global network measures of ipsilesional

(red) and contralesional (blue) hemispheres, and stroke lesion

volume. Line segments represent cross-sectional predicted means

of network measures in the acute (3–5 days, squares, solid),

subacute (1 month, circles, dashed; 3 months, triangles, dot-

dashed), and chronic (12 months, diamonds, dotted) phases after

stroke. q50 ¼ median connectivity.
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Association of network properties with clinical

variables

Table 4 reports statistical details of regression analyses

between change in global network topology and clinical

outcome, adjusted for stroke lesion volume. Greater de-

cline of ipsilesional median connectivity until 1, 3 and 12

months after stroke was associated with higher NIHSS

score (P¼ 0.0354), lower relative grip strength

(P¼ 0.0218), and lower FM score (P¼ 0.0069) at these

time points. Similarly, decrease of global efficiency and

increase of global modularity in stroke hemispheres were

associated with higher NIHSS scores (PEff ¼ 0.0100,

PMod ¼ 0.0044) as well as lower relative grip strengths

(PEff ¼ 0.0485, PMod ¼ 0.1585) and lower FM scores

(PEff ¼ 0.0504, PMod ¼ 0.0303).

Exploratory post hoc tests for associations between

change in topology and clinical outcome at fixed time

points revealed consistent effects that were strongest after

3 months, but did not, individually, reach statistical sig-

nificance. Supplementary Figs 7 and 8 provide a visual

representation of clinical outcome parameters in relation

to change in global network metrics. Stronger associa-

tions were observed if lesion volume was not included as

a nuisance regressor (Supplementary Table 8). In contrast

to change in network topology, absolute values of global

graph parameters were not associated with clinical out-

come (Supplementary Fig. 9). Global network measures

at baseline did not predict clinical parameters at later

times.

Mass-univariate two-stage linear and quasi-Poisson

regressions identified associations between change in local

connectivity and clinical outcome in a total of seven

brain areas. Higher residual NIHSS scores were most

strongly associated with loss of local connectivity in pre-

central, post-central, inferior frontal and cingulate corti-

ces, as well as the thalamus. Statistical details including

lesion volume corrected regression results are provided in

Supplementary Tables 9 and 10.

Discussion
Our longitudinal study examined how global network

properties of structural brain networks change after is-

chaemic stroke and how topological variations relate to

lesion volume and clinical outcome. We found that struc-

tural brain networks after motor stroke evolve over time

in both ipsi- and contralesional hemispheres with a drift

towards structural degeneration, impaired integration and

greater segregation, which was more pronounced in hemi-

spheres directly affected by stroke. In ipsilesional, but not

contralesional hemispheres, this change was modulated

by the volume of the ischaemic lesion with greater differ-

ences in network properties between chronic and acute

phases observed in patients with larger strokes. Finally,

the magnitude of post-stroke change in structural con-

nectivity was associated with residual symptom burden

and motor impairment; for most associations, this was in-

dependent of lesion volume. There was no evidence of

significant increases in structural integrity of brain net-

works after stroke.

