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Abstract: In this study, an application of a voltammetric electronic tongue for 

discrimination and prediction of different varieties of rice was investigated. Different 

pretreatment methods were selected, which were subsequently used for the discrimination 

of different varieties of rice and prediction of unknown rice samples. To this aim, a 

voltammetric array of sensors based on metallic electrodes was used as the sensing part. 

The different samples were analyzed by cyclic voltammetry with two sample-pretreatment 

methods. Discriminant Factorial Analysis was used to visualize the different categories of 

rice samples; however, radial basis function (RBF) artificial neural network with  

leave-one-out cross-validation method was employed for prediction modeling. The 

collected signal data were first compressed employing fast Fourier transform (FFT) and 

then significant features were extracted from the voltammetric signals. The experimental 

results indicated that the sample solutions obtained by the non-crushed pretreatment 

method could efficiently meet the effect of discrimination and recognition. The satisfactory 

prediction results of voltammetric electronic tongue based on RBF artificial neural network 

were obtained with less than five-fold dilution of the sample solution. The main objective 

of this study was to develop primary research on the application of an electronic tongue 

system for the discrimination and prediction of solid foods and provide an objective 

assessment tool for the food industry. 
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1. Introduction 

Rice plays a significantly important role in people’s daily life, therefore, detection of the rice quality 

has received progressively increasing attention. However, currently, the evaluation of rice quality lacks 

a uniform standard and the evaluation method depends on the test aim of the rice. Rice quality has 

attracted significant attention and it has become the most important target in rice improvement. 

Therefore, the quality of rice is evaluated in terms of its sensory quality, processing quality, eating 

quality, and nutritional quality. The assessment indexes of sensory quality of rice are mainly based on 

the color, appearance, smell, taste and other features which are identified by the examiner’s sense 

organs and practical experience. Rice processing quality mainly reflects the characteristics of rice 

processing. The main evaluation index includes milled rice rate and machining accuracy. The main 

assessment indexes of eating quality of rice include the gelatinization temperature, amylose content, 

and gel consistency. Evaluation of the nutritional quality of rice is mainly embodied in the detection of 

the content of rice starch, fat, protein, vitamins, and microelements which are beneficial to the human 

body. However, in some of these methods, the influence of the examiner’s subjective consciousness in 

the evaluation process is strong, and the validity and reliability of the corresponding evaluation results 

cannot be guaranteed. What’s more, pretreatment procedures, while highly desirable in order to obtain 

reliable evaluation results, are complex and time-consuming. With an increasing need for field rice 

harvest season and rice manufacture testing, it is necessary to study the discrimination and recognition 

of different varieties of rice and further to evaluate its quality control. Nowadays, modern analytical 

techniques are applied for the discrimination and identification of damaged rice plants. Furthermore, 

these techniques are also used for the discrimination of rice varieties based on volatile compounds 

released by the plant, and for rice detection by gas chromatography-mass spectrometry (GC-MC) or 

electronic noses [1–6]. 

Recently, electronic tongues have started to play an important role in the food industry as intelligent 

analytical systems. According to the IUPAC definition [7], an electronic tongue is “a multisensor 

system, which consists of a number of low-selective sensors and uses advanced mathematical 

procedures for signal processing based on pattern recognition (PARC) and/or multivariate data 

analysis artificial neural networks (ANNs), principal component analysis (PCA), et al.”. Therefore, an 

electronic tongue represents a new way to interpret chemical signals and provide qualitative and 

quantitative assessment of multispecies solutions. The two emerging analytical technologies of 

electronic tongues with electrochemical sensors and bioelectronic tongues involving biosensor arrays 

are studied in food applications [8–10]. 

When an electronic tongue is employed, there are two key parameters that determine the detection 

of information, i.e., the modeling tool and the type of sensors used [11]. Voltammetric electronic 

tongues with voltammetric sensors are used extensively in electronic tongue systems. They have been 
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applied for the qualitative/quantitative analysis of natural samples, wine, milk, tea, oil, or other liquid 

solutions [12–24]. An array of noble metal working electrodes has been used in voltammetric 

electronic tongues to analyze different foodstuffs, tea, juices, and milk [12–16]. Moreover, various 

materials such as polymers and epoxy-graphite have been used as coating membranes for sensor 

design. For example, Cetó et al., developed a novel voltammetric electronic tongue containing modified 

epoxy-graphite electrodes for the qualitative and quantitative analysis of wine and beer [17–24]. 

