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Abstract: Acute myeloid leukemia (AML), the most common type of acute leukemia in adults, is
mainly asymptomatic at early stages and progresses/recurs rapidly and frequently. These attributes
necessitate the identification of biomarkers for timely diagnosis and accurate prognosis. In this
study, differential gene expression analysis was performed on large-scale transcriptomics data of
AML patients versus corresponding normal tissue. Weighted gene co-expression network analysis
was conducted to construct networks of co-expressed genes, and detect gene modules. Finally, hub
genes were identified from selected modules by applying network-based methods. This robust and
integrative bioinformatics approach revealed a set of twenty-four genes, mainly related to cell cycle
and immune response, the diagnostic significance of which was subsequently compared against
two independent gene expression datasets. Furthermore, based on a recent notion suggesting that
molecular characteristics of a few, unusual patients with exceptionally favorable survival can provide
insights for improving the outcome of individuals with more typical disease trajectories, we defined
groups of long-term survivors in AML patient cohorts and compared their transcriptomes versus
the general population to infer favorable prognostic signatures. These findings could have potential
applications in the clinical setting, in particular, in diagnosis and prognosis of AML.

Keywords: acute myeloid leukemia; transcriptomics; clinical traits; bioinformatics; long-term sur-
vivors; minimal residual disease; diagnostics; prognostics

1. Introduction

Acute myeloid leukemia (AML) is a complex and heterogeneous blood condition,
and the most prevalent form of acute leukemia in adults, representing 32% of all adult
leukemia cases [1]. The average age of AML diagnosis is 67 years [2]. AML is caused by
the uncontrolled clonal proliferation of abnormal immature white blood cells or leukemic
blasts. Since blasts accumulate in the bone marrow, peripheral blood, and other organs
of the body as the disease progresses, the production of normal hematopoietic stem cells
is prevented. If AML is not treated within one year of diagnosis, it progresses quickly,
leading to excessive bleeding, life-threatening infections, infiltration of lymph nodes with
leukemic cells, or metastases to distant organs [3–5].

In the standard practice, AML diagnosis and the decision on the suitable therapeutic
strategy rely on the medical history and physical examination of each patient in combi-
nation with testing blood samples and bone marrow aspirates and biopsies. Laboratory
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tests for AML diagnosis include a series of procedures, such as a complete blood count
and differential count, bone marrow biopsy and genetic testing, imaging or lumbar punc-
ture, immunophenotyping, and cytogenetics [6]. AML patients are treated with intensive
chemotherapy, targeted therapy, or bone marrow transplantation, which have overall
improved survival outcomes, especially in younger patients [7]. However, despite the
advances in the understanding of AML pathophysiology, mortality rates remain high. For
example, in 2020, there were an estimated 60,530 new leukemia cases and 23,100 people
died of this disease in the United States [8]. Long-term survival rates also appear to be low,
and most older patients with AML die from disease relapse [9–11]. The poor outcomes
reflect two major challenges in AML management. First, most cases arise without any
detectable early symptoms and patients usually present with acute complications of bone
marrow failure [12]. Second, complete hematologic remission (CR), which is a prerequisite
for AML cure, cannot be readily achieved, since a significant percentage of AML patients
eventually experience relapse after a seemingly successful treatment. This is because,
although the therapeutic interventions can eliminate the majority of malignant cells, a few
tumor cells inevitably evade therapy and remain persistently in the patient for years after
the initial diagnosis [13]. This condition is termed minimal residual disease (MRD), and is
a major cause of AML relapse [14]. These obstacles in AML treatment highlight the urgent
need for identification of markers for early diagnosis, accurate prognosis, and estimation
of CR.

The rapid progress in ‘-omics’ and high-throughput technologies has promoted the
identification of novel genetic abnormalities and holds promise for accelerating the system-
atic characterization of AML cancer genomes. Gene expression profiling of AML patients
has catalyzed the discovery of novel leukemia subgroups and of prognostic signatures [6].
The increasing availability of high-throughput data from blood and bone marrow of AML
patients creates unprecedented opportunities for the comprehensive identification of diag-
nostic biomarkers of AML which could complement and update the existing ones [15–17].
Moreover, despite the poor outcomes of AML, there are a few fortunate cases that manage
to survive over exceptionally extended periods of time, perhaps reflecting a remarkable
resistance to MRD and disease progression. A novel rationale proposes that patients with
exceptionally prolonged survival rates present distinct molecular profiles [18,19] that could
be exploited to unveil favorable prognostic factors that differentiate them from patients
with a more typical course of disease [20]. Understanding the biological determinants of
survival in these extreme outliers may provide a route to improving responses in more
typical patients, particularly if these studies identify new biomarkers to guide drug selec-
tion or novel pathways that are targetable. Seeking determinants of prolonged survival is
particularly important in cancers with generally poor outcomes [20], such as AML. Taking
these trends into account, in the present study, we applied integrative bioinformatics ap-
proaches to process, analyze, and interpret publicly available AML-relevant transcriptome
data towards the identification of biomarkers for diagnosis and favorable prognosis of
AML. Our diagnostic pipelines unveiled a signature of 24 differentially expressed genes,
mainly involved in the cell cycle and immune response, that discriminate AML patients
from normal controls and could be considered as candidate diagnostic biomarkers. It
also enabled us to reveal a consensus group of genes that are consistently deregulated in
survival outliers.

2. Results

In this study, large-scale transcriptomic data were exploited towards the identifica-
tion of genes that are differentially expressed between bone marrow AML samples and
corresponding normal whole blood specimens. Given that genes with similar expression
patterns (i.e., co-expressed genes) are usually implicated in similar biological processes,
weighted gene co-expression network analysis (WGCNA) of the differentially expressed
genes (DEGs) was performed [21], so as to identify modules (i.e., clusters of densely con-
nected co-expressed genes) in AML with similar expression patterns. The genes contained
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in those modules were further correlated to AML clinical traits. Afterwards, different
network-based methods were applied on the genes contained in these modules, so as
to select the most biologically important genes/gene products. This analysis revealed
twenty-four biologically important genes/gene products, which were further compared
against two independent gene expression datasets. Furthermore, we set up a pipeline
for the characterization of molecular signatures of AML long-term survivors (LTSs) that
could enable prediction of MRD and survival probability. To this end, we estimated the
median overall survival (OS) of the AML patients, and defined several groups of LTSs
whose OS survival largely deviates from the median value. The transcriptomic profiles
of the LTSs were compared to those of short-term survivors (STSs) to detect DEGs, and
functional enrichment analysis was further performed to functionally interpret those genes.
The overall procedure is briefly illustrated in Figure 1.

