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Abstract: Cardiovascular disease, especially coronary heart disease and cerebrovascular disease, is a
leading cause of mortality and morbidity in women globally. The development of cardiometabolic
conditions in pregnancy, such as gestational diabetes mellitus and hypertensive disorders of preg-
nancy, portend an increased risk of future cardiovascular disease in women. Pregnancy therefore
represents a unique opportunity to detect and manage risk factors, prior to the development of
cardiovascular sequelae. Risk prediction models for gestational diabetes mellitus and hypertensive
disorders of pregnancy can help identify at-risk women in early pregnancy, allowing timely interven-
tion to mitigate both short- and long-term adverse outcomes. In this narrative review, we outline the
shared pathophysiological pathways for gestational diabetes mellitus and hypertensive disorders
of pregnancy, summarise contemporary risk prediction models and candidate predictors for these
conditions, and discuss the utility of these models in clinical application.

Keywords: cardiovascular; risk prediction; pregnancy; gestational diabetes; hypertensive disorders
of pregnancy; preeclampsia

1. Introduction

Cardiovascular disease (CVD), encompassing coronary heart disease, stroke and heart
failure, is the leading cause of death in women worldwide [1,2]. Beyond the traditional risk
factors for CVD, including diabetes mellitus and hypertension, reproductive factors such
as adverse pregnancy outcomes are increasingly associated with long-term cardiovascular
health [3]. Pregnancy represents a state of increased cardiovascular stress, leading to signif-
icant metabolic and haemodynamic maternal adaptations to support foetal growth. The
unmasking of metabolic disorders, such as gestational diabetes mellitus (GDM) and hyper-
tensive disorders of pregnancy (HDP), in women with pre-existing vascular dysfunction [3],
has key implications for the development of future cardiometabolic disease [4].

GDM is a form of glucose intolerance occurring during pregnancy and is increasingly
prevalent, affecting between 2 to 14% of pregnancies [5]. GDM confers an increased risk
of perinatal complications, including foetal macrosomia, preterm labour and increased
caesarean delivery rates [6,7]. A diagnosis of GDM has long-term implications for women,
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where the lifetime risk of progression to type 2 diabetes mellitus (T2DM) is up to seven-
fold [8]. Key findings from a systematic review and meta-analysis of over 5 million women
between 1950 to 2018 showed that women with a history of GDM had a two-fold higher risk
of cardiovascular events postpartum, compared with women without GDM, independent
of the development of T2DM [9].

HDP, including preeclampsia (PE), complicate up to 10% of all pregnancies and repre-
sent a major cause of maternal and perinatal morbidity and mortality [10,11]. Women with
a history of PE have double the risk for future CVD [12], while women with hypertensive
pregnancies have a two- to eight-fold greater risk of developing chronic hypertension,
compared to those with normotensive pregnancies [13].

Epidemiological studies demonstrate an increased risk of HDP in women with GDM [10]
and vice versa [14], suggesting shared pathophysiological pathways, via insulin resistance
(IR) and obesity. IR is an established precursor for the development of T2DM and is also
thought to induce hypertension via cellular, circulatory, and neurological mechanisms [14].
Obesity increases IR and confers 4-fold [15] and 10–15% [16] increased risks for GDM
and preeclampsia, respectively, compared with women of normal weight. Taken together,
epidemiological data reinforces IR and obesity as putative factors and a shared link between
GDM and HDP.

Prediction models have been developed with the aim of providing personalised risk
assessment to identify at-risk women in early pregnancy, so that timely intervention can
be delivered to mitigate adverse outcomes. However, the reliability and utility of these
models for the prediction of GDM and HDP are limited. There is considerable heterogeneity
between studies comparing prediction models, leading to a push for greater emphasis to be
placed on methodologically sound and externally validated studies [17]. Recent advance-
ments in the risk prediction modelling landscape may help overcome these shortcomings,
including the development of the Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis (TRIPOD) initiative [18], availability of big
data sets for external validation studies and updating models to optimise performance [19].
The use of sophisticated approaches, such as machine learning algorithms, may comple-
ment traditional statistical modelling and assist clinical decision making [20]. On the
other hand, unsupervised machine learning techniques may help to reduce the number of
predictor variables to a manageable size when dealing with a very large dataset, such as
genomic biomarkers [21].

This scoping review aims to provide an updated summary of contemporary risk
prediction models for GDM and HDP in women with singleton pregnancies, highlight
information gaps and discuss the utility of these models in clinical application. We identify
shared candidate predictors for both GDM and HDP, which can help build on estab-
lished models and inform the development of a novel prediction model for composite
cardiometabolic complications in pregnancy.

2. Methods

We conducted a systematic literature search in Ovid MEDLINE and PubMed. Articles
for GDM risk prediction models were searched from 2016 to June 2021, as an update to the
review by Kenelly and McAuliffe [5] on risk prediction models in GDM, published in 2016.
Our search strategy incorporated the following search terms: [“Validat$.mp or Predict$.ti
or Rule$.mp” OR “(Model$ or Clinical$).mp” OR “(Decision$ and (Model$ or Clinical$
or Logistic models)).mp” OR “Stratification.mp or ROC Curve/or Dicrimination.mp or
cstatistic.mp or Algorithm.mp or Multivariable.mp”] AND [“diabetes, gestational” OR
“(gestation* adj4 diabet*).ti, ab” OR “GDM”].