Advanced data processing and pattern recognition methods are the fundamental part in any 

voltammetric electronic tongue system [11]. Among previously reported studies on qualitative 

modelling and various data processing methods implemented, PCA has been mostly used as a 

qualitative visualization tool; and partial least squares Discriminant Analysis (PLS-DA), Linear 

Discriminant Analysis (LDA), cluster algorithm (CA), Support Vector Machine (SVM), and ANNs 

have been employed as qualitative modeling [11,25–32] methods. However, Multiple Linear 

Regression (MLR), Principle Components Regression (PCR), PLS, or ANN are usually quantitative 

analysis tools [33–39]. Despite the significant advantages provided by the reported data processing 

methods, the high complexity of the obtained data matrix makes the model building very difficult for 

the use of voltammetric sensors, therefore, some feature extraction and preprocessing methods for data 

compression and reduction must be applied to reduce input data dimensionality, training time, and to 

obtain better model ability. The data preprocessing may be achieved by the use of PCA, fast Fourier 

transform (FFT), or discrete wavelet transform (DWT) [11,20,39]. 

The abovementioned discussion indicates that the voltammetric electronic tongue has several 

advantages and convenient features in the detection of liquid samples; however, the effect of taste 

detection in a solid food such as rice is unknown. Rice solutions which are dissolved in water contain 

certain water-soluble vitamins, inorganic salts, minerals, and rice bran oil containing a rich vitamin B 

and E composition. Different varieties of rice contain different quantitative water-soluble contents. 

Discrimination and recognition of the rice samples, with different quantities of this content, have 

seldom been evaluated using an electronic tongue taste sensor array. Consequently, it was necessary to 

develop an initial study to investigate whether the voltammetric array of sensors based on basic metal 

electrodes could detect these differences to output response signals of different samples under the 

excitation potential and then reflect the individual differences among sample solutions of different 

varieties of rice with proper data processing. Furthermore, in this study, an attempt was made to select 

a rice solution pretreatment method and to determine whether the rice needs to be crushed or not. 

Thus, the main objective of this study was to construct a basis for the future use of a  

voltammetry-based electronic tongue, employing an array of metallic sensors for discrimination and 

prediction of different varieties of rice during rice harvest, storage, and processing. Moreover, a better 

and simpler rice sample pretreatment method was also proposed by comparing two such pretreatment 

methods. Specifically, an array of metallic working electrodes was applied as the sensing part. Cyclic 

voltammetry was set as excitation potential to obtain electrochemical response signals. The collected 

taste response signal data were first compressed by FFT. Discriminant Factorial Analysis (DFA) and 

radial basis function (RBF) artificial neural network were used as the discrimination and prediction 

modeling tools, respectively. Thus, this study provides a new perspective to the understanding of the 

discrimination and prediction of different varieties of rice by DFA and RBF artificial neural network 

by using an electronic tongue. 
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2. Materials and Methods 

2.1. Materials 

2.1.1. Rice 

A total set of 16 rice samples from different grain companies was analyzed. All rice samples 

considered in this study were commercially purchased. Four different varieties of rice, namely, 

JiaHe66, JiaHe218, XiuShui128, and XiuShui134 were selected and used as experimental samples. 

Four samples belonging to each variety were used for evaluation. The experimental samples are listed 

in Table 1. 

Table 1. Experimental samples with different four varieties. 

Brand Rice Varieties Working Electrode Array 

JiaHe JiaHe66 Pt 
JiaHe JiaHe218 Au 

XiuShui XiuShui134 Pd 
XiuShui XiuShui128 Ag 

2.1.2. Main Instruments and Materials 

A total of four voltammetric sensors were selected with an array of metallic working electrodes, 

including platinum (Pt), silver (Ag), gold (Au), and palladium (Pd) electrodes (diameter 2 mm) 

according to preliminary exploratory experiments performed in our laboratory. A counterelectrode  

(Φ1 × 5 platinum column) and an Ag/AgCl reference electrode (diameter 6 mm) were selected to form 

the voltammetric measurement cell. Polishing materials included α-Al2O3 powders (1.5 μm, 0.5 μm, 

and 50 nm) and a polishing cloth (80 × 80 mm). All the electrodes and polishing materials were 

commercially purchased from Aidahengsheng Technology Co., Ltd. (Tianjing, China). The 

electrochemical workstation CS350 used to build the electronic tongue system was a commercial 

device purchased from Corrtest Instrument Co., Ltd. (Wuhan, China). The JA2003 electronic balance 

(0.001 g of division value and ±0.002 g of linear error) used for weighing the rice samples was 

supplied by the Precision Instruments Co., Ltd. (Shanghai, China). 