Figure 1. Flowchart diagram of the methodology employed in this study.

2.1. Identification of Diagnostic Markers in AML
2.1.1. Comprehensive Characterization of Consensus AML Transcriptomes Compared to
Normal Blood

First, we sought to identify the changes in transcriptomes of leukemic cells versus
publicly available normal control samples, such as blood or bone marrow. It should be taken
into account that unlike blood sampling, which is a fast and minimally invasive technique,
bone marrow biopsy and aspiration are more distressing [6]. This issue poses limitations to
obtaining a large biobank from this type of normal tissue, leading to inadequate numbers
of relative high-throughput data in public platforms, such as GTEx and GEO. Nevertheless,
encouraged by the adequate number (n = 456) of normal whole blood samples with
available RNA-seq data in GTEx, we envisaged that comparing the transcriptome of
malignant cells to that of normal blood holds a potential to reveal transcripts expressed in
circulating leukemic cells. These could be considered as circulatory biochemical markers for
blood-based diagnosis via real-time PCR, which is a routine and less painful clinical practice
as opposed to other invasive diagnostic techniques. To this end, by using a uniform pipeline
(described in the Materials and Methods), gene expression profiles from TCGA and GTEx,
151 AML and 456 normal blood samples, respectively, were compiled. The distribution
of TCGA and GTEx samples according to PCA is shown in Figure 2A. As expected, AML
and normal samples form discrete clusters, suggesting distinct transcriptomic profiles for
the datasets from AML and normal whole blood samples. The statistically significant
DEGs obtained by analyzing the RNA-seq data from TCGA-LAML and GTEx include 2056
upregulated, 2959 downregulated genes from edgeR (Figure S1); 1847 upregulated, 3108
downregulated genes from limma (Figure S1); and 1714 upregulated, 2575 downregulated
genes from DESEq2 (Figure 2B). There are a total of 3931 common DEGs from edgeR,
limma, and DESeq2 (Figure 2C), including 1503 upregulated and 2428 downregulated
genes (Table S1). The protein-coding genes constitute 85% of those genes. A Venn diagram
was generated using the function VennDiagram in the ‘VennDiagram’ package (v.1.6.20).
The bar plot was created with the function barplot in the ‘graphics’ package (v.4.0.4).
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Figure 2. Genes differentially expressed between AML and normal samples. (A) Principal component analysis of TCGA and
GTEx samples. Orange and green circles represent normal samples from GTEx and AML samples from TCGA, respectively.
(B) Heatmap of the DEGs generated using DESeq2. Representative AML and normal samples are shown in maroon and
green, respectively. Each row corresponds to a gene. The upregulated and the downregulated genes (based on Z-scoring)
are shown in red and blue, respectively. (C) Venn diagram of the common and unique DEGs across edgeR, limma, and
DESeq2.

2.1.2. Weighted Gene Co-Expression Network Analysis of DEGs
Sample Clustering for Detecting Outliers

The co-expression network of the DEGs in AML was constructed by WGCNA. First,
outlier genes and samples were removed. In this way, a total of 3794 genes and 84 AML
samples were used to construct the gene co-expression network. To determine whether
all 84 AML samples were suitable for network analysis, the sample dendrogram and
corresponding clinical traits were analyzed. All samples were included in the clusters and
passed the cutoff thresholds (Figure 3A).
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Figure 3. Cont.
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Figure 3. Sample clustering and module detection in WGCNA. (A) Sample dendrogram and trait heatmap for detecting
outliers. The clustering was based on the expression data of the 3794 DEGs of the AML samples. All 84 samples are located
within clusters. Darker shades of red indicate stronger positive correlation, whereas lighter shades of red denote weaker
correlation. (B,C) Selection of soft-thresholding power (β) based on scale-free fit index and mean connectivity for various
soft-thresholding powers. (D) Clustering of module eigengenes. The red line indicates cutoff height of 0.25. (E) Dendrogram
of DEGs produced by hierarchical clustering based on dissTOM (1-TOM). Modules are represented by different colors. The
two colored rows below the dendrogram represent the original and merged modules. (F) Module–trait correlation heatmap
for AML clinical traits and gene module eigengenes. Each cell contains the Pearson correlation coefficient and p value. Blue
indicates negative correlation, red denotes positive correlation.

A soft-thresholding power (β) of 12 (scale free R2 = 0.8) was chosen by applying the
approximate scale-free network topology criterion (Figure 3B,C). A dendrogram of DEGs
was generated by average linkage hierarchical clustering using a TOM-based dissimilar-
ity measure, by setting the cut height at 0.25 for module merging and the β value at 12
(Figure 3D,E). Gene modules are represented by different colors. The branches in the den-
drogram represent modules, and each leaf, which is a short vertical line, corresponds to a
gene. A total of 17 gene co-expression modules were determined, labeled as turquoise (735),
blue (512), brown (308), yellow (277), green (258), red (238), black (223), pink (218), magenta
(202), purple (186), greenyellow (139), tan (134), salmon (81), cyan (76), midnightblue (70),
lightcyan (69), and grey60 (58); the numbers in the parentheses indicate the number of
genes per module. The unclustered genes (10) were assigned to the gray module.

Associations of Gene Modules with Clinicopathological Traits of AML

The association between the 17 gene modules and ten important clinicopathological
and molecular features of AML patients was investigated. The clinical significance of the
selected traits is described below.

• Gender: Men are more prone to leukemia than women [22].
• Chronological age: Elderly people are more prone to AML than young people [23].
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• Age at diagnosis: The incidence of AML is almost three times higher in adults aged
50–54 years and thirteen times higher in those aged 70–74 years as compared to adults
aged 20–24 years [24,25].