In June 2018, recommendations from the International Society for the Study of Hyper-
tension in Pregnancy (ISSHP) were established to provide a living guideline for diagnosing
and managing HDP [22]. As such, for HDP risk prediction models, the literature search
included articles from 2018 to June 2021, to reflect the updates in HDP classification and
diagnosis. The following keywords were employed in our literature search: [“Validat$.mp
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or Predict$.ti or Rule$.mp” OR “(Model$ or Clinical$).mp or Logistic Models/” OR “(Prog-
nostic and (History or Variable$ or Criteria or Score$ or Characteristic$ or Finding$ or
Factor$ or model$)).mp” OR “Stratification.mp or ROC Curve/or Dicrimination.mp or
cstatistic.mp or Algorithm.mp or Multivariable.mp”] AND [“hypertension, pregnancy-
induced/or pre-eclampsia/” OR “(pre eclamp* or preeclamp*).tw,kw.” OR “(hypertens*
adj3 (pregnan* or gestation* or maternal)).tw,kw.”].

The literature search was limited to studies carried out in humans and published in
English. For each of the searches, two independent reviewers performed the screening and
data extraction.

3. Gestational Diabetes Mellitus

Screening and diagnostic criteria for GDM varies between countries and resource
settings. Biochemical testing for GDM is most commonly undertaken between 24 to
28 weeks gestation, via an oral glucose tolerance test (OGTT), in women not known to
have a previous history of diabetes [23]. Growing evidence suggests GDM screening
should be performed earlier in pregnancy, as excessive foetal growth is present by the time
GDM is diagnosed at 28 weeks of gestation in women of normal weight, and at 20 weeks
in women with overweight or obesity [24]. A recent meta-analysis reported that a high
proportion (15–70%) of GDM could be detected in the first trimester. Perinatal mortality
and neonatal hypoglycaemia were significantly increased amongst women with early-
onset, compared to late-onset GDM [25], potentially reflecting worse outcomes in those
with unrecognized disorders of glucose metabolism prior to conception. Therefore, the
International Association of Diabetes and Pregnancy Study Groups (IADPSG) recommends
that women at high risk of GDM can be screened in early pregnancy, at the first prenatal
visit [26]. The development and use of personalised risk scores, aimed at identifying high-
risk women for hyperglycaemia in early pregnancy, may allow more time for intervention
to optimise pregnancy outcomes [27]. We evaluated 23 studies on risk prediction models
for GDM, published from 2016 onwards.

3.1. Clinical Risk Factors

The earliest first trimester prediction models developed by Teede in 2011 [4] and Van
Leeuwen in 2009 [5], have shown moderate-to-good overall performance in predicting
GDM. Teede and colleagues [4] developed a risk prediction tool in early pregnancy, in-
corporating the clinical variables of maternal age, BMI, ethnicity, family history of GDM,
and past history of GDM. In this model, the validation group clinical scores achieved a
sensitivity of 61.3% and specificity of 71.4%, with an area under the curve of 0.703. Van
Leeuwen’s model [5] incorporated similar risk variables and achieved a sensitivity of 75%
and specificity of 57.8%, with an area under the curve of 0.77. Presently, the Teede and Van
Leeuwen models are regarded to be the best performing models, having been externally
validated across several different populations, with consistent results [28,29]. Meertens
and colleagues [29] validated 12 selected risk prediction models published between 1997 to
2017, in a Dutch cohort of 5260 women. The discriminative performance of the included
models ranged from 68% to 75%, with nearly all models overestimating the risk, which
improved with recalibration. Schaefer and colleagues [30] devised a scoring system based
on clinical risk factors including age, BMI, weight gain and family history of GDM, which
had moderate discriminative performance for GDM prediction in Chinese women. Notably,
this study incorporated early weight gain as a variable, which had not been considered
in other models. A prediction model by White and colleagues [31] focussed on early pre-
diction of GDM in women with obesity (BMI ≥ 30), using clinical and anthropometric
variables such as age, previous GDM, family history of T2DM, systolic BP, sum of skinfold
thickness, waist-to-height and neck-to-thigh ratios, with the rationale that BMI is a poor
index of fat mass. This model had moderately good discriminative performance (AUC
0.71), which was enhanced with the addition of candidate biomarkers (random glucose,
HbA1c, fructosamine, adiponectin, sex hormone binding globulin and triglycerides).
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In the aforementioned models, risk prediction relies on a previous history of GDM as
the strongest risk factor for recurrent GDM, so that this is not applicable to women in their
first pregnancy. Nulliparous women appear to have a different risk profile compared to
multiparous women, where the risk of adverse birth outcomes appears to be higher in the
former [32]. Furthermore, it is plausible that a previous diagnosis of GDM may increase
awareness of GDM risk in subsequent pregnancies and encourage behaviour modification
to ameliorate this risk. So far, only a small handful of models have been tailored to assess
GDM risk in nulliparous women. Donovan and colleagues [33] rigorously developed a
prediction model using a large, racially and ethnically diverse cohort of over 1 million
nulliparous women, which included five risk factors (race/ethnicity, age at delivery, pre-
pregnancy BMI, family history of diabetes and pre-existing hypertension). This model
was validated internally and externally, achieving moderate predictive performance in
nulliparous women with AUCs of 0.732 and 0.710 in the internal and external cohorts, sensi-
tivities of 70.8% and 76.7%, and correct classification of 64.3% and 57.1%, respectively. A key
strength of this model was a subgroup analysis, which assessed model performance among
specific racial/ethnic groups, with particularly good discriminative ability in Hispanic and
African American populations.