2.2. Methods 

The objective of this study was to investigate the ability of a metallic electrode-based electronic 

tongue to detect differences among different rice samples and provide discrimination and prediction 

results by using appropriate data processing methods. The other objective was to find a better and 

simple pretreatment method for the rice sample solutions prior to its practical application. Briefly, rice 

samples under test must be in solution. It was not determined whether rice need to be crushed or not 

when it was soaked in distilled water. Therefore, two types of rice sample solution were prepared by 

using crushed rice and non-crushed rice, respectively, and then subjected to DFA discrimination. In 

RBF neural network modeling, we also wanted to explore when the electronic tongue could not detect 
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the information of rice sample solutions and give bad prediction effects with the increasing degree  

of dilution. 

Therefore, a total set of 16 rice samples was prepared, respectively, with two pretreatment methods 

aiming to determine which method should be selected for further RBF neural network modeling and as 

final sample pretreatment method for field rice discrimination and prediction. The first pretreatment 

method involved the crushing of rice followed by its mixing with distilled water; however, the second 

method involved the direct mixing of rice, without any preprocessing, with distilled water.  

2.2.1. Preparation of the Crushed Rice Sample Solutions for Discrimination by DFA Model 

The crushed rice sample solutions for discrimination were prepared prior to the measurement with 

the electronic tongue. First, an aliquot (50 g) from each rice sample was weighed and then placed in 

sequence into a pulverizer for crushing. Then, each crushed rice sample was placed in a mortar, for 

deep milling. Crushed and milled rice flour (20 g) was weighed and placed in a beaker according to the 

corresponding sample numbers. Subsequently, distilled water (100 mL) was mixed with the milled rice 

flour samples, respectively, stirred for one minute and the mixed solutions were filtered with a funnel. 

Finally, filtered liquid (80 mL) was taken as a final rice sample solution. Therefore, in sequence, the 

total set of 16 rice samples were pretreated according to the steps described above and then kept for the 

subsequent measurements by the electronic tongue system. In all the preparations of the crushed rice 

sample solutions, the pulverizer and the mortar must be cleaned with a small brush after each rice 

sample was crushed and deeply milled in order to maintain the purity of each rice sample. 

2.2.2. Preparation of the Non-Crushed rice Sample Solutions for Discrimination by DFA Model 

Rice (20 g) from each variety of rice sample was measured and soaked in distilled water (100 mL) 

for 10 min, stirred at the first minute and the last minute. Then, the solutions were filtered using a 

funnel. Finally, filtered liquid (80 mL) was taken as final sample solution for the subsequent tests. 

2.2.3. Preparation of the Test Samples for RBF Neural Network Modeling 

The test samples were prepared according to the following procedure: first, rice (20 g) from each 

rice sample was weighed, and placed in volumetric flasks marked with different sample number and 

variety. The volume of the volumetric flasks was 300 mL. Then, distilled water (150 mL) was added to 

these four volumetric flasks, respectively. Flasks were shaken for 2 min, and then allowed to stand for 

10 min to provide sufficient time for the water-soluble substances to dissolve in water. Finally, the 16 

mixture solutions were filtered through filter paper and volume of the filtration liquid was made up to  

100 mL, respectively, and these solutions were used as the first group of rice sample solutions. 

The second group of rice sample solutions was obtained by following a similar procedure. The next 

step was to dilute the test samples to four different concentrations: 0 times dilution, 5 times dilution,  

10 times dilution, and 100 times dilution. First, 80 mL of the solution was taken from first group of 

rice sample solutions, respectively, and they were considered as the 0 times dilution test samples. 