• Neoadjuvant treatment: Whether patients have previously received chemotherapy or
not; patients who have previously received chemotherapy are more prone to AML [26].

• FAB category: Based on the type of cell from which leukemia developed and the degree
of maturity of these cells. FAB category corresponds to the French–American–British
classification scheme which is useful for classifying AML into subtypes from M0
(undifferentiated AML or AML with minimal differentiation) to M7 (acute megakary-
oblastic leukemia, AMegL) [27].

• Platelet count: AML is characterized by low platelet count. Normal human blood in-
cludes 150,000–450,000 platelets per microliter. Platelet count decreases in AML [28,29].

• Cytogenetic risk group: Cytogenetic analysis is recognized as being the most important
prognostic indicator in acute myeloid leukemia. According to the cytogenetic risk
group, AML is divided into three groups: favorable risk, intermediate risk, and
unfavorable risk. Cytogenetic tests help predict the response of cancer to treatment
and allow physicians to design a more effective therapy [30,31].

• Blast count and peripheral blood blast: For the diagnosis and classification of AML,
the percentage of peripheral blood (PB) and bone marrow (BM) blasts is especially
important. BM blasts normally represent 1% to 5% of marrow cells. Generally, a
percentage of 20% blasts is required for AML diagnosis. Most patients with AML have
a higher percentage of BM blasts compared to PB blasts [32–34].

• Days to death: Related to overall survival, which is the survival time after initial
diagnosis. Measuring the overall survival is required to assess how well a new
treatment works in a clinical trial. In AML, the 5-year overall survival is less than 50%;
regarding elderly patients, only 20% survive 2 years after diagnosis [35,36].

Pearson correlation coefficients (r) between modules’ eigengenes and the clinical traits
were calculated to detect important module–trait relationships. In our study, those modules
with |r| > 0.25 and p value < 0.05 were considered to be statistically significant. As shown
in Figure 3F, twelve modules (tan, greenyellow, pink, yellow, brown, lightcyan, blue,
magenta, turquoise, black, green, and salmon) are significantly associated with clinical
traits. The genes from each of those modules were selected for further analysis.

2.1.3. Reconstruction of AML Molecular Networks

The 3154 genes belonging to the twelve modules (Figure 3E) were used to construct co-
expression and PPI networks. In the co-expression network, 90 genes with ≥17 connections
were identified, and the top 121 genes were selected through cytoHubba by combining the
output of eleven different algorithms (Figure 4A). Likewise, in the PPI network, 279 hubs
and 153 important protein nodes were identified (Figure 4A). The nodes that correspond to
genes or gene products, found to be common between co-expression and PPI networks,
based on degree of connectivity and cytoHubba, are shown in Figure 4A. NPY1R was
detected by using both approaches (Figure 4A). In this way, a total of 24 genes were found,
of which PPBP, PF4, CXCL12, BUB1B, LCK, S1PR5, EGFR, CENPI, KNL1, RHOJ, FGF2,
EXO1, PLK4, and MCM10 genes are upregulated, and NPY1R, BRCA1, CD3G, MYH6, KRT4,
SPARCL1, CD3E, GALNT15, MMP1, and SNAP91 genes are downregulated (Figure 4B,C).
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Figure 4. Important nodes identified through gene co-expression and PPI network. (A) Venn diagrams depicting the
common nodes between the co-expression and PPI networks according to node degree and cytoHubba, respectively. (B)
Co-expression network showing the 24 common genes, as distributed in pink, magenta, yellow, brown, and greenyellow
modules. The nodes correspond to genes and the edges (connecting lines) represent the associations among genes. The size
of the nodes is proportional to the number of their immediate connections (degree of connectivity). Red and blue border
lines indicate up- and downregulation, respectively. (C) PPI network with the 24 common proteins. (D) Venn diagram
for validation of diagnostic signatures, showing the common DEGs between the TCGA/GTEx and the two merged GEO
datasets.
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2.1.4. Comparison of Diagnostic Signatures with Independent AML Datasets

Those genes found to be differentially expressed between the TCGA AML and corre-
sponding normal GTEx samples were further compared against two independent datasets
obtained from NCBI GEO. The number of DEGs detected between AML and control (i.e.,
from matched healthy donors) samples for each NCBI GEO dataset is 793 (GSE138702) and
4780 (GSE9476) (Table S1), by applying stringent criteria. The DEGs found in each of the
two transcriptome datasets were merged and the duplicates were removed; collectively,
5504 genes were compiled (Table S1). A rather significant overlap was found between
the DEGs from TCGA/GTEx and those from the two GEO datasets; in particular, 1059
genes were found in common (representing 27%), eight of which constitute hubs (33%)
(Figure 4D).

2.2. Inferring Favorable Prognostic Markers from the Transcriptomic Profiles of Long-Term
Survivors of AML

Even after a seemingly successful treatment, a significant percentage of AML patients
is at risk of disease recurrence [14], as a consequence of minimal residual disease. It has
been estimated that of those patients who will achieve initial remission, approximately
50–70% of them will relapse within three years. Nevertheless, a lower percentage of adult
AML patients survive to five years [37] while some infrequent cases with survival over
ten years have also been reported [38]. In general, across several cancer types, there are
rare cases of patients who manage to remain progression-free for atypically long durations
of time, while in some rare cases patients never relapse [20,39]. Intriguingly, tumors of
these unusual patients present distinct genetic and gene expression profiles as compared
to the patients with a more typical course of disease [18,19]. Patients with exceptionally
prolonged survival rates comprise a rare, but distinct, clinical subpopulation which holds
the potential to reveal signatures of favorable prognostic factors that could be informative
for the effective management of the general population of cancer patients [20]. According to
these notions, the patients with unusually prolonged survival (hereafter termed long-term
survivors, LTSs) in our study cohort might plausibly better cope with MRD and relapse
and, therefore, their distinct transcriptomes, as compared to the general population, can be
used to provide prognostic signatures associated with resistance to MRD.