3.2. Biomarkers and Biophysical Variables

Maternal multi-marker serum screening for chromosomal aneuploidy and neural tube
defects is routinely offered to women in the first and early-second trimester. The use of
biologically plausible serum biomarkers may improve the ability of current GDM predic-
tion models in early pregnancy. Novel maternal aneuploidy and lipid biomarkers, such as
pregnancy-associated plasma protein A (PAPP-A), unconjugated oestriol (uE3), dimeric
inhibin-A (INH) and lipocalin-2, were studied in three prediction models [34,35]. Snyder
et al. found that the addition of PAPP-A only and PAPP-A, uE3 and INH to maternal
characteristics (ethnicity, age at delivery, pre-pregnancy BMI) in nulliparous women was
found to increase model performance slightly [34]. A combined clinical and first-trimester
aneuploidy and preeclampsia screening model was studied in a multiethnic Australian
cohort, where the inclusion of PAPP-A, mean arterial pressure (MAP) and uterine artery pul-
satility index (UtA-PI) appeared to improve screening efficacy, albeit only marginally [36].
In this cohort, ethnicity appeared to modify biomarker association with GDM. Namely,
lipocalin-2 and triglycerides performed best in Caucasian and South Asian women, respec-
tively [35]. A two-step approach combining fasting plasma glucose and high molecular
weight adiponectin at 12–15 weeks gestation in women deemed to be at high risk of GDM,
was shown to improve sensitivity and predictive ability of the 2011 Teede model [37,38].
Two studies found that the addition of common, low-cost candidate biomarkers (fast-
ing/random plasma glucose, triglycerides and HbA1c) enhanced predictive performance
of early GDM in women with overweight [39] or obesity [31]. The addition of HbA1c and
sex hormone binding globulin (SHBG) collected between 6 to 14 weeks of pregnancy also
had a significant, albeit slight improvement, to model performance [40]. In recent years,
there has been growing interest regarding genetic susceptibility to GDM and the candidacy
of genetic biomarkers as screening tools for GDM. DNA methylation and microRNAs have
been widely studied in GDM and hold potential as diagnostic or prognostic markers [41].
One model incorporated genetic polymorphism scores for the prediction of GDM in South
Asian women, with only moderate predictive performance (AUC = 0.65) [42]. However,
differences in allele frequencies between ethnicities, suggest that these genetic associations
may not be reproducible across different populations. While promising, there is currently
insufficient evidence to recommend the use of genetic biomarkers in the prediction of
GDM. Furthermore, the cost-effectiveness of these biomarkers in GDM prediction remains
limited and implementation may not be feasible in low-resource settings. Nevertheless,
this remains an area of growing interest as the increasing availability of genome-wide
association studies (GWAS) and Mendelian randomisation may help uncover complex,
polygenic disease aetiologies [43].
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3.3. Modifiable Risk Factors

Observational data from the past decade demonstrate that lifestyle factors, before and
during pregnancy, are associated with GDM risk [44]. Targeting modifiable lifestyle factors,
such as smoking, diet quality and physical activity [45] in early pregnancy, could have a tan-
gible effect on reducing GDM risk. A recent large prospective cohort study by Gao et al. [46]
found that six predictors collected at the first antenatal care visit (advanced maternal age,
elevated BMI, height, systolic blood pressure (SBP) and serum alanine transaminase (ALT),
and family history of diabetes in first-degree relatives) and four during pregnancy modifi-
able risk factors (reduced physical activity, increased sitting time at home, passive smoking,
and excessive weight gain), were associated with an increased risk of GDM in Chinese
women (AUC of 0.712 (95% CI: 0.682 to 0.743)). Schoenaker and colleagues [47] developed
a model aimed at predicting preconception GDM risk. The authors utilised prospective
data from a large Australian population-based study of 6504 nulliparous women aged
18–23 years at enrolment in 1996, who reported a pregnancy during a 19-year follow-up
period. The final model included eight variables based on lifestyle and health-related
characteristics, including age at menarche, proposed age at future first pregnancy, ethnicity,
BMI, diet score, physical activity, polycystic ovary syndrome (PCOS) and family histories of
type 1 and 2 diabetes and GDM. This model showed good discriminative ability (AUC 0.79)
and high sensitivity (91%) on internal validation, albeit low specificity (46%), with the
potential to predict GDM in women, even before their first pregnancy. While several studies
have considered the inclusion of lifestyle factors in model development, these were not
found to be significant predictors of GDM [45].

3.4. Machine Learning Approaches

Most prediction models for GDM have been developed using logistic regression
analyses. Machine learning is increasingly emphasized as a competitive alternative to
regression analysis and has the potential to outperform conventional regression, possibly
by its ability to capture nonlinearities and complex interactions among multiple predictive
variables [48]. Two studies assessed machine learning in GDM prediction. Wu et al.
developed state-of-the-art prediction models in early pregnancy for the early intervention
of GDM in over 30,000 Chinese women, where a 73-variable deep neural network model
achieved high discriminative power (AUC = 0.80) [49]. A clinically cost-effective 7-variable
logistic regression model which was simultaneously developed, also showed effective
discriminative power (AUC = 0.77), suggesting that both machine learning and logistic
regression models achieved high accuracy for predicting GDM in early pregnancy. On
the other hand, Ye et al. compared machine learning approaches to logistic regression in
predicting GDM in Chinese women and found that machine learning methods did not
outperform logistic regression in predictive ability [48].