Then, the 5 times dilution, 10 times dilution, and 100 times dilution of the test samples were obtained 

from the second group of rice sample solutions by the following procedure: separately 1, 10, and 20 mL 
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of the solution was taken from the second group of rice sample solutions. Subsequently, they were 

diluted to 100 mL (corresponding to 100 times dilution of test samples, 10 times dilution, and 5 times 

dilution, respectively) and 80 mL of each diluted sample solution was taken out for further testing. 

Thus, four concentrations of each rice sample were obtained in total. Every rice sample solution was 

tested 5 times by cyclic voltammetry, thus 80 samples were to be tested at each concentration.  

2.2.4. Electronic Tongue 

The voltammetric electronic tongue system was constructed with a voltammetric measurement cell, 

CS electrochemical workstation, and a PC. The voltammetric measurement cell was formed by a 

21344-sensor voltammetric array, a reference Ag/AgCl electrode, and a platinum counter electrode. 

The counter electrode was placed at the same distance with different working electrodes around it, in 

order to reduce the interference caused by solution resistance. Taste electrochemical responses current 

data were obtained from cyclic voltammetry measurements using the CS electrochemical workstation. 

Cyclic voltammograms were obtained at room temperature (25 °C) on the PC.  

The excitation signal of cyclic voltammetry is an isosceles triangle wave voltage. Starting from the 

initial potential Ei, the potential varies linearly along a direction to the final potential Ef, reversing 

immediately to go back to the initial potential. If there is no stop command, it will continue to repeat 

the abovementioned process. The general instrument potential scan rate can be from several mV to 1 V 

per second. Excitation potential was generated by the electrochemical workstation. Following are the 

cyclic voltammetry parameter settings in the system: initial potential: Ei = −2 V; low potential:  

E = −2 V; high potential: E = +2 V; termination potential: Ef = −2 V. The scan rate was 200 mV·s−1; 

and the data sampling frequency was 100 Hz. Furthermore, to prevent the cumulative effect of 

impurities on the electrodes, an electrochemical cleaning procedure was performed between samples 

for 40 s (measure one time) in a beaker containing 80 mL distilled water. 

The test samples were the total set of 16 rice sample solutions which were preprocessed by the two 

different pretreatment methods. To ensure the repeatability and stability of the response signals by the 

electronic tongue sensor, each solution was repeatedly measured and the measurement was repeated 

five times for each sample. Each test sample was measured by collecting 3986 points in each cyclic 

voltammetric measurement. Therefore, a dataset for 80 samples corresponding to 16 rice samples was 

obtained for analysis. The original data dimension of total samples formed a 5 (measuring times) × 16 

(rice samples) = 80 lines, and 4 (four working sensors) × 3986 (collecting current data points of each 

sensor) column matrix. 

2.2.5. Data Processing 

The main objective of this study was to assess rice sample pretreatment methods and the 

discrimination and prediction ability of the electronic tongue system. Furthermore, DFA was used to 

achieve the following two objectives: to assess rice sample pretreatment methods and to qualitatively 

assess discrimination ability of the electronic tongue system. RBF artificial neural network was used to 

evaluate the effect of the voltammetric electronic tongue prediction on unknown rice samples. 
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FFT was used for preprocessing voltammetric data which was done by using LabVIEW 8.5. DFA 

and RBF artificial neural network were performed for building discrimination and prediction models, 

respectively, by using MATLAB 7.1. 

As explained before, the total data dimension of one measurement for the qualitative analysis of the 

rice samples was 4 (sensors) × 3986. Thus, significantly a large number of the voltammetric data was 

generated by using four voltammetric sensors. These data must be preprocessed before developing the 

models. This is due to the fact that if the complex input data were employed without preprocessing as 

model input, it would lead to several complications and difficulty in model building such as long 

training time, and complex weights or discriminant function computation, in particular, for the RBF 

artificial neural network. With this perspective, given the complexity of the input data, FFT was 

employed to compress the original data down to several Fourier coefficients in order to reduce the high 

raw data dimensionality and improve the models’ performance and to extract significant features from 

the voltammetric signals. FFT is a highly efficient Discrete Fourier Transform (DFT) algorithm. It is 

an efficient tool in digital signal processing which decomposes the large data sequence into different 

frequency coefficients. The appropriate selection criterion of the coefficients without loss of significant 

information was mainly determined by taking into consideration the two factors. First was fc which is 