To this end, in the cohort of AML patients of TCGA, we distributed the patients
according to their OS and estimated the median OS which would reflect the typical course
for the disease for the specific cohort. The median OS for the whole AML population was
366 days (n = 50 patients), while the standard deviation value was estimated as 600.5 days.
Then, we defined populations of patients with exceptionally favorable prognosis within
the study cohort in a time-dependent manner as the patients who survive i) longer than the
median OS + 2 SD (>1567 days, n = 15 patients), or ii) longer than the median OS + 3 SD
after initial diagnosis (2168 days, n = 4 patients). Given that in clinical practice the patients
who are alive 5+ years past diagnosis are considered LTSs [40], we additionally included the
patients who survive past this clinical milestone (1825 days, n = 7 patients) in our analysis
(Figure 5A). We sought to identify the distinct tumor gene expression profiles across
these LTSs versus those of the patients who are deceased by 366 days (Figure 5B). Our
analysis revealed common deregulated genes between all three comparisons (Figure 5C).
Subsequent gene set enrichment analysis (GSEA) showed that biological functions such
as locomotion, cell migration, and cell junctions are enriched in the DEGs in each LTS
subgroup. This is expected, since these traits are linked with a propensity of cancer
cells to metastasize. Surprisingly, among the top significantly enriched processes, we
also observed deregulations of genes that are involved in developmental processes, in
particular neurogenesis, central nervous system development, neuron differentiation, and
pattern specification (Figure 5D). We further identified a group of 131 DEGs that remain
consistently deregulated in all three groups and, hence, could be important for maintaining
survival over extended periods of time (Table S2).
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Figure 5. Identification of favorable prognostic factors based on transcriptomic profiles of LTSs. (A) Histogram of the overall
survival (OS) of the TCGA LAML cohort with median (366 days, n = 50) and cutoffs for the three long-term survivor (LTS)
groups: 2 × SD = 1567 days (n = 15), 5-year survival = 1825 days (n = 7), and 3 × SD = 2168 days (n = 4). (B) Heatmaps of
the DEGs in the three LTS subpopulations versus the STSs. (C) Venn diagram of the deregulated genes of all three analyses
showing large overlaps between analyses and 131 genes in common. (D) GSEA of GO biological functions associated with
the DEGs in each LTS subgroup versus the patients with OS < 366 days. (E) Top 10 enriched GO biological functions for
the 131 genes that are commonly deregulated across all LTS subgroups, ranked by order of significance (−log10 of FDR
value). (F) Overlapping of the 131 genes with previously identified nervous system-related genes showed that 31.3% of
these genes are indispensable for neuronal development, neurological function, or both (gene abbreviations are indicated in
the respective boxes). * Nervous system-related pathways.

Strikingly, GSEA showed that the commonly deregulated genes are strongly involved
in early and late stages of embryonic development, and particularly in neuronal develop-
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ment and neurological function. In detail, the top 10 most significantly enriched biological
processes were embryo development, central nervous system (CNS) development, pattern
specification process, animal organ morphogenesis, regionalization, cell junction organiza-
tion, neurogenesis, anterior–posterior pattern specification, synaptic signaling, and embryo
development ending in birth or egg hatching (Figure 5E). Among the transcripts found
upregulated in LTSs and involved in many of these processes were glial cell-derived neu-
rotrophic factor (GDNF), a neurotrophic molecule that promotes neuronal differentiation
and dopaminergic development [41], as well as several products of homeobox genes that
are master regulators of development, morphogenesis, and cell differentiation, for example,
distal-less homeobox 1 (DLX1), msh homeobox 1 (MSX1), and orthodenticle homeobox 1
(OTX1) [42]. We further considered the cytogenetic background of the patients of the LTS
and STS subgroups in regard to the reciprocal translocation t(15;17), which is associated
with decreased incidence of relapse and improved survival upon all-trans retinoic acid
(ATRA)-containing treatments. In particular, six patients across the LTS subgroups ver-
sus six patients in the STS subgroup bear a t(15;17) translocation, leading to fusion of
the promyelocytic leukemia gene (PML) to retinoic acid receptor alfa (RARA), which is
specifically sensitive to ATRA and arsenical derivatives [43]. To eliminate survival bias in
the LTSs caused by this cytogenetic feature, we excluded these patients and performed
the comparisons between the transcriptomes of the STSs and LTSs. Strikingly, we found
that the DEGs in LTSs remained significantly associated with CNS development, neuronal
development, neuronal differentiation, and neurogenesis.

In view of these findings, we sought to further explore the potential link between
long-term survival and the nervous system. We have recently performed a comprehen-
sive, phenotype-driven identification of nervous system-related genes. These include all
protein-coding genes that are essential for normal nervous system development (neu.dev)
and neurological function (behavior), whereby their knockout leads to malformations
of the neural system components or behavioral disorders, respectively. Using system-
based approaches, we had found 1246 genes that are specific for neuronal development
(neu.dev) and 1086 for neurological function (behavior), while 863 genes are involved in
both processes [44]. Overlapping of the ‘neu.dev’ and ‘behavior’ lists of genes with the
131 commonly deregulated genes in LTSs showed that, overall, 41 (31.3%) of them are ner-
vous system-related genes, whereby 21 are indispensable for neuronal development, 10 for
neurological function, and 10 for both processes (Figure 5F). Overall, our analyses indicate
a strong association of the nervous system with the exceptionally prolonged survival and
patient outcomes in AML.

3. Discussion

The incidence of AML increases with age, and the survival rate is exceptionally poor
when diagnosed after age 65. In the present study, we employed integrative bioinformatics
approaches on AML-relevant transcriptomic data to identify biomarkers of diagnosis and
favorable prognosis.