Brain network disruptions after ischaemic stroke are

mediated by loss of structural integrity in white matter

Table 3 Statistical details of effect of lesion volume on global graph measures

Joint model Ipsilesional Contralesional

Estimate SE P Estimate SE P Estimate SE P

q50 a 0.473 0.005 6.62e-155 0.471 0.005 8.29e-80 0.473 0.006 1.20e-73

b 1.054 0.736 0.1536 1.009 0.599 0.0962 1.018 3.004 0.7356

D �0.002 0.005 0.6575 0.007 0.005 0.1729 �0.002 0.006 0.7662

Dipsi 0.012 0.005 0.0274

Dvol 0.000 0.002 0.8546 �0.009 0.002 0.0002 �0.001 0.003 0.7092

Dvol:ipsi �0.011 0.003 4.90e-05

Efficiency a 7.030 0.030 2.16e-231 7.008 0.031 1.14e-111 7.037 0.036 1.36e-106

b 1.158 0.885 0.1921 1.089 0.787 0.1704 1.093 1.940 0.5749

D �0.025 0.030 0.4025 0.002 0.028 0.9546 �0.027 0.031 0.3831

Dipsi 0.043 0.028 0.1304

Dvol 0.009 0.014 0.5286 �0.033 0.013 0.0115 �0.003 0.014 0.8566

Dvol:ipsi �0.054 0.014 0.0002

Modularity a 0.021 0.001 3.67e-34 0.021 0.001 1.27e-23 0.021 0.002 3.93e-20

b 0.604 0.293 0.0403 0.996 0.455 0.0315 0.999 0.960 0.3014

D 0.003 0.002 0.0760 0.002 0.001 0.2207 0.002 0.002 0.1785

Dipsi �0.002 0.002 0.2850

Dvol 0.000 0.001 0.7787 0.002 0.001 0.0038 0.001 0.001 0.4957

Dvol:ipsi 0.002 0.001 0.0058

Point estimates, standard errors and P-values of model parameters obtained from fitting the exponential model (1) to temporal profiles of global graph measures. In the joint model,

total change D is modelled as a linear function of log lesion volume, with both intercept and slope allowed to vary between stroke und intact hemispheres. Standard errors and P-val-

ues result from non-linear mixed-effects regressions fit either jointly (‘joint model’) or separately for stroke (‘ipsilesional’) and intact (‘contralesional’) hemispheres, using the R

package nlme. P-values of Dvol (separate) and Dvol: ipsi (joint) of less than 0.05 are marked in bold.

q50 ¼ median connectivity; SE ¼ standard error.
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tracts. In this study, this was reflected by a decline of nu-

merical connectivity in stroke hemispheres, which

occurred predominantly over the first 3 months after the

insult. In agreement with previous results on network

changes in chronic stroke patients obtained in our group

(Cheng et al., 2019b), this ipsilesional network disruption

manifested topologically as a decline of global efficiency

and an increase in global modularity which were robustly

identified in supplementary sensitivity analyses at different

network densities. The chosen graph-theoretical measures

represent the notions of integration and functional segre-

gation in large-scale networks and are known to be

altered in a variety of neurological disorders (Bassett and

Bullmore, 2009).

Lesion volume is a known predictor of clinical severity

and symptom burden in both the acute and chronic

phase of stroke. However, association of infarct volume

with clinical outcome and brain function is limited as

shown by overall moderate correlations (Shelton and

Reding, 2001; Page et al., 2013). In our group of

patients with upper extremity motor deficits, size of the

ischaemic lesion modulated the extent of topological net-

work changes after stroke in a time-dependent pattern.

Larger lesion volumes were associated with both loss of

global efficiency and gain in modularity during the sub-

acute and chronic stages, whereas the association between

lesion volume and connectome changes at the acute phase

3–5 days after stroke was less pronounced (Fig. 3). We

hypothesize that this is due to the relatively small lesion

volumes observed in our group of patients, where stra-

tegically located lesions [such as the internal capsule, (see

Supplementary Fig. 2)] resulted in relevant motor deficits,

however, causing only subtle changes in global connectivity

or topology of the large-scale structural connectome.

During the later time points after stroke, disruptions of the

structural brain networks became more apparent and de-

pendent on lesion volume, potentially reflecting the patho-

physiological processes of secondary neurodegeneration

known to occur after isolated stroke lesions (Zhang

et al., 2012).

In this study, we focused on patients with upper ex-

tremity motor deficits as a common and highly relevant

clinical impairment in ischaemic stroke. Symptom severity

was measured by the NIHSS score, motor impairment by

the FM score and relative grip strength, respectively. In

our group of patients, we observed a comparatively large

between-subject variability of global network metrics and

alterations in ipsilesional structural topology which first

appeared during the early subacute phase and persisted

throughout the chronic phase. We, therefore, hypothe-

sized that the dynamic change of network parameters

might be more important for motor outcome than their

absolute values at each time point. We found that

throughout the study period a greater decline of global

efficiency and greater increase in modularity were associ-

ated with greater residual symptom burden and motor

impairment. The association persisted after correcting for

the effect of lesion volume, thus establishing change in

global network topology as an important factor for clin-

ical outcome beyond the volume of initially damaged

brain tissue.

In general, longitudinal studies of white matter integrity

after stroke are far scarcer than reports from cross-sec-

tional investigations. The time course and dynamics of

topological network changes in our study are, however,

in line with previous studies demonstrating progressive

losses of structural integrity in white matter tracts over

the period of 3 months after stroke (Koch et al., 2016).