3.5. Summary

Recent GDM risk prediction models identified in the literature have employed a
combination of maternal characteristics and/or biochemical variables (Table 1) to improve
the sensitivity and specificity of risk prediction. Most prediction models have a strong
focus on maternal demographics and clinical risk factors, demonstrating moderately good
discriminative performance, particularly in high-risk groups and amongst women of
diverse ethnicities. These models concurred on several well-established risk factors for
GDM, such as a previous diagnosis of GDM, elevated pre-pregnancy BMI, and family
history of type 2 diabetes in first-degree relatives. The addition of low-cost biomarkers
obtained in the first trimester (serum triglyceride, fasting plasma glucose, HbA1c and
SHBG levels) to established maternal clinical risk factors (such as age, BMI and previous
macrosomia) have been shown to improve the accuracy of risk prediction. On the other
hand, model performance was only marginally improved with the use of novel biomarkers,
such as those employed in aneuploidy screening, and maternal adipokines. Machine
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learning models show promise in enhancing prediction accuracy, although they have not
been shown to transcend conventional logistic regression models presently.

Table 1. Candidate predictors for GDM and HDP/PE.

GDM HDP/PE

Clinical risk factors

Maternal age
Ethnicity

BMI or weight/height
Smoking, alcohol and/or drug use

Medical history (Pre-existing HTN, PCOS)
Parity/Gravidity

Obstetric history (including prior GDM,
SGA baby and/or macrosomia)

Family history of T2DM
Systolic BP

Maternal age
Ethnicity

BMI or weight/height
Smoking, alcohol and/or drug use

Medical history (pre-existing HTN, SLE, APS)
Parity/Gravidity

Obstetric history (including prior HDP or SGA)
Current/prior GDM

Family history of HDP
Method of conception

Education
Social class/income

MAP
Systolic BP

Biomarkers

Fasting plasma glucose
HbA1c

Triglycerides
Adiponectin

SHBG
PAPP-A
bHCG

uE3
INH

Urinary albumin
Leptin

Lipocalin-2
PAI-2

Blood glucose
Triglycerides, TC, HDL-C, LDL-C

ADAM12
PAPP-A

sFlt-1
PIGF

bHCG
AFP

VEGF

Radiological characteristics N/A

Ultrasound
Placental volume

UtA Doppler
UtA-PI

Foetal biometry

BMI, body mass index; HTN, hypertension; PCOS, polycystic ovary syndrome; GDM, gestational diabetes; SGA,
small-for-gestational age; T2DM, type 2 diabetes mellitus; BP, blood pressure; SLE, systemic lupus erythematosus;
APS, antiphospholipid syndrome; HDP, hypertensive disorders of pregnancy; MAP, mean arterial pressure;
HbA1c, haemoglobin A1c; SHBG, sex hormone binding globulin; PAPP-A, pregnancy-associated plasma protein-
A; bHCG, beta human chorionic gonadotrophin; uE3, estriol; INH, dimeric inhibin-A; PAI-2, plasminogen activator
inhibitor-2; TC, total cholesterol; HDL-C, high density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-
cholesterol; ADAM12, disintegrin and metalloproteinase domain-containing protein 12; sFLt-1, Soluble fms-like
tyrosine kinase-1; PIGF, placental growth factor; UtA, uterine artery; UtA-PI, uterine artery-pulsatility index.

4. Hypertensive Disorders in Pregnancy

There are several sub-types of HDP, including chronic hypertension, gestational hy-
pertension (GH) and PE. Chronic hypertension is defined as hypertension (systolic blood
pressure (BP) ≥140 mm/Hg and/or diastolic BP ≥90 mm/Hg) known prior to pregnancy
or presenting before 20 weeks gestation. GH is characterised by hypertension arising at or
after 20 weeks gestation. PE is the occurrence of gestational hypertension with accompa-
nying proteinuria, uteroplacental dysfunction and/or other maternal organ involvement
(e.g., haematological, liver or neurological complications) in previously normotensive
women [22]. HDP are a leading cause of significant mortality and morbidity for both
mother and foetus, especially in cases of PE and eclampsia, a neurologic complication of
severe PE [50]. Worldwide, HDP are responsible for over 50,000 maternal deaths each
year, accounting for approximately 12.9% of maternal deaths in developed countries and
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14.0% in developing countries [51,52]. Up to 10% of pregnancies are complicated by GH or
PE [10], leading to an increased risk of foetal growth restriction, preterm birth, placental
abruption and maternal end-organ dysfunction. All variations of HDP pose an increased
risk of both maternal and neonatal morbidity; however, women with PE or eclampsia
are at the highest risk [53]. Furthermore, the association of PE with future cardiovascular
mortality and morbidity is well established and has been replicated in diverse populations
across multiple studies [54].

In 2017, the Combined Multimarker Screening and Randomized Patient Treatment
with Aspirin for Evidence-Based Preeclampsia Prevention (ASPRE) trial showed that
treatment with aspirin at a dose of 150 mg per day starting from 11 to 14 weeks of gestation
until term in at-risk women resulted in a 62% reduction in the incidence of preterm PE,
compared with placebo [55]. Therefore, screening in the first trimester of pregnancy would
identify at-risk women who may have the greatest benefit from preventative measures [56].
We identified 39 studies on risk prediction models for HDP. Of these, only four models
included GH as an outcome of interest, while the majority were targeted at PE risk in the
first trimester.

4.1. Clinical Risk Factors for PE

An extensive systematic review and meta-analysis of 92 studies, including over
25 million pregnancies, demonstrated that the most significant risk factors for PE were
that of a history of PE (relative risk (RR) 8.4), followed by chronic hypertension (RR 5.1),
pregestational diabetes (RR 3.7), pregestational BMI > 30 kg/m [2] (RR 2.8) and use of
assisted reproductive technology (RR 1.8) [57]. Clinical practice guidelines by several
professional organisations, such as The National Institute for Care and Health Excellence
(NICE), American College of Obstetricians and Gynaecologists (ACOG), and the Interna-
tional Society for the Study of Hypertension in Pregnancy (ISSHP) have proposed screening
for PE based on maternal risk factors. These guidelines agreed on clinical risk factors for
women at high-risk of PE, such as a previous pregnancy with PE, multifoetal gestation,
the presence of chronic hypertension, autoimmune conditions (such as antiphospholipid
syndrome or systemic lupus erythematosus (SLE)), chronic kidney disease and type 1
or type 2 diabetes mellitus. Moderate risk factors for PE include nulliparity, advanced
maternal age (>35 years), obesity (BMI ≥ 30 kg/m [2]), family history of PE and booking
systolic BP ≥ 130 mmHg or diastolic BP ≥ 90 mmHg [58].