defined as the ratio of the area intersected by raw current response curve and reconstruction signal 

curve to the total area under both the curves; fc reflects the signal reconstruction degree ranging from 0 

to 1 depending on the similarity of the signals. Its value is 0 when the two signals have nothing in 

common, indicating the failure of the reconstruction of a raw signal. Its value increases with an 

increase in the reconstruction effect. When fc is 1, it represents the perfect reconstruction of the raw 

signal with the selected number of Fourier coefficients without any information loss. The second factor 

was compression ratio, which is defined as follows: (1 − number of Fourier coefficients/original 

current data) × 100%. The value of the compression ratio increases with increasing raw current 

response data compression degree [11,39]. Herein, the values highlighting the comparison of average 

fc with number of FFT coefficients for non-crushed rice samples are listed in Table 2. The values 

listed in Table 2 indicate that main characteristic of raw signal focused on some front coefficients with 

FFT decomposition. The raw signal reconstruction degree was more difficult to increase when 

achieving a certain value. In this manner, each raw data of 3986 points was compressed down to 16 

coefficients and the compression ratio was up to 99.59% prior to the modeling. 

Table 2. Comparison of average fc with number of FFT coefficients for non-crushed  

rice samples. 

Number of Selected 
FFT Coefficients 

fc 

Pt Ag Au Pd 

FFT-4 0.8621 0.8004 0.7829 0.7863 
FFT-8 0.8871 0.8106 0.8460 0.8368 

FFT-16 0.9024 0.8126 0.9012 0.8482 
FFT-32 0.9082 0.8183 0.9122 0.8565 
FFT-64 0.9120 0.8192 0.9162 0.8587 
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In DFA discrimination modeling, the distance discriminant rule was used in the model building. 

The discrimination effect was expressed with a DFA map represented by discriminant functions as 

coordinates. The greater the value of the accumulated contribution rate of the first two discriminant 

functions, the more the original information can be represented only by the first two discriminant 

functions. The effect of DFA discrimination was judged in terms of Discrimination Index (DI) value. 

DFA made the space within similar samples as close as possible; however, the distance among 

different groups was larger. A DI with a value of 100 indicates a perfect discrimination among 

different groups. 

A RBF neural network is a three-layer forward neural network with the radial basis function 

(Gaussian kernel function) as the activation function. The performance of a RBF neural network is 

mainly influenced by parameters including the number of the hidden layer nodes, radial basis function 

centre, and spread and weights between the hidden and the output layers. In this sense, it adopted the 

k-means clustering algorithm to determine the radial basis function centre of the hidden layer in 

training process. Spread value was determined as 1.5 times (named as overlap coefficient) the average 

distance between each cluster center. The number of the hidden layer nodes was first set with the 

former input sample numbers and then finally determined according to comparison of the success rate 

of prediction results. Output weights were adjusted with Least Square Method (LSM). In order to 

estimate the classification and prediction performance of the RBF neural network model, leave-one-out 

cross-validation was performed, where the original 79 samples were used for network training subset 

and one sample was left for network testing in turn. The obtained performance of the RBF neural 

network model was evaluated according to three different indicators: the classification success rate, 

specificity defined as percentage of objects from different classes correctly rejected by the model, and 

sensitivity defined as percentage of objects of each class identified by the classifier [21]. 

3. Results and Discussion  

3.1. Voltammetry Characteristics of the Test Samples 

Figure 1 shows the voltammograms of four varieties of rice sample solution, obtained by the 

crushed rice pretreatment method, using four electrodes in the scanning potential range −2 to 2 V, at 

scan rate 200 mV·s−1 under a linear change of potential. The upper half curve is the reduction wave 

which is called the cathodic branch, while the lower half part is the oxidation wave, known as the 

anode branch. Response current values reached their peak and trough under +2 V and −2 V. 

Figure 2 exhibits the voltammograms of four varieties of rice sample solution with the non-crushed 

rice pretreatment method obtained under the same condition. Figures 1 and 2 show that both the four 

varieties of crushed and non-crushed rice sample solutions have a wide electrochemical window in 

which electrochemical reaction tests can be done and different cyclic voltammetry response curves 

under different electrodes were obtained with different varieties of rice tested. 
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(a) (b) 

(c) (d) 

Figure 1. Voltammograms of four crushed rice sample solutions obtained using four 

electrodes. (a) Pt electrode; (b) Ag electrode; (c) Au electrode; (d) Pd electrode. 