We identified a set of 24 hub genes which discriminate AML cells from normal con-
trols and could be valuable as a diagnostic signature. As expected, several of these genes
(BRCA1, BUB1B, CENPI, EXO1, KNL1, MCM10, and PLK4) regulate genomic stability and
cell proliferation. DNA damage repair-associated BRCA1 is a known tumor suppressor
gene, essential for DNA synthesis and cellular replication [45]. Mitotic checkpoint ser-
ine/threonine kinase B (BUB1B) is a vital component of the mitotic checkpoint and it
is necessary for normal mitosis progression [46,47]. Centromere protein I (CENPI) is a
structural component of the kinetochore, required for timely progression through G2 phase,
mitosis, and chromosome stability [48,49]. Exonuclease I (EXO1) contributes to the regula-
tion of the cell cycle checkpoints, the maintenance of the replication fork, DNA repair, and
genomic instability [50,51]. Kinetochore scaffold 1 (KNL1) is essential in spindle assembly
checkpoints, chromosome segregation, and kinetochore–microtubule attachments [52,53].
Minichromosome maintenance 10 replication initiation factor (MCM10) is required for
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DNA synthesis and entry into or ending of S-phase [54,55]. Polo-like kinase 4 (PLK4) plays
a crucial role in controlling centriole duplication, and its deregulation causes centrosome
number abnormalities, mitotic defects, chromosomal instability, and, consequently, tumori-
genesis [56]. Genomic instability and cell cycle deregulation favor the rapid proliferation
and clonal expansion of cells harboring oncogenic DNA alterations in AML [57–59]. The up-
regulation of hub genes controlling these processes reflects the tendency of hematopoietic
precursor cells in bone marrow to accumulate DNA lesions and increase their proliferation
rate at the expense of normal hemopoiesis, resulting in bone marrow failure.

Notably, several genes of the diagnostic signature are involved in immune and inflam-
matory responses. For example, the CD3e molecule (CD3E) and CD3g molecule (CD3G)
form a complex with TCR, a T cell receptor that plays an important role in T cell antigen
recognition and signal transduction. Decreased expression of CD3E and CD3G, as in our
study, leads to deregulation of T cell function [60]. Moreover, C-X-C motif chemokine
ligand 12 (CXCL12) and its receptor CXCR4 are key elements for the adaptive and innate
immune response and also for bone marrow organization and maintenance [61]. They are
largely responsible for hematopoietic stem cell migration, homing, and survival in bone
marrow [61]. CXCL12, found to be upregulated in our study, facilitates trafficking and
homing of leukemic cells to the bone marrow microenvironment [62]. Furthermore, we
identified the platelet-related genes platelet factor 4 (PF4) and pro-platelet basic protein (PPBP)
as components of the AML diagnostic signature. In general, platelets are anucleate cell
fragments known for their central role in coagulation and vascular integrity and their dereg-
ulation in AML patients. Beyond their typical roles as fragmentary mediators of hemostasis
and thrombosis, platelets orchestrate diverse immunological processes, including fight-
ing against microbial threats, recruitment and promotion of innate effector cell functions,
modulating antigen presentation, and enhancement of adaptive immune responses [63,64].
They usually interact with blood cells, as well as circulating tumor cells, via adhering or
releasing a variety of soluble mediators, which can modulate the activity of hematopoietic
stem and progenitor cells. Such platelet-coated tumor cells not only have an enhanced
ability to attach to endothelial cells and endothelial extracellular matrix and thus promote
tumor invasion and metastasis, they are also protected from the clearance of immune
surveillance [65]. Overall, these findings underscore an implication of the immune system
in AML pathophysiology which could be particularly relevant for the prediction of AML
patients with favorable responses to immunotherapy. In particular, immunotherapy has
catalyzed a paradigm shift in cancer treatment and has become the standard of care for sev-
eral solid tumors. As our understanding of the genomic landscape of AML moves forward
and the arsenal of immunotherapies is being enriched, their extension to AML represents
an attractive clinical option, but this endeavor requires the establishment of guidelines for
the prediction of groups of patients who would most benefit from immune targeting. A
recent study on primary bone marrow samples from independent cohorts of AML patients
defined immune-infiltrated and immune-depleted disease classes, revealed critical differ-
ences in immune gene expression across age groups and molecular disease subtypes, and
provided compelling evidence that immune landscapes predict chemotherapy resistance
and immunotherapy response [66]. The immune contexture is an emerging parameter of
AML pathophysiology, and further investigation of the tumor microenvironment (TME) of
the bone marrow, in combination with identification of immunomodulatory biomarkers
in the blood, may allow molecular predictions of immunotherapeutic benefit and guide
personalized treatment decisions. Further studies can uncover the molecular mechanisms
underlying AML immunobiology and their translation to therapeutic solutions.

The asymptomatic nature of AML in combination with MRD and frequent disease
relapse hamper AML prognostics, but a few patients manage to remain progression-free
for exceptional durations of time. Despite their sparsity, unusual patients can inform
cancer biology [20]. For example, families with rare and high penetrant germline muta-
tions (Li–Fraumeni syndrome) have catalyzed understanding of the function of tumor
suppressor genes [67], while populations with diminished cancer incidence (subjects with



Int. J. Mol. Sci. 2021, 22, 9601 13 of 22

Laron syndrome in Ecuador) provided insights on cancer metabolism and the insulin-like
growth factor (IGF) pathway in tumor progression [68]. In an analogous manner, cases
with exceptionally prolonged survival may bear distinct molecular characteristics, the
elucidation of which could ultimately improve the outcome of individuals with more
typical disease trajectories [20]. Long-term survivorship has, at least in part, a genetic
and immunological basis [18,19,69]. Molecular factors contributing to favorable survival
in a patient, who may otherwise have had a more typical course of disease, may include
germline genetics, endogenous antitumor immune responses, tumor mutational load, and
characteristics of the microenvironment [20]. Putting this novel rationale under testing, we
defined subgroups of LTSs in our study population and investigated their distinct tran-
scriptomic profiles as compared to patients below the median OS in order to infer favorable
prognostic signatures which could be associated with resistance to disease progression.
Surprisingly, this approach revealed that malignant cells of LTS AML patients exhibit
prominent deregulations of genes involved in neuronal processes, thereby providing hints
for associations between exceptionally prolonged survival and neurogenic cell traits.