The ACOG and NICE approach essentially treats each risk factor as a separate screen-
ing test, with additive detection rate and screen-positive rate. Furthermore, these methods
result in binary classification of risk, with consequent suboptimal PE detection rates. Using
the NICE recommendations, only 41% and 34% of preterm and term preeclampsia were
detected, respectively, with a 10% false-positive rate. Screening based on the ACOG guide-
lines achieved detection rates of 5% and 2% for preterm and term PE, respectively, with a
0.2% false-positive rate [58].

4.2. Biomarkers and Biophysical Factors in PE Development

Considerable efforts have been made to identify biomarkers that can enhance PE
prediction in the first trimester of pregnancy. Biomarker values are transformed into
multiples of the median (MoM) to account for the effects of gestational age and maternal
characteristics, such as weight and racial origin, associated with individual biomarkers.
The use of combination biomarkers appears to confer superior predictive performance over
a single biomarker [58]. Currently, combined biomarkers of PE include cytokines, proteins,
angiogenic and antiangiogenic factors that have a fundamental role in pathophysiology [59].
Angiogenic factors, including soluble fms-like tyrosine kinase 1 (sFlt-1) and placental
growth factor (PIGF), are involved in the pathogenesis of placental dysfunction. PIGF is
pro-angiogenic and abundantly expressed in the placenta, while sFlt-1 is anti-angiogenic
and regulates angiogenic homeostasis during pregnancy. An imbalance between pro- and
anti-angiogenic factors (i.e., increased sFlt-1/PIGF ratio) results in a net anti-angiogenic
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state and favours the development of placental dysfunction [60]. Altered levels of sFlt-1 and
PIGF are detectable several weeks before onset of pregnancy complications, thus allowing
identification of women at high risk of PE. A recent systematic review of PE prediction
models showed that up to 73% of preeclampsia cases could potentially be detected using
a model that included serum markers such as PIGF, sFlt- and the mean arterial pressure
(MAP) at 35–37 weeks’ gestation, compared to 35% with a set of maternal characteristics
assessed between 9- and 13-weeks’ gestation [61]. In another meta-analysis, the predictive
performance of PIGF in asymptomatic women demonstrated high predictive odd ratios
for PE, with moderate sensitivity and specificity. Additionally, the accuracy of PIGF was
higher when performed after 14 weeks’ gestation for the prediction of early onset PE [62].

PAPP-A, a pregnancy-related protease involved in early placental development, has
been found to be dysregulated in intrauterine growth restriction, PE, placental abruption,
and premature birth. Dysregulation of this enzyme is linked to a variety of pregnancy-
related complications associated with placental function. However, the addition of PAPP-A
to prediction models which already included maternal characteristics, PIGF and/or mean
arterial pressure, did not significantly improve model performance [63,64]. While PAPP-A
is a nonspecific marker of PE, it may have diagnostic application in combination with other
clinical measurements and biomarkers [59]. Neutrophil gelatinase-associated lipocalin
(NGAL), a lipocalin-type glycoprotein involved in iron sequestration and associated with
inflammation, neoplastic transformation and renal damage, appears to be proportional to
the severity of PE in the late second trimester of pregnancy, with sensitivity and specificity
of 75% and 94.5%, respectively [65]. Elevated NGAL levels in early pregnancy may point
to links between impaired immune tolerance and PE. While novel, NGAL is not linked
exclusively to placental maladaptation, and its role in PE is currently unclear.

The most common measures of haemodynamic variables employed in PE risk pre-
diction models are MAP and uterine artery pulsatility index (UtA-PI). MAP is obtained
from the average of four measurements from two BP readings, one from each arm, taken
simultaneously in a seated position. UtA-PI is measured at the level of the internal cervical
os using transabdominal ultrasound. Pulsed wave Doppler is performed and the UtA-PI
and peak systolic velocity are measured when three similar consecutive waveforms are
obtained. A study evaluating low-risk Latin-American women in the first trimester of
pregnancy found that the detection rate for preterm preeclampsia was 62.1% (AUC 0.817)
based on maternal characteristics, which increased to 72.4% (AUC 0.890) with the inclusion
of MAP and uterine artery Doppler measurements [66]. Antwi and colleagues found that
predictive ability for gestational hypertension in Ghanaian women improved with the
incorporation PAPP-A and PIGF measurements between 8 to 13 weeks of gestation [67].

In a large multi-centre study across seven regions in Asia, Chaemsaithong and col-
leagues observed that the MoM of biophysical parameters and biomarkers (MAP, UtA-PI
and PIGF) showed more separation in earlier than later gestations, suggesting that these
biomarkers had better discriminatory power for predicting preterm, rather than term
PE [68]. While the use of certain biomarkers has been shown to enhance model perfor-
mance, it should also be acknowledged that these biomarkers are prone to considerable
variability in measurements, which are largely dependent on ethnicity, protocol adherence
and quality assessment [58].