(a) (b) 

Figure 2. Cont. 
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(c) (d) 

Figure 2. Voltammograms of four non-crushed rice sample solutions obtained using four 

electrodes. (a) Pt electrode; (b) Ag electrode; (c) Au electrode; (d) Pd electrode. 

3.2. Comparison of Current-Time Charts 

Current-time amplifying charts of all the four working electrodes obtained with one time data 

collection for four crushed rice sample solutions are shown in Figure 3, which exhibits similar 

response curves for different crushed rice sample solutions, except for different details, especially in 

the peaks, troughs, and the inflection point with the same working electrode. Obvious differences in 

the cyclic voltammetry response curves with different working electrodes are observed. The 

differences in details, especially in the peaks, troughs, and the inflection points are also circled in 

Figure 3. Different peaks, troughs, and the inflection points appeared by using different working 

electrodes. Five special data points are obtained with Pt electrodes (Figure 3a); however, three, five, 

and five special data points are obtained with Ag, Au, and Pd electrodes, respectively. 

Similarly, the current-time charts for four non-crushed rice sample solutions are shown in Figure 4. 

Similar to the abovementioned descriptions, good response current-time characteristics were obtained 

with different sensors. Different peaks, troughs, and the inflection points also appeared by using 

different working electrodes. Similar special data points could be obtained in the same electrode 

voltammograms. However, comparison of Figures 3a and 4a to Figures 3d and 4d, corresponding to 

the same electrode voltammograms obtained after using different rice sample pretreatment methods, 

indicates that the total current response values with the crushed rice grain pretreatment method are 

higher than that with non-crushed pretreatment method. Consequently, more information could be 

obtained with crushed rice samples, which caused the sensor array of the electronic tongue to generate 

higher response current signals. 
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(a) (b) 

(c) (d) 

Figure 3. Current-time amplified charts of four working electrodes obtained with one time 

data collection for four crushed rice sample solutions. (a) Pt electrode; (b) Ag electrode;  

(c) Au electrode; (d) Pd electrode. 

(a) (b) 

Figure 4. Cont. 
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(c) (d) 

Figure 4. Current-time amplified charts of four working electrodes obtained with one time 

data collection for four non-crushed rice sample solutions. (a) Pt electrode; (b) Ag electrode; 

(c) Au electrode; (d) Pd electrode. 

3.3. Discrimination of Different Rice Samples Using DFA 

3.3.1. Discrimination of Crushed Rice Sample Solutions 

In order to compress the original data set and confirm the differentiated behavior, the original 

voltammetric responses data were compressed by using 16 FFT with the selected 64 FFT coefficients 

(each sensor response data corresponding to 16 FFT coefficients), and the obtained coefficients were 

analyzed by employing DFA. 

Using the classical discriminant analysis method eigenvalues and accumulated contribution rate 

were obtained, which are listed in Table 3. The values listed in Table 3 indicate that the first 

discriminant function explains 86.8% of the original data information, the second function explains 

12.9%, and the third function explains 0.4%. Notably, with just the first two discriminant functions, the 

accumulated contribution rate was up to 99.7%. Significantly large value indicated that most original 

data information could be represented by only these two new coordinates, leading to the determination 

of the differences in rice samples. Discrimination Index (DI) value was 96. 

Figure 5a displays the discrimination effect plot obtained after DFA analysis of the four varieties of 

crushed rice sample solutions. Figure 5a clearly shows the separation of all the samples into four 

distinct clusters. The DFA plot shows that the sample solutions belonging to the same category are 

group in clusters around each group centroid, respectively. The same variety was nearby; however, the 

distance among the different groups was large. The above mentioned analysis showed that DFA could be 

a supervised method to distinguish different varieties of rice and the effect of discrimination was better. 
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(a) (b) 

Figure 5. Discrimination of rice sample solutions by employing DFA analysis. (a) Crushed 

rice; (b) Non-crushed rice. (Ο) XiuShui134, (*) XiuShui128, (⊿) JiaHe218, and  

(Δ) JiaHe66, also the centroid of each class is plotted (+). 