Beyond changes of brain structure, reorganization after

stroke of functional brain networks involved in motor

execution is associated with clinical recovery (Wang

et al., 2010). Adaptive changes in functional brain net-

works might, therefore, account for dynamics of clinical

recovery of our patients unexplained by structural net-

work topology. Future work is necessary to elucidate

interactions between changes in structural and functional

Table 4 Statistical details (corrected for lesion volume) of association between change in global network topology

and clinical outcome

Pooled model 1 month 3 months 12 months

Estimate SE P Estimate SE P Estimate SE P Estimate SE P

NIHSS q50 �21.681 10.113 0.0354 �4.808 12.142 0.6956 �20.699 13.938 0.1517 �13.199 12.755 0.3120

Efficiency �5.140 1.944 0.0100 �1.254 2.359 0.5998 �4.160 2.492 0.1092 �2.597 2.172 0.2446

Modularity 178.002 60.607 0.0044 11.984 61.468 0.8471 157.379 58.341 0.0132 44.011 52.645 0.4121

rGS q50 6.236 2.654 0.0218 3.535 3.433 0.3139 3.172 4.091 0.4472 3.240 2.823 0.2654

Efficiency 1.179 0.587 0.0485 1.065 0.727 0.1567 0.454 0.785 0.5691 0.436 0.516 0.4094

Modularity �29.932 20.989 0.1585 1.017 20.549 0.9610 �9.405 24.304 0.7028 �12.808 14.035 0.3729

FMa q50 �36.726 13.215 0.0069 �17.404 15.792 0.2814 �19.105 18.981 0.3251 �26.294 16.528 0.1259

Efficiency �5.192 2.610 0.0504 �2.291 2.722 0.4083 �2.622 3.609 0.4751 �3.089 2.841 0.2886

Modularity 180.020 81.492 0.0303 �4.026 70.267 0.9548 105.828 90.111 0.2528 91.112 60.574 0.1468

Regression coefficients (point estimates, standard errors and P-values) on the link scale between change in global network measures and clinical outcome. Log-transformed lesion

volume is included as a nuisance regressor. In the case of NIHSS and FMa:¼66-FM scores, quasi-Poisson regressions with a log-link are used; in the case of relative grip strength, a

Gaussian regression with identity link is used. The first three columns (‘pooled model’) represent pooled estimates from joint two-stage regressions across the subacute and chronic

stages. P-values 0.05 are marked in bold.

FM ¼ Fugl-Meyer; NIHSS ¼ National Institutes of Health Stroke Scale; rGS ¼ relative grips strength; SE ¼ standard error.
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brain networks after stroke. Despite having long-range

global effects on cerebral network architecture, stroke

lesions do not equally affect all parts of the structural

connectome. Given the selection of patients based on

motor deficits of the upper extremities, we expected a

distinct pattern of localized changes in network parame-

ters. Using the local graph parameters strength, efficiency

and clustering, we localized alterations in topology to

brain regions in the frontal, parietal and temporal lobes,

as well as subcortical structures (see Supplementary mate-

rials). While some of these regions were affected directly

by the ischaemic lesion and are thus expected to display

altered connectivity patterns, others reflect the secondary

effects of structural disconnections. Our investigation of

the association between change in local network topology

and clinical outcome identified a sub-network consisting

of seven cortical areas including primary motor and pre-

motor, as well as supplementary motor and association

cortices involved in planning and execution of motor

functions. While motor recovery after stroke in relation

to changes in functional brain connectivity has been

investigated extensively (Grefkes and Fink, 2011, 2014;

Siegel et al., 2018), reports on changes of large-scale con-

nectivity and topology of structural brain networks after

stroke are scarce (Carter et al., 2012; Aerts et al., 2016).

It is, however, known that localized structural lesions in-

duce changes in distant, yet connected brain regions after

stroke leading to widespread disruption of white and

grey matter integrity. Work from our group demonstrated

preferential reduction of cortical thickness in distant brain

areas connected to subcortical ischaemic lesions over a

time frame of 1 year after stroke (Cheng et al., 2019a).

Changes of local ‘connectedness’ in cortical brain regions

induced by an ischaemic lesion was shown to predict

subsequent volumetric atrophy of that area after

6 months (Kuceyeski et al., 2014). Furthermore, structural

connectivity of selected pathways such as the corticospi-

nal tract, alternate corticofugal pathways and selected

cortico-cortical connections have been analysed in relation

to residual motor function in cross-sectional and longitu-

dinal studies (Koch et al., 2016).

