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Nonlocal models in the analysis 
of brain neurodegenerative 
protein dynamics with application 
to Alzheimer’s disease
Swadesh Pal1* & Roderick Melnik1,2

It is well known that today nearly one in six of the world’s population has to deal with 
neurodegenerative disorders. While a number of medical devices have been developed for the 
detection, prevention, and treatments of such disorders, some fundamentals of the progression of 
associated diseases are in urgent need of further clarification. In this paper, we focus on Alzheimer’s 
disease, where it is believed that the concentration changes in amyloid-beta and tau proteins play a 
central role in its onset and development. A multiscale model is proposed to analyze the propagation 
of these concentrations in the brain connectome. In particular, we consider a modified heterodimer 
model for the protein–protein interactions. Higher toxic concentrations of amyloid-beta and tau 
proteins destroy the brain cell. We have studied these propagations for the primary and secondary 
and their mixed tauopathies. We model the damage of a brain cell by the nonlocal contributions of 
these toxic loads present in the brain cells. With the help of rigorous analysis, we check the stability 
behaviour of the stationary points corresponding to the homogeneous system. After integrating the 
brain connectome data into the developed model, we see that the spreading patterns of the toxic 
concentrations for the whole brain are the same, but their concentrations are different in different 
regions. Also, the time to propagate the damage in each region of the brain connectome is different.

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder that slowly increases degrees of 
dementia over  time1. In most people with AD, the first symptoms appear after 60 years of age, whereas some 
persons reported AD before 60 years of age, and it is not frequent. According to the Alzheimer’s Association, 
five years ago 5.5 million Americans in the U.S. and 44 million worldwide dealt with this disease in all ranges of 
 ages2. At the same time, 10% of the population over 65 years of age is suffering, and it is predicted to be a public 
health crisis in the coming decades caused by this disease. Baumgart et al. estimated that to increase to 131 mil-
lion people by  20503. The history of the disease goes back well over 100 years ago, when Dr. Alois Alzheimer in 
1906 noticed that a woman died with an unusual mental illness, and the symptoms were memory loss, language 
problems, etc. He examined her dead brain and identified many amyloid plaques and neurofibrillary tangles 
(NFTs) in the brain  tissue4–6. Today a wealth of medical and bioengineering tools exist for the detection, pre-
vention, and treatments of such disorders. Researchers believe that the toxic changes in the brain destroy the 
communications between  neurons2,7.

The research involving amyloid-beta (Aβ ) in AD has progressed more quickly than tau protein ( τP). Amyloid-
beta is a small piece of a larger protein amyloid precursor protein (APP)2. It is still largely unknown how amyloid-
beta accumulates in the brain and initiates AD. According to “the amyloid hypothesis”, it is believed that flaws 
in the processes governing the production, accumulation, or disposal of amyloid-beta are the primary cause of 
 AD2,8. Recently, the Food and Drug Administration (FDA) approved the first drug “Aducanumab” for the treat-
ment of some cases of Alzheimer’s  disease9. This drug is a human antibody that targets the amyloid-beta protein 
and helps to reduce amyloid plaques associated with AD. It is still in the trial stage and there is no royal road 
to overcome  AD10,11. Researchers continue to study whether this medication affects a person’s rate of cognitive 
decline over time. In the AD-affected brain, A β develops slowly and has many stages of building. Initially, A β 
forms small clusters (oligomers), then a chain of oligomers (fibrils), and then “mats” of fibrils called beta-sheets. 
In the final stage, beta-sheets clump with other substances, form plaques. These amyloid plaques block the blood 
vessels and disrupt cell-to-cell communications (blood circulations) and active immune cells. These immune 
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cells trigger inflammation and destroy the brain cells. Researchers believe that, along with the A β , there may be 
some other factor in the AD onset and progression.

There is a lot of evidence of the spread of tau protein with AD  progressing12–14. Along with the accumulation 
of A β in the brain, scientists have also focussed on the importance of tau protein in AD. The tau proteins are 
neuronal microtubule (MT)-associated proteins found in the axon. Under physiological conditions, tau acts like 
a highly soluble and unfolded protein. It interacts with tubulin and promotes its assembly into MTs, which helps 
to stabilize their  structure12,15. Also, the tau protein plays an essential role in the balance between MT-dependent 
axonal transport of organelles and  biomolecules16,17. At the first stage of AD progression, tau protein continu-
ously accumulates in the entorhinal cortex and hippocampus regions. Then tau protein spreads into extracellular 
space in the form of  oligomers18. Oligomers travel through a structure known as the synapse. It allows passing 
electrical or chemical signals from one brain cell to another through  diffusion13. This abnormal tau distribution 
over the brain causes further disease progression.