Table 3. Classical discriminant analysis results for rice solutions. 

Function 
Crushed Non-Crushed 

Eigenvalue Contribution Correlation Eigenvalue Contribution Correlation 

D1 177.630 86.8% 0.997 1743.571 94.1% 1.000 
D2 32.034 99.7% 0.985 13.982 98.5% 0.996 
D3 0.041 100.0% 0.198 0.541 100.0% 0.593 

3.3.2. Discrimination of Non-Crushed Rice Sample Solutions 

In order to compare the discrimination effect of the crushed rice sample solutions, the same 

voltammetric data preprocessed method using FFT and DFA analysis were used for the discrimination 

of non-crushed rice sample solutions. 

Eigenvalues and accumulated contribution rate for the non-crushed rice sample solutions are also 

listed in Table 3. The values listed in Table 3 indicate that the first discriminant function explains 

94.1% of the data information and the second function explains 4.4%. Thus, the total accumulated 

contribution rate of the first two discriminant functions is 98.5%, indicating that the first two 

discriminant functions can explain majority of the original data information without any significant 

loss in the information. Discrimination Index (DI) value is 98. 

The discrimination plot of the rice sample solutions employing DFA analysis is shown in Figure 5b, 

revealing that different varieties of non-crushed rice sample solutions are distributed away from each 

other. The space within the same variety is less; however, the distance among the different groups was 

large, indicating good data repeatability and a clear distinction between different samples. Thus, the 

rice sample solutions with non-crushed pretreatment method can also be efficiently discriminated by 

DFA analysis. 
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The abovementioned analysis of the rice sample solutions through two different pretreatment 

methods showed that DFA could efficiently discriminate different rice samples obtained by both 

pretreatment methods, except that the current response values with non-crushed pretreatment were 

lower. The results of the crushed pretreatment method indicated that the four varieties of rice could be 

well distinguished with DI value of 96. Interestingly, the discrimination effect was also perfect for 

non-crushed pretreatment methods with DI value of 98. The pretreatment of crushed rice was more 

complex because it involved crushing, dissolving, centrifuging, and filtering prior to the test; therefore, 

non- crushed pretreatment methods could be considered as a better choice to perform discrimination 

and later recognition modeling of electronic tongue to simplify the rice pretreatment process and 

pretreatment time. The total DFA analysis results provided the basis for the optimization and selection 

of the rice pretreatment method.  

3.4. Prediction of Different Unknown Samples of Rice Using RBF Neural Network 

To further assess the ability of the electronic tongue for the identification of unknown rice samples, 

a RBF neural network prediction model was attempted. Good discrimination results were observed, 

which indicated that different varieties of rice could be distinguished by using the non-crushed sample 

solutions; therefore, further tests and analysis were performed on the four varieties of non-crushed rice 

samples. The test samples were obtained by the steps described in Section 2.2.3. 

The recognition and prediction of the unknown variety of rice were modeled by using RBF neural 

network from the voltammetric responses data, previously compressed with FFT. The final structure of 

the RBF neural network was designed as 64-32-1 after a systematic study to optimize its topology. The 

number of input neurons was 64, and they were corresponding to the FFT coefficients of the four 

metallic sensors, and 16 separate coefficients for each sensor as before. Thirty two neurons were set in 

the hidden layer and one neuron in the output layer. The output values 1, 2, 3, and 4 correspond to 

“JiaHe218”, “JiaHe66”, “XiuShui128”, and “XiuShui134”, respectively. 

The recognition and prediction effect of RBF neural network with leave-one-out cross-validation 

approach was studied. The recognition and prediction results are listed in Table 4. Rows indicated 

expected rice class and columns predicted ones. All the varieties of rice samples with four 

concentration gradients were measured and predicted. The values listed in Table 4 indicate that at 0 

dilution, the recognition success rate of the four types of rice samples reached 95% of accuracy. As 

aforementioned, the obtained recognition efficiency of the RBF neural network also evaluated 

specificity and sensitivity. The value of specificity, averaged for the four classes considered was 98.3% 

and that of sensitivity was 95%. When recognizing rice samples with 5 times dilution, the correct 

recognition rate decreased significantly down to 85%, and when diluted 10 times and 100 times, the 

prediction accuracy of rice samples decreased down to 45% and 7.5%, respectively. The value of 

specificity also dropped from 95% to 81.7% and finally to 69.2% corresponding to rice sample 

solutions with dilution of 5 times, 10 times, and 100 times, respectively. Moreover, sensitivity dropped 

from 85% to 45% and finally to 7.5%. Thus, consequently, when the sample was diluted 100 times, the 

RBF neural network prediction model was less effective, it could correctly recognize only six out of a 

total 80 samples. 
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Table 4. Prediction results of RBF neural network using leave-one-out cross validation approach. 