In terms of large-scale network changes during the

early chronic stage after stroke, the effect of focal ischae-

mic lesions on neurological deficits has been related to

changes in the topological properties of the structural

brain network in a limited number of cross-sectional

studies. Animal studies with experimental stroke models

and high-resolution diffusion-tensor MRI demonstrated

impaired integration and increased segregation parameters

as well as hub shifts of empirical and simulated structural

networks (Sinke et al., 2018; Straathof et al., 2019). In

humans, severity of aphasia has been linked to disruption

of structural hubs in a language network (Gleichgerrcht

et al., 2015b), apathy and post-stroke depression have

been found to be related to reduced local and global effi-

ciency in distributed sub-networks. Structurally, reduced

centrality measures in stroke hemispheres (Lee et al.,

2015), as well as reduced communicability (Crofts et al.,

2011) and a modified backbone structure in contrale-

sional hemispheres have been described. In a different co-

hort, nodal centrality measures of the inferior parietal

lobe and the posterior cingulate gyrus were associated

with motor impairment on the FM scale and immediate

recall, respectively (Zhang et al., 2017). Taken together,

these results indicate a common tendency and topological

pattern of disintegration in structural brain networks

after stroke characterized by an impaired potential of

long-range integration of information transfer combined

with increased segregation in a more modular network

architecture. Our findings are in line with these observa-

tions and add novel information concerning the longitu-

dinal evolution of large-scale structural changes in the

structural connectome after stroke.

In our study, we found no evidence of specific increases

in structural connectivity as a correlate of compensatory

brain plasticity. Previous studies indicated co-localized

increases of cortical thickness with functional brain activ-

ity associated with the recovery of somatosensory deficits

after stroke (Schaechter et al., 2006). Regarding the struc-

tural connectome, changes of network measures such as

increased communicability have been found in two previ-

ous studies and discussed to indicate structural plasticity

after stroke (Crofts et al., 2011; Sinke et al., 2018). In

our group of patients, recovery was generally favourable

and associated with lower extent of structural disintegra-

tion, both in terms of network connectivity and topology.

Further studies including data from functional imaging

are needed to elucidate the mechanisms of changes in

structural connectivity to promote or restrict motor re-

covery after stroke. Whereas the longitudinal design and

detailed clinical and imaging characterization of our

patients are strengths of these studies, there are several

limitations to consider. Our study design did not include

longitudinal structural network data for a group of

matched control subjects, which would allow the disen-

tanglement of network changes due to ageing from le-

sion-induced disruptions. However, the relatively short

observation period of 1 year, the small effect of age on

network topology in healthy individuals (Caeyenberghs

and Leemans, 2014; Zhao et al., 2015), and the charac-

teristic non-linear shape of connectivity changes in our

study would speak against ageing-related effects as con-

founding factors in our study. In our prospective cohort

design, subjects were included after the occurrence of

stroke. We, therefore, did not have access to detailed pre-

stroke imaging or clinical data, prohibiting any conclu-

sions about topological features affecting resilience and

vulnerability of networks to focal lesions. Specifically, fu-

ture studies will have to elicit the interplay between the

effect of focal stroke lesions and (pre-existing) white mat-

ter alterations and structural network changes after

stroke. Our approach to reconstructing the structural

connectome using probabilistic tractography is well-estab-

lished and validated against ground-truth models (Gao
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et al., 2013). Nonetheless, no definite consensus has so

far been reached in the community about the optimal

choice of algorithm or tuning parameters for network re-

construction. Patients in our cohort had a comparatively

low lesion volume and were selected by the presence of

motor symptoms. Our results are, therefore, not directly

generalizable to more severely affected patients with

higher lesion volumes and different stroke phenotypes.

However, larger stroke lesion volumes also pose signifi-

cant challenges for the analysis of structural connectomes

in the ipsilesional hemisphere leading to inaccurate image

registration and network parcellations.

Conclusion
In summary, we demonstrate that structural brain net-

works after ischaemic stroke show a dynamic loss of in-

tegration and an increase in segregation by 12 months

after stroke, paralleling the time course of clinical recov-

ery. Alterations in global topology over time are more

pronounced in ipsilesional hemispheres where they are

modulated by lesion volume but are also present con-

tralesionally. Residual symptom burden and motor im-

pairment are associated with the extent of altered

network architecture independently of lesion volume. Our

results motivate further studies of longitudinal evolutions

in the human connectome after stroke, particularly in

combination with data from functional brain

connectivity.
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Communications online.
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