Many cellular mechanisms and their interactions between two different groups of proteins are not fully 
understood. In particular, the interactions between A β and τP are also, at a great degree unknown. Nowadays, 
researchers have focussed on finding the possible protein–protein interactions between two or more groups of 
proteins in  AD14,19,20. Following Walker et al., for AD, “the amyloid-beta-tau nexus is central to disease-specific 
diagnosis, prevention and treatment”21. Thompson et al. observed some crucial interactions of these  proteins22: 
(i) amyloid-beta enhances the new seeding of toxic tau protein, (ii) toxic concentration of amyloid-beta depends 
on the concentration of tau protein, and (iii) amyloid-beta and tau protein enhance each other’s toxicity.

A mathematical model is an excellent computational tool to work with these interactions. Many researchers 
considered these protein–protein interactions in mathematical models related to  AD23–28. However, some ques-
tions regarding AD remain open, and more refined models need to be developed to address them. Experimental 
studies suggest non-uniform distributions of the proteins in the brain  connectome29. In this work, our primary 
goal is to capture such types of non-uniform distributions of the proteins in the brain through a mathematical 
model. In the mathematical model, we apply a multiscale model that describes the interaction of two different 
protein families: A β and τ P. Each of the proteins follows the dynamics of a modified heterodimer model with 
local and nonlocal interactions and a coupling parameter between two  proteins22,30–33. Motivated by Meisl et al.34, 
we replace exponential growth with logistic growth in both the proteins A β and τ P. Due to toxic variants of these 
proteins present in the brain cell, neuronal damage occurs in the brain. We consider a model with local and 
nonlocal interactions for capturing such type of neuronal damage in the brain  cells22.

The rest of this manuscript is organized as follows. We consider a continuous nonlocal model for protein–pro-
tein interactions in Sect. 2. A nonlocal version of the damage of the cell is also described here. We have derived 
a nonlocal network model that can be used for integrating the brain connectome data. In Sect. 3, we discuss 
the temporal behaviour of the stationary points of the continuous mathematical model and provide details of 
the associated network model. The propagation of the toxic concentrations in the brain connectome, related to 
primary, secondary, and mixed tauopathies, is discussed in Sect. 4. Finally, the summary of the work is given 
in Sect. 5.

Mathematical model
Continuous model. We consider a spatial domain � in R3 . For x ∈ � and time t ∈ R

+ , u = u(x, t) 
and ũ = ũ(x, t) represent the concentrations of healthy and toxic A β respectively. Similarly, v = v(x, t) and 
ṽ = ṽ(x, t) represent the concentrations of healthy and toxic τ P respectively. Following the ideas  of22,30,32,33, the 
concentration evolution is given by the set of coupled integro-differential equations: 

where the first two equations correspond to the healthy and toxic variants of the protein A β and the last two equa-
tions play the same role for τ P. Model (1) is an example of nonlocal models which become increasingly important 
in diverse areas of  applications35. Here, a0 and b0 are the mean production rates of healthy proteins, a1, b1, ã1 and 
b̃1 are the mean clearance rates of healthy and toxic proteins, and a2 and b2 represent the mean conversion rates 
of healthy proteins to toxic proteins. The parameter b3 is the coupling between the two proteins A β and τ P, and it 
is considered due to the fact that the A β enhances the seeding of new toxic τ P  concentration22. The parameters cu 
and cv have units of the reciprocal concentrations of the healthy proteins of A β and τ P, respectively. The diffusion 
tensors D1 , D̃1 , D2 and D̃2 characterize the spreading of each proteins. For any time instance, the convolution 
term � ∗ ũ at the spatial point x is given by

(1a)
∂u

∂t
= ▽ · (D1▽u)+ a0 − a1u−

a2u

1+ cuu
� ∗ ũ,

(1b)
∂ũ

∂t
= ▽ · (D̃1▽ũ)− ã1ũ+ a2ũ� ∗

(
u

1+ cuu

)
,

(1c)
∂v

∂t
= ▽ · (D2▽v)+ b0 − b1v − b3ũvṽ −

b2v

1+ cvv
� ∗ ṽ,

(1d)
∂ ṽ

∂t
= ▽ · (D̃2▽ṽ)− b̃1ṽ + b3ũvṽ + b2ṽ� ∗

(
v

1+ cvv

)
,
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In a similar way, we define the other convolutions in (1). Here, � is the kernel function and it describes the 
conversion efficiencies between the spatial points x and y . We assume that the kernel function is non-negative, 
even function, and has a compact support in R3 . Also, � satisfies a standard normalized condition:

Based on our application area, it is reasonable to assume that all variables and initial conditions are non-negative, 
and also that all the parameters are strictly positive.