Dilution 

Times 
Expected 

Predicted 
Sensitivity 

XiuShui134 XiuShui128 JiaHe218 JiaHe66 Accuracy Specificity 

0 

XiuShui134 20 0 0 0 

95% 98.3% 95% 
XiuShui128 0 18 0 2 

JiaHe218 1 0 19 0 

JiaHe66 0 1 0 19 

5 

XiuShui134 18 0 2 0 

85% 95% 85% 
XiuShui128 1 16 0 3 

JiaHe218 2 0 17 1 

JiaHe66 0 2 1 17 

10 

XiuShui134 10 3 7 0 

45% 81.7% 45% 
XiuShui128 0 7 6 7 

JiaHe218 6 0 10 4 

JiaHe66 0 8 3 9 

100 

XiuShui134 3 4 8 5 

7.5% 69.2% 7.5% 
XiuShui128 4 1 5 10 

JiaHe218 11 3 1 5 

JiaHe66 3 12 4 1 

In all, the RBF neural network could be used effectively to distinguish different varieties of rice; 

however, at different concentrations, the ability of RBF neural network to identify rice samples was 

markedly different. When the sample dilution ratio was more than 10 times, RBF exhibited worse rice 

variety identification performance. 

Finally, in order to confirm the effectiveness of the FFT data preprocessing or compressing method, 

other original voltammetric data preprocessing methods were attempted to compare the performance of 

the prediction model with different preprocessing methods. As stated in Section 3.2, different rice 

sample solutions exhibited different details especially in the peaks, troughs, and the inflection point 

circled in Figures 3 and 4. The ability to recognize the rice variety using only these data details was 

observed. Response current peak value, the inflection point value, and trough value of each sensor for 

all 80 samples at each concentration were selected as the eigenvalues for model input. Concretely, five 

eigenvalues were extracted from Pt electrode, Au electrode, and Pd electrode, respectively. However, 

three eigenvalues were extracted from Ag electrode. 

Therefore, the structure of the RBF neural network was designed as 18-13-1 after model 

optimization. The number of input neurons was 18, and they corresponded to the eigenvalues of the 

four metallic sensors, separately number 5, 5, 5, and 3 for each sensor, 13 neurons in the hidden layer 

and one neuron in the output layer. Consequently, the prediction accuracy was demoted to 91.25%, 

77.5%, 40%, and 3.75% respectively corresponding to rice sample solutions with different dilution. 

Therefore, it was confirmed that in contrast to the preprocessing method of feature value extraction, 

the best RBF neural network performance was obtained by using FFT. 
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4. Conclusions 

A voltammetric electronic tongue, based on the combination of metallic sensors, was researched in 

order to create a suitable tool for discrimination and prediction of different varieties of rice. The sensor 

array coupled with data compression method, statistical method, and pattern recognition method, 

namely, FFT, DFA, and RBF artificial neural network, respectively, were employed to discriminate 

and predict different types of rice. DFA was established for selecting the rice pretreatment methods 

and discrimination of different varieties. A RBF neural network with leave-one-out cross validation 

approach realized recognition and prediction. According to the RBF neural network model, 95% of 

rice sample solutions with no dilution were correctly recognized. The results of this study showed that 

the voltammetric electronic tongue was a useful tool for qualitative analysis of rice. This study 

undertook a preliminary exploration of taste assessment in solid food using voltammetric electronic 

tongue technology. However, the variety and quantity of samples were not sufficient for further 

research and the application effect of experimental results needs further study and in-depth discussion 

of practical applications. Further, different data preprocessing methods and more modeling are 

necessary to confirm the validity of this system for qualitative analysis of rice. Undeniably, a lot more 

systematic explorations are demanded for the detection of specific rice gustatory or non-volatile 

substances information by employing the electronic tongue. 
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