4.3. Risk Prediction Models for HDP/PE

The majority of risk prediction models evaluated in this review have focused on
prediction of PE alone, with only five studies including both gestational hypertension and
PE. These models employed a combination of maternal characteristics and biomarkers for
HDP/PE prediction, with moderate detection rates. The Foetal Medicine Foundation (FMF)
first trimester prediction model consists of a combination of maternal factors (age, BMI, race,
smoking during pregnancy, family history of PE, method of conception, parity, presence of
chronic hypertension, type 1 or type 2 diabetes mellitus, SLE, anti-phospholipid syndrome),
and biophysical measurements (MAP, UtA-PI, PIGF and PAPP-A) [69]. Unlike models
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developed from using logistic regression analyses, the FMF algorithm uses a Bayesian
approach to combine a priori risk from maternal factors with biochemical and biophysical
measurements to quantify patient-specific risk for PE. While other prediction models treat
PE as a binary outcome, the competing risk model treats PE as an event in time, so that risk
stratification can be performed at different stages of pregnancy [70–72]. The FMF model
has undergone extensive internal and external validation in several geographically diverse
cohorts [64,73–76], with detection rates of 90% and 75% for the prediction of early and
preterm preeclampsia, respectively, with a 10% false-positive rate [76]. To date, the FMF
model appears to be the most well-studied [76], and external validation studies have shown
comparable predictive performance corresponding to the original studies [58].

A simple risk score derived from the maternal history component of the FMF algorithm
appeared to provide clinically useful prediction for preterm preeclampsia in nulliparous
women with a singleton pregnancy. Neither the FMF online risk calculator or mobile
application offer offline functionality, which may limit implementation in low-resource
or time-poor settings. This score was devised to circumvent biomarker analysis and/or
access to an internet-connected computer, and considered maternal age, height and weight,
ethnicity, method of conception, history of chronic hypertension, history of type 1 or 2
diabetes mellitus and family history of PE, with good model performance for PE prediction
on external validation (AUC 0.792). While the inclusion of first trimester MAP, PAPP-A
and PIGF did not improve predictive ability in this study, compared to larger-scale models,
this was possibly due to relatively fewer case numbers, which was underpowered to detect
small improvements in model performance [77].

4.4. Machine Learning Approaches

Machine learning algorithms based on these combination models have shown that the
use of artificial intelligence (AI) can effectively predict PE [78,79]. Sufriyana et al. utilised
big data from a nationwide health insurance dataset in Indonesia of over 23,000 pregnant
women and applied a machine learning algorithm based on demographic variables in
early pregnancy and diagnoses on previous visits. This model had robust performance
on both internal and external validation and was conceivably applicable in low-resource
settings [79]. Meanwhile, in a Korean study of over 11,000 women, Jhee et al. showed
that the combined application of maternal factors and common antenatal laboratory data
in various machine learning algorithms resulted in improved prediction performance of
PE, compared to traditional statistical models [78]. In a smaller study of Chinese women,
support vector machine algorithms based on a combination of epidemiological, haemody-
namic and biochemical factors were found to improve model accuracy and discrimination
of HDP [80].

4.5. Summary

Advances in PE screening have demonstrated that the use of combined maternal and
biophysical factors in prediction models clearly supersede traditional checklist screening of
maternal risk factors, where binary risk categorization does not accurately reflect an individ-
ual’s risk of PE. The use of biophysical parameters and biomarkers that can be measured in
the first trimester of pregnancy (8–13 weeks of gestation), including MAP, UtA-PI, PAPP-A
and PIGF, has been shown to enhance the prediction of PE, when used in combination with
maternal characteristics. Since the publication of the ISSHP recommendations, at least three
systematic reviews have been published to evaluate risk prediction models for hypertensive
pregnancies [61,81,82]. The reviews similarly acknowledged that included prediction mod-
els incorporated a range of maternal characteristics, and biomarkers (Table 1) with variable
performance, calling for further external validation and comparison of the most promising
models to better inform implementation in clinical practice. The application of machine
learning algorithms to existing prediction models may refine predictive performance and
improve accessibility, even in resource-poor healthcare settings.
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5. Discussion

Contemporary risk prediction models for GDM and HDP demonstrate moderately
good performance, sensitivity and specificity, in general. Several models were developed
from large-scale population studies and have subsequently undergone external validation
across geographically and ethnically diverse cohorts, showing potential for widespread
clinical application. For GDM prediction, the use of maternal characteristics alone, includ-
ing maternal age, BMI, ethnicity, past history and/or family history of GDM, achieved
moderate discriminative performance. This was marginally enhanced by the inclusion of
biomarkers such as fasting plasma glucose, high molecular weight adiponectin, SHBG,
HbA1c and PAPP-A levels. In the case of PE prediction, several studies have consistently
proven that models using a combination of maternal characteristics (maternal age, BMI,
ethnicity, smoking during pregnancy, family history of preeclampsia, method of conception,
parity, pre-existing hypertension and diabetes mellitus, SLE, anti-phospholipid syndrome)
and biophysical factors and/or biomarkers (MAP, UtA-PI, PIGF and PAPP-A), perform
more robustly than those using maternal risk factors alone. The best performing models
for GDM and HDP prediction from 2016 and 2018 onwards, respectively, are summarized
in Tables 2 and 3.

Table 2. Model performance metrics for GDM prediction.