The effect of the nervous system on tumor progression has recently come into the
spotlight as an enigmatic phenomenon with a paramount effect in disease outcome. We
recently demonstrated that all cancer types can activate neuronal networks ‘off-context’
and this ability largely influences the acquisition of aggressive characteristics. This trend
seems to have a universal character across several cancers, since nervous system-related
gene transcripts are upregulated in invasive stages and predict clinical outcomes in all
cancer types, including AML. The prognostic potential of each nervous system-related
gene depends on the cancer type [44]. Depending on the nervous system-related genes
that are ectopically activated in a cancer cell context, patient survival can be affected either
positively or negatively. Furthermore, different cancer types co-opt genes essential for
the development of distinct anatomical parts of the nervous system. In the case of AML,
genes indispensable for the somatic sensory system, the cerebellum fissum, the sympa-
thetic nervous system, and the dentate gyrus granule cell layer are associated with AML
patient outcomes [44]. Herein, we show that deregulations of nervous system-related genes
are strongly associated with exceptionally long survival periods in AML. The relevant
underlying mechanism awaits to be unveiled. On the one hand, it has been recently de-
scribed that leukemia stem cells can evade the arachnoid space, migrate, proliferate in
the cerebrospinal fluid (CSF), and consequently infiltrate perivascular spaces and brain
parenchyma. The CNS is an immune-privileged site that can protect leukemic cells from
chemotherapy. Overexpression of the neural cell adhesion molecule NCAM/CD56 in the
surface of leukemic stem cells increases their ability to infiltrate the CNS [70]. In this regard,
deterministic deregulation of selected neuronal signaling pathways may hypothetically
enable leukemic cells to ‘mingle’ within the neuronal tissue microenvironment and rewire
with the electrically active neurons [70]. On the other hand, Hanoun et al. (2014) demon-
strated that adrenergic signals regulate AML and that when leukemic cell injections in mice
are followed by sympathetic denervation, the course of disease is accelerated. They further
provided compelling evidence that sympathetic neuropathy represents a mechanism by
which AML co-opts the microenvironment to its own advantage in order to deplete niche
cells that maintain healthy hematopoietic stem cells and expand leukemia-supportive
mesenchymal progenitors [71]. The interactions between leukemic and neuronal cells in
the context of AML recurrence, MDR, and/or metastasis remain a terra incognita. Future
research can unveil how ‘hijacking’ of networks of the nervous system might offer several
selective advantages in leukemic cells, especially those that persist in the circulation after
initial AML management, and represent the ‘seeds’ of MRD. Conversely, it would be
interesting to investigate whether activation of other neuronal signaling pathways can be
protective against MRD in AML patients. Deciphering the neuronal signaling pathways
that are beneficial for leukemic cell survival over those with a detrimental effect is antici-
pated to shed more light on AML pathophysiology and might have important translational
implications in disease prevention and management. Such studies could open up novel
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avenues for therapeutic interventions, for example, by repurposing already approved
neurological drugs to target the cancer–neuronal crosstalk and prevent progression to
aggressive stages [72].

Last, but not least, the profiles of the rare LTS patients who either never regress
or manage to remain relapse-free for extended periods of time might be particularly
meaningful in the context of AML prognosis. Their alleged resistance to disease progression
or relapse could be an indicator of better abilities to cope both with MRD, which may
be associated not only with epidemiological, environmental, or lifestyle factors, but also
with their inherent molecular traits [20]. Hints supporting the influence of the hereditable
genetic characteristics on the resistance to recurrence arise from studies demonstrating that
ethnicities with inherently different genetic backgrounds, such as Caucasians and African
Americans, exhibit differences in the AML prognosis, whereby Caucasian males have
better CR and overall survival than African American males [73]. It would be interesting to
investigate whether patients with unusually long survival periods share favorable intrinsic
characteristics that overall predispose them to better detect and self-eliminate residual
cancer cells during or after treatment. Checking for additional associations between
the inherent characteristics of the LTSs and several clinical traits that are important for
treatment personalization, such as cytogenetic characteristics and therapy regimens, could
also be highly informative for the management of AML. This endeavor would require
appropriate study designs that are specifically focused on LTS patient subgroups, where
patients surviving over 5, 10, or more years will be oversampled and compared to those
with more conventional disease trajectories [20]. Unveiling the cancer genomes and intrinsic
genetic traits of this novel clinical population as opposed to relapsing cancer patients or
even the general non-cancer population could reveal predisposing factors for resistance
to recurrence. Future clinical trials could aim at the characterization of the molecular
factors that are associated with LTSs. Such clinical study endpoints would be invaluable
for the prognosis and management of AML and could enable not only the identification of
patients with unfavorable prognosis who will need special treatments, but also the design
of appropriate targeted strategies that prolong survival.

4. Materials and Methods

All analyses were performed in the R statistical computing environment v.4.0.3
(https://www.r-project.org, accessed on 1 September 2020) [74], unless otherwise stated.

4.1. Data Retrieval, Processing, and Analysis

Non-normalized, raw RNA-seq read count data of AML tissue samples were down-
loaded from The Cancer Genome Atlas (TCGA) using the ‘TCGAbiolinks’ R/Bioconductor
package [75]. Since there are no available matched normal tissue samples for AML in
TCGA, raw RNA-seq read counts per gene for whole blood normal tissue samples were
downloaded from the Genotype-Tissue Expression (GTEx) Portal (https://gtexportal.org/
home/, accessed on 14 September 2020) using the ‘TCGAbiolinks’ package. The RNA-seq
data were generated from two different technological platforms (TCGA and GTEx), and
due to their inherent variability, they had to be processed in a uniform way in order to
be comparable. To ensure comparability across TCGA-derived AML and GTEx-derived
whole blood normal tissue samples, all raw RNA-seq read counts were normalized and
filtered, as suggested by the original TCGAbiolinks workflow [76,77] The overall procedure
is illustrated in (Figure 6).

https://www.r-project.org
https://gtexportal.org/home/
https://gtexportal.org/home/
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Figure 6. Schematic workflow of retrieving, processing, and merging TCGA and GTEx data.