Following Meisl et al.34, the fundamental model that includes the replication takes into account the logistic 
growth rather than exponential growth in the reaction-diffusion model. Therefore, we modify the exponential 
growth of healthy A β and healthy τ P of the model (1) by the logistic growth that leads to the following system: 

 with appropriate initial and boundary conditions for all the components.
The above system (2) dictates the spread of two healthy and toxic variants of the proteins throughout the 

domain � . The increase in the density of toxic proteins at a spatial point x in � disrupts the extracellular envi-
ronment near x and causes intracellular activities. The impact of these toxic variants is not fully understood. 
However, Thompson et al. observed their correlation and defined a gross measure of regional neuronal damage 
by a function q(x, t) ∈ [0, 1] at a spatial point x at time t22. We say the neuron is healthy (functional) at a spatial 
point x if q(x, t) = 0 . On the other hand, if q(x, t) = 1 , then the neuron is no longer active, i.e., the neuron 
reached a fully damaged asymptotic state. The evolution of the damage is described as

with the initial condition q(x, 0) = 0 , where k1 and k2 account for the damaging effect of toxic A β and τ P, respec-
tively. The coefficient k3 represents the damage due to the combined presence of both toxic loads. Finally, k4 is the 
rate of transneuronal damage propagation, and it reflects aggregate neuronal damage from regional neighbours. 
Here, all the ki ’s are non-negative, and � ∗ q denotes the convolution, defined as before.

Network model. Having defined the nonlocal continuous model, we are now in a position to develop a 
nonlocal network mathematical model that would account for the brain network data. The development of a 
coarse-grain mathematical model based on a continuous system is a key to defining a new network model for the 
brain  connectome36,37. Let G be a weighted brain graph with N number of nodes and E be the number of edges 
defined in the domain � . In the model, each node corresponds to a small area (1–1.5 cm2 ) of the gray matter, 
called Regions of Interest, and the edges of the network are the axonal bundles in white matter  tracts38,39. Sup-
pose, W is an adjacency matrix corresponding to the weighted graph G . With the help of the adjacency matrix 
W , we construct the Laplacian for the graph. For i, j = 1, 2, 3, . . . ,N , we denote the elements of W as

where nij is the mean fiber number and l2ij is the mean length squared between the nodes i and j. Here, the mean 
fiber length is measured in  millimetres40. The Laplacian L of the graph G is a square matrix of order N with the 
elements

where ρ is the diffusion coefficient and Dii =
∑N

j=1 Wij are the elements of the diagonal weighted degree matrix.
Now, we begin to define the convolution term in the network model similar to the continuous model (2) 

for each of the nodes j = 1, 2, 3, . . . ,N . In the continuous integro-differential model, the convolution term at a 
spatial point x is an integral in the neighbourhood (inside the domain of definition) of the spatial point x with 
Gaussian weight  function33. Again, for the continuous model, all the neighbourhood points of x are connected. 
We apply the same connectedness technique for finding the convolution term at each node in the network model.

(� ∗ ũ)(x, t) =

∫

�

�(x − y)ũ(y, t)dy.

∫

�

�(x)dx = 1.

(2a)
∂u

∂t
= ▽ · (D1▽u)+ u(a0 − a1u)−

a2u

1+ cuu
� ∗ ũ,

(2b)
∂ũ

∂t
= ▽ · (D̃1▽ũ)− ã1ũ+ a2ũ� ∗

(
u

1+ cuu

)
,

(2c)
∂v

∂t
= ▽ · (D2▽v)+ v(b0 − b1v)− b3ũvṽ −

b2v

1+ cvv
� ∗ ṽ,

(2d)
∂ ṽ

∂t
= ▽ · (D̃2▽ṽ)− b̃1ṽ + b3ũvṽ + b2ṽ� ∗

(
v

1+ cvv

)
,

(3)
dq

dt
= (k1ũ+ k2ṽ + k3ũṽ + k4� ∗ q)(1− q),

Wij =
nij

l2ij
,

Lij = ρ(Dii −Wij), i, j = 1, 2, 3, . . . ,N ,
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First,  following33, we fix a node j and define a set of nodes Sj,1 containing all directly connected nodes to the 
node j. Then, we find another set of nodes Sj,2 containing all the immediate connected nodes, connected with the 
nodes in the set Sj,1 . We continue this process in the whole graph G until we find the complete set of connected 
nodes (directly or indirectly). In this procedure, we obtain “complete sets” of nodes Sj,1, Sj,2, . . . , Sj,mj connected 
with the node j and let Sj be the union of these sets of nodes. Now, we sort all the nodes in Sj according to the 
“shortest distance” from the node j. Suppose, nj is the total number of nodes connected with the node j including 
the self node j and k1, k2, . . . , knj are the labels of the sorted connected nodes starting with the self node j, i.e., 
k1 = j . We define a set of nj elements of weights as

where sjki denotes the shortest distance from the node ki to the node j along the edges.
We normalize M ′

j as Mj = M ′

j/|M
′

j | , where

Now, we define a row vector Vj of N number of elements with non-zero elements being Mj(1),Mj(2), . . . ,Mj(nj) 
at the indices k1, k2, . . . , knj respectively. Finally, we are ready to define the convolution at the node j in the graph 
G as