First Author,
Year of Study

Country
of Study Model AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Benhalima,
2020 [39] Belgium

Model 1: clinical
variables

(cut-off ≥4%)
0.68 (0.64–0.72) 99.1 (96.9–99.9) 4.4 (3.4–5.5) 12.9 (11.4–14.6) 97.2 (90.3–99.7)

Model 2: clinical
+ biochemical

variables
(cut-off ≥4%)

0.72 (0.66–0.78) 94.2 (90.4–96.9) 13.7 (12.1–15.5) 13.5 (11.8–15.3) 94.3 (90.5–97.0)

Donovan,
2019 [33] USA California cohort 0.732 (0.728–0.735) 70.8 (70.2,71.4) 63.9 (63.7,64.0) 11.6 (11.4–11.8) 97 (97–97.1)

California cohort
(Black) 0.719 (0.700, 0.738) 49.3 (45.7, 53.0) 80.2 (79.6, 80.8) 9.0 (8.1, 9.9) 97.6 (97.3, 97.8)

California cohort
(Hispanic) 0.739 (0.733, 0.745) 65.0 (64.0, 66.1) 70.6 (70.3, 70.8) 11.3 (11.0, 11.6) 97.2 (97.1, 97.3)

Gao, 2020 [46] China

Model 1: First
antenatal visit
screening at

suggested risk
score cut-off

of 2.80

0.710 (0.680–0.741) 82.1 44.8 11.2 96.7

China

Model 2: Other
risk factors

during
pregnancy at

suggested risk
score cut-off

of 5.10

0.712 (0.682–0.743) 81.8 44.4 11.1 96.6

Snyder,
2020 [34] USA

Model 1:
maternal

characteristics
only at 6%

predicted risk
threshold

0.714 (0.703–0.724) 76.2 55.2 - -

Model 2:
maternal

characteristics +
first trimester
PAPP-A at 6%
predicted risk

threshold

0.718 (0.707–0.728) 75.7 55.5 - -
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Table 2. Cont.

First Author,
Year of Study

Country
of Study Model AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Model 3:
maternal

characteristics +
PAPP-A, uE3,

and INH

0.722 (0.712–0.733) 76.1 55 -

Sweeting,
2018 [36] Australia

Model 1: Clinical
parameters +

First trimester
markers

0.90 (0.87–0.92) - - - -

Model 2 Early
GDM: clinical
parameters +

First trimester
markers

0.96 (0.94–0.98) - - - -

Sweeting,
2019 [35] Australia

Sweeting 2018
model +

adipogenic and
metabolic
syndrome

markers (early
GDM)

0.93 (0.89–0.96) - - - -

Sweeting 2018
model +

adipogenic and
metabolic
syndrome

markers (overall
GDM)

0.91 (0.89–0.94) - - - -

Theriault,
2016 [40] Canada

Model 1: GDM
(biomarkers and
clinical variables)

at 10% false
positive rate

0.791 (0.750–0.831) 50 - 20.6 97.1

Zhang,
2020 [83] China

Nomogram of
GDM risk first

trimester
0.728 (0.683–0.772) 71.6 65.2 50.2 89.5

AUC, area under the curve, PPV, positive predictive value; NPV, negative predictive value; PAPP-A, pregnancy-
associated plasma protein-A; uE3, estriol; INH, dimeric inhibin-A.

Table 3. Model performance metrics for HDP prediction.

First Author,
Year of
Study

Country of
Study Outcome Model AUC

Detection
Rate/Sensitivity

(%)

Specificity
(%) PPV (%) NPV (%)

Guizani,
2018 [64] Belgium PE at < 37 weeks FMF

algorithm
0.932

(0.923–0.940) 80.6 (64.0–91.8) - 8 0.2

PE at ≥ 37 weeks FMF
algorithm

0.741
(0.726–0.756) 31.8 (18.6–47.6) - 3.2 0.8

Chaemsai-
thong,

2019 [68]

Hong Kong,
Japan, China,

Thailand,
Taiwan,
India,

Singapore

Preterm PE (FMF
previous risk) at

20% FPR

FMF
algorithm

0.758
(0.749–0.766) 57.52 - - -

Preterm PE (FMF
triple test) at 20%

FPR

FMF
algorithm

0.857
(0.851–0.864) 75.8 - - -

All PE (FMF
previous risk) at

20% FPR

FMF
algorithm

0.711
(0.703–0.720) 52.38 - - -
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Table 3. Cont.

First Author,
Year of
Study

Country of
Study Outcome Model AUC

Detection
Rate/Sensitivity

(%)

Specificity
(%) PPV (%) NPV (%)

All PE (FMF
triple risks) at

20% FPR

FMF
algorithm

0.769
(0.761–0.777) 65.57 - - -

Wright,
2019 [84]

England,
Spain,

Belgium,
Italy, and

Greece

Early PE at 10%
FPR

FMF
algorithm 0.95 (0.93, 0.97) 87 (80, 92) - - -

Early PE at 10%
FPR (SQS) 0.97 (0.95, 0.99) 93 (76, 99) - - -

Early PE at 10%
FPR (SPREE) 0.96 (0.93, 0.98) 90 (78, 96) - - -

Preterm PE at
10% FPR

FMF
algorithm 0.91 (0.89, 0.93) 75 (70, 80) - - -

Preterm PE at
10% FPR (SQS) 0.93 (0.89, 0.96) 75 (62, 85) - - -

Preterm PE at
10% FPR
(SPREE)

0.93 (0.92, 0.95) 83 (76, 89) - - -

All PE at 10%
FPR

FMF
algorithm 0.83 (0.81, 0.84) 52 (49, 55) - - -

All PE at 10%
FPR (SQS) 0.82 (0.80, 0.85) 49 (43, 56) - - -

All PE at 10%
FPR (SPREE) 0.85 (0.83, 0.87) 53 (49, 58) - - -

Sovio,
2019 [77] UK

Preterm PE
(NICE

guidelines)