4.1.1. RNA-seq Data Acquisition and Processing
AML Samples from TCGA

Acute myeloid leukemia (LAML) harmonized data (hg38) (Illumina HiSeq platform)
were obtained from the Genomic Data Common (GDC) Portal (https://portal.gdc.cancer.
gov/, accessed on 14 September 2020) of the TCGA database. GDC data were queried,
downloaded, and prepared using the functions GDCquery, GDCdownload, and GDCprepare,
respectively. A total of 151 samples including expression data of primary blood-derived
cancer—peripheral blood were analyzed. Samples lacking clinical information were ex-
cluded from our study, and therefore 84 tumor samples were included. Pre-processing
steps were applied according to the TCGA’s workflow as recommended in the ‘TCGAbi-
olinks’ package in order to find possible outliers in transcriptome data using the TCGAana-
lyze_Preprocessing function. This function generates a count matrix ready to be provided as
input in the downstream analysis pipeline.

Normal Tissue Samples from GTEx

Collectively, 456 of normal whole blood GTEx samples were downloaded through the
Recount2 project using the function TCGAquery_recount2 in the ‘TCGAbiolinks’ package,
as ranged summarized experiment (RSE) objects. The raw counts were scaled with the
‘scale_counts’ function in the ‘Recount’ package (v.1.16.1) [78,79].

Processing and Merging of TCGA- and GTEx-Derived Data

HTSeq counts from TCGA and read counts from GTEx were merged and gene expres-
sion counts were acquired, which were normalized for ‘GC content’ using the function TC-
GAanalyze_Normalization of the EDASeq protocol for exploratory data analysis (EDA) [80]
in the ‘TCGAbiolinks’ package. Quantile filtering was applied with a cutoff of 25%.

Principal Component Analysis

Principal component analysis (PCA) of the TCGA and GTEx datasets was employed
to detect batch effects. Raw RNA-seq read counts were converted to counts per million
reads mapped (CPM) values with the function cpm in the ‘edgeR’ package (v.3.32.1) [81].
The functions prcomp and ggplot in the ‘ggplot2‘ package (v.3.3.3) [82] were used to create a
PCA plot.

4.2. Identification of Differentially Expressed Genes

To identify those genes that are differentially expressed between AML and normal
samples, with the same direction (i.e., up- or downregulated), three different methods
implemented in the R packages edgeR (v 3.32.1) [81], limma (v 3.44.3) [83], and DESeq2
(v.1.28.1) [84] were used.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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Normalization by trimmed mean of M values (TMM) was performed with the calc-
NormFactors function in the ‘edgeR’ package (v.3.32.1). The negative binomial (NB) distri-
bution was used to model the RNA-seq read counts per gene per sample in edgeR. Then,
estimating dispersion was calculated with the estimateDisp function. DEG analysis between
the two RNA-seq groups (i.e., AML versus normal) was performed using likelihood ratio
tests (LRTs) including the glmFit and glmLRT functions in edgeR.

The Voom function in the ‘limma’ package was utilized to transform RNA-seq count
data to log2 counts per million (logCPM). The lmFit and contrasts.fit functions in the ‘limma’
package were utilized for linear modeling. Next, the eBayes function in the ‘limma’ package
was used to carry out empirical Bayes moderation by borrowing information across all
genes, so as to obtain more accurate estimates of variability across genes. The DEGs were
extracted by using the decideTests function.

The package ‘DESeq’ uses NB generalized linear models including the estimates of
dispersion from the edgeR method. The standard differential expression analysis was
performed using the function DESeq. Result tables were generated with the function results.

For detecting statistically significant differentially expressed genes, the threshold for
the absolute log2 fold change (FC) was set at two (|log2FC ≥ 2|), and the adjusted p value
by the Benjamini and Hochberg false discovery rate (FDR) method [85] less than 0.05.

To visualize DEGs, heatmap, MA and volcano plots were created. In particular, the
EnhancedVolcano function in the R package ‘EnhancedVolcano’ (v.1.8.0) was utilized to
generate volcano plots of the DEGs. Heatmap plots of logCPM values were created with
the pheatmap function in the ‘pheatmap’ package in R (v.1.0.12). The plotMD function in the
R package ‘limma’ was used to generate MA plots of the DEGs.

4.3. Construction of Weighted Gene Co-Expression Network

The common DEGs from the 84 AML samples were used to construct a gene co-
expression network with the package WGCNA [21] (v.1.69) implemented in R. To this
end, the FPKM values of the common genes were downloaded from the GDC Portal
(https://portal.gdc.cancer.gov/; accessed on 10 December 2020) of the TCGA database
and processed as described earlier (Section 4.1.1); analysis was conducted using the log2
(fpkm + 1) value. The goodSamplesGenes function was used to iteratively filter genes and
samples.

The soft-threshold power was applied to construct pairwise Pearson correlation ma-
trices so as to measure gene co-expression similarities. The function pickSoftThreshold was
used to analyze network topology and select a suitable soft-thresholding power. The
adjacency matrices were calculated with the function adjacency, which converts the Pear-
son correlation coefficients into gene connection strengths. The adjacency matrices were
transformed into a topological overlap matrix (TOM) with the function TOMsimilarity in
order to minimize the effects of noise. To group genes into modules, the average linkage
hierarchical clustering method was applied by using the function hclust to cluster module
eigengenes (i.e., first principal component) with a TOM-based dissimilarity measure; a
relatively high minimum module size of thirty (minModuleSize = 30) was selected. The
dynamicTreeCut algorithm was applied to detect modules with an eigengene correlation
coefficient above 0.75, by setting the cut height threshold (MEDissThress) at 0.25.

4.4. Identification of Clinically Important Modules

Significant clinical data including gender, days to birth, age at diagnosis, history neoad-
juvant treatment, French–American–British (FAB) category, platelet count preresection,
cytogenetic risk group, blast count, days to death, and percentage of blasts in peripheral
blood were acquired from the GDC Portal (https://portal.gdc.cancer.gov/, accessed on 14
September 2020). GDC data were processed as described earlier (Section 4.1.1).

To determine whether all AML samples were suitable for network analysis or to
detect any outliers in these samples, the clustering dendrogram of the samples and the

https://portal.gdc.cancer.gov/
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corresponding clinical traits was generated using the hclust function in the ‘WGCNA’
package based on their Euclidean distance.

4.5. Co-Expression and Protein–Protein Interaction (PPI) Network Analysis

Given that the modules detected by WGCNA are usually large, consisting of many
genes, it is important to determine which genes are more representative of each module,
as well as of the entire network. In the biological networks, the most highly connected
genes, ‘hub’ genes, are generally considered to be of higher biological significance and
more relevant to the overall function of the network [86,87]. The intra-modular hubs are
central to a given module, whereas inter-modular hubs are intermediate between two or
more modules.

To this end, the genes contained in the modules associated with AML clinical traits
were used to construct a gene co-expression network; genes with a Pearson correlation
coefficient more than 0.3 were selected. Furthermore, those genes were provided as
input to the Search Tool for the Retrieval of Interacting Genes (STRING) (v.11.0) (https:
//string-db.org/, accessed on 1 February 2021) database [88] in order to investigate the
functional and/or physical associations among their corresponding gene products. A
highest confidence score of ≥0.9 was set as a cutoff.

The topological properties of the gene co-expression and protein–protein interaction
(PPI) networks were further investigated through Cytoscape (v.3.8.2) (https://cytoscape.
org/, accessed on 12 February 2021) [89], an open-source platform for network visualization
and manipulation. In both networks, those nodes with high connectivity [90,91], that is,
connected to more than 17 immediate neighboring nodes, were selected. Moreover, the
Cytoscape plugin cytoHubba [92], which provides eleven local and global methods for
network topological analysis, was utilized to select the top thirty nodes (for each of the 11
methods).

4.6. NCBI GEO Gene Expression Datasets

The publicly accessible repository NCBI GEO DataSets (https://www.ncbi.nlm.nih.
gov/gds/, accessed on 20 February 2021) [93,94] was searched thoroughly for transcrip-
tomic datasets using the relevant keywords: (‘acute myeloid leukemia’ OR ‘AML’) AND
(‘homo sapiens’ OR ‘human’). The selection criteria were the following: (i) gene expression
data derived from human AML patient samples and corresponding normal tissue samples,
(ii) inclusion of more than 5000 genes in the dataset, and (iii) data from animal models or
cell lines were excluded. In this way, two eligible datasets were selected.

The GEO series GSE9476 [95] (Table S1) contains genome-wide gene expression by
microarray of blast cells from AML patients and (a) unselected bone marrow (BM), and (b)
unselected peripheral blood (PB) samples from healthy donors. The Affymetrix Human
Genome U133A Array [HG-U133A] platform was employed.

In GSE138702 [96] (Table S1), global gene expression analysis was performed using
RNA-seq of total RNA isolated from the bone marrow of AML patients and matched
healthy donors. The Illumina HiSeq 3000 (Homo sapiens) GPL21290 platform was used.

4.6.1. Microarray-Based Transcriptomic Data Analysis

For microarray data analysis, the two-sample t-test was employed to identify genes
differentially expressed in two groups: (i) leukemic blast cells from AML (n = 26) versus
BM (n = 10), and (ii) AML (n = 26) versus PB (n = 10) (Table S1), by applying a methodology
described in detail in previous studies [97,98]. The Benjamini–Hochberg method [85] for
controlling FDR was applied; an FDR-adjusted p value less than or equal to 0.01 was
considered as statistically significant in this study. For all statistical analyses, the Stata 13
statistical software package (https://www.stata.com/, accessed on 10 March 2021) [99]
was used.

https://string-db.org/
https://string-db.org/
https://cytoscape.org/
https://cytoscape.org/
https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/
https://www.stata.com/
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4.6.2. RNA-seq-Based Transcriptomic Data Analysis

The gene expression profiles of the bone marrow of 9 AML patients versus 10 healthy
control donors were compared (Table S1). For the RNA sequencing analysis, the following
pipeline was performed. FASTQ files that contained raw 2 × 50 bp paired-end RNA-seq
reads were downloaded from the respective Sequence Read Archive (SRA) by using the SRA
Tool Kit v.2.9.0 [100]. Raw RNA-seq reads were mapped to the human reference genome
GRCh38 (Ensembl version 97) by employing the splice junction aligner HISAT2 v.2.1.0 [101].
Transcriptome normalization, reconstruction, and quantification were conducted by using
StringTie v.1.3.5 [102]. Differentially expressed genes (DEGs) were detected using the
edgeR package version 3.32.0 [81], by setting |log2FC ≥ 2| and the FDR-corrected p value
less than 0.05.

4.7. Identification of DEGs Correlated with Long-Term Survival

Patient data from the TCGA LAML cohort were retrieved via the ‘TCGAbiolinks’
package (data.type: Gene Expression Quantification, workflow.type: HTSeq—Counts).
Only the genes that were expressed in at least half of the patients were retained and
the outliers that were >6 standard deviations away from the median were removed. We
defined the groups of LTS patients (2 × SD = 1567 days, 3 × SD = 2168 days, and 5-year
survival = 1825 days) and calculated the respective differentially expressed genes (DEGs)
in the population that died within 365 days using edgeR [81], with log2FC cutoff > 1.
Afterwards, we performed gene set enrichment analysis (GSEA) on the DEGs for each
comparison, as well as for the common 131 genes that were deregulated in all three analyses.
For GSEA, the GSEA-P 2.0 software (Broad Institute, Cambridge, MA, USA) [103] was
used. Enriched Gene Ontology (GO) terms were plotted against the negative log10 of their
individual FDR value (<0.05).

5. Conclusions

In conclusion, we applied in silico workflows on publicly available AML-relevant
transcriptomic data and identified 24 genes mainly related to cell cycle and immune re-
sponse, several of which were subsequently verified in two independent datasets. These
genes could be extrapolated for the establishment of powerful AML diagnostic biomarkers
and also be considered for defining patients that would most benefit from immunother-
apeutics. Moreover, taking advantage of the fact that transcriptomic data of AML cases
with unusually extended survival periods already exist in well-established databases, we
tested a novel notion which proposes that rare patients at the extremes can be informative
for prognosis and management of the general cancer population. Comparisons of the
transcriptomes of these exceptional cases with those of more typical disease trajectories
in our study cohort revealed an association of deregulations of nervous system-related
genes with favorable AML prognosis. Future experimental and clinical studies can provide
further insights on the underlying molecular mechanisms, inform clinical decisions, and
catalyze the translation of these findings to diagnostic and therapeutic solutions.
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