Logistic
regression 53.6 (34.3–71.8) 89.4

(88.4–90.3)
3.3

(2.0–5.4)
99.7

(99.4–99.8)

Preterm (PE)
Derived Risk

score from
PGAPE

Logistic
regression

0.846
(0.787–0.906) 57.1 (37.5–74.8) 91.2

(90.3–92.0)
4.2

(2.6–6.7)
99.7

(99.4–99.8)

Preterm (PE)
original ASPRE

algorithm/
PGAPE

Logistic
regression

0.854
(0.795–0.914) 60.7 (40.8–77.6) 90.4

(89.5–91.3)
4.1

(2.6–6.5)
99.7

(99.5–99.8)

AUC, area under the curve, PPV, positive predictive value; NPV, negative predictive value; FPR, false positive rate;
FMF, Foetal Medicine Foundation; NICE, National Institute for Health and Care Excellence; SPREE, Screening
programme for pre-eclampsia; SQS, Screening Quality Study; PGAPE, predicted gestational age at pre-eclampsia;
ASPRE, Combined Multimarker Screening and Randomized Patient Treatment with Aspirin for Evidence-Based
Preeclampsia Prevention.

5.1. Implications for Clinical Practice and Future Research

Risk prediction in itself does not necessarily translate to improved clinical outcomes,
unless timely and effective management is undertaken. Early interventions for GDM and
HDP, such as lifestyle modifications, adhering to GWG targets and the use of pharmacolog-
ical therapies, have important implications for both short-term pregnancy outcomes and
long-term maternal cardiovascular health.

Maternal pre-existing obesity is a modifiable risk factor and represents an important
opportunity for dietary and physical activity interventions at the preconception or early
pregnancy stages. The risk of GDM and HDP may be partially mitigated through healthy
lifestyle in pregnancy and limiting excessive GWG, based on a systematic review and
meta-analysis of 117 randomised controlled trials with over 34,000 women [85]. Identifying
those at high risk of metabolic complications enables targeted prevention before, during
and beyond pregnancy.
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Most PE prediction models have been developed specifically for first trimester screen-
ing, based on proven risk reduction with early treatment. In contrast, less than half of
current GDM prediction models included women at 20 weeks’ gestation or under, repre-
senting a missed opportunity for earlier intervention, especially when effective lifestyle
strategies exist. Current approaches for first trimester screening for aneuploidy and PE
employ a combination of risk factors and biomarkers in a multivariate logistic regression
model to determine individual risk. Certain biomarkers and biophysical measurements
used to detect PE, such as PAPP-A, MAP and UtA-PI, have biological plausibility for
GDM, and may be useful to incorporate in a consolidated, cost-effective approach to early
screening for composite pregnancy complications [36].

Few models have been implemented into routine clinical practice, although the Teede
model for GDM prediction has been integrated into national guidelines in the Nether-
lands [86], and the FMF model for PE prediction has been endorsed by the International
Federation of Obstetrics and Gynaecology (FIGO) as a one-step screening procedure in the
first trimester [87].

Research priorities addressing cardiometabolic risk factors in pregnancy and beyond
have been established, as women with GDM and/or HDP have substantially increased risk
of future CVD, particularly in low- and middle-income countries [88,89]. Although GDM
and HDP are conditions that typically manifest in the later stages of pregnancy, the first
trimester is an emerging and important screening period for the prediction and prevention
of these adverse outcomes. There is both biological plausibility and pragmatic rationale
for development of a risk prediction model for composite cardiometabolic outcomes in
early pregnancy, given the availability of shared maternal clinical characteristics and
biomarkers that are routinely obtained in the first trimester. Such a model could be built on
based on existing validated and/or high-performing models and be adapted to different
resource settings.

Prediction models show promise in delivering personalised risk-stratification and
management, in an era where precision medicine is advancing as the standard of care. The
use of AI techniques in prediction modelling can improve model accuracy and precision,
while natural language processing of big data could help inform model interpretation
and pathogenic implications [79]. Machine learning methods often classify patients into
homogenous categories, leading to poor prediction for heterogeneous conditions with wide
clinical spectrums, in the case of GDM and HDP. Subtyping patients into well-defined
and clinically meaningful clusters could train models for specific patient subtypes. These
considerations underscore the importance of further research into patient subtyping in
conjunction with supervised machine learning methods [90]. The widespread applicability
of these models may be also limited by resource availability, ease of clinician use and
patient acceptability for interventions based on risk prediction, rather than diagnostic tests.
Finally, the impact of model implementation or uptake in clinical practice has not been
adequately evaluated. A recent study found that a GDM risk prediction tool was generally
well received by healthcare professionals and patients, with high clinician adherence
rates [28]. The application of the FMF screening program in a London tertiary hospital
led to a significant reduction in the PE screen-positive rate and a concurrent in increase
in targeted aspirin use in women classified as high risk, demonstrating that this is both
feasible and effective in a public healthcare setting [91].

5.2. Conclusions

Pregnancy adverse outcomes are a harbinger of future CVD risk in women. Sys-
tematic screening, especially in the first trimester, provides a window for opportunistic
interventions that can translate into maternal and foetal well-being, beyond the confines of
pregnancy. Further research is needed to evaluate the impact of implementation of current
validated models, and to build on current models with novel biochemical, biophysical
and molecular markers to enhance predictive performance. Machine learning algorithms
appear to be comparable to established logistic regression models, with the potential for
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improving predictive accuracy. Furthermore, consideration should be given to developing
a composite risk prediction model for GDM and/or HDP in early pregnancy, given the
similarities in pathophysiology and prevention approaches for both conditions.
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