If the node j is not connected with any other nodes, then �j ∗ ũj = ũj . Similarly, we define the other convolutions.
Taking all the factors (Laplacian and convolutions), we build a nonlocal network mathematical model on the 

brain graph G . Let, uj , ũj be the concentrations of healthy and toxic A β and vj , ṽj be the concentrations of healthy 
and toxic τ P at the node j. Then for j = 1, 2, 3, . . . ,N , the network equations corresponding to the continuous 
model (2) is a system of first order differential equations and it is given by 

with non-negative initial conditions.
In a similar fashion, we define the network model for the nonlocal version of the damage equation (3). Let 

qj be the neuronal damage of cell located at the node j. Then for all the nodes j = 1, 2, 3, . . . ,N  , the network 
damage equation corresponding to the network model is given by

with the initial condition qj = 0 . Similar to the nonlocal interaction defined in (4), we use the same technique to 
find the convolution � ∗ qj for the neuronal damage corresponding to the node j, but with a different controlling 
parameter σ in the place of η.

Analysis of the continuous model
Before analyzing the full reaction-diffusion model consisting of a coupled set of differential equations (2), we 
first study the temporal dynamics (e.g., equilibrium points and their stabilities) of the model. For studying the 
temporal dynamics of a reaction-diffusion model, we ignore all the spatial dependencies in the model. In this 
case, the diffusion term becomes zero and the convolution term � ∗ w = w , for any w. Therefore, under these 
simplifications, the temporal model corresponding to the nonlocal model (2) is given by 

M ′

j =

{
1, e−η2(sjk2 )

2

, e−η2(sjk3 )
2

, . . . , e
−η2(sjknj

)2
}
,

|M ′

j | =

(
1+ e−η2(sjk2 )

2

+ e−η2(sjk3 )
2

+ · · · + e
−η2(sjknj

)2
)
.

(4)�j ∗ ũj =

N∑

n=1

Vj(n)ũn.

(5a)
duj

dt
= −

N∑

k=1

Ljkuk + uj(a0 − a1uj)−
a2uj

1+ cuuj
�j ∗ ũj ,

(5b)
dũj

dt
= −

N∑

k=1

Ljkũk − ã1ũj + a2ũj�j ∗

(
uj

1+ cuuj

)
,

(5c)
dvj

dt
= −

N∑

k=1

Ljkvk + vj(b0 − b1vj)− b3ũjvjṽj −
b2vj

1+ cvvj
�j ∗ ṽj ,

(5d)
dṽj

dt
= −

N∑

k=1

Ljkṽk − b̃1ṽj + b3ũjvjṽj + b2ṽj�j ∗

(
vj

1+ cvvj

)
,

(6)
dqj

dt
= (k1ũj + k2ṽj + k3ũj ṽj + k4� ∗ qj)(1− qj),

(7a)
du

dt
= u(a0 − a1u)−

a2u

1+ cuu
ũ,
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 with non-negative initial conditions. The system (7) has some feature points, such that characterize its behav-
iour but do not change over time, called equilibrium points. Note that these temporal dynamics apply to both 
continuous and network models. The stationary states or the solutions of the continuous and network models 
are the equilibrium points of the system (7).

The system (7) always has a trivial equilibrium point E0 = (0, 0, 0, 0) . This equilibrium point corresponds to 
the the absence of all the ingredients in the system. Generally, it does not occur in the living brain but occurs only 
in the dead brain cell. Depending on the parameter values, we have a maximum of seven equilibrium points of the 
system (7) where at least one component of the equilibrium point is zero. These are called the axial equilibrium 
points. The possible axial equilibrium points are

The concentration in each of the components cannot be negative. Therefore, for the existence of the equilibrium 
points E4 and E7 , we must have a2 > cuã1 and a0/a1 ≥ ã1/(a2 − cuã1) . Similarly, for the feasibility of the equi-
librium points E5 and E6 , we need b2 > cvb̃1 and b0/b1 ≥ b̃1/(b2 − cvb̃1).

We call a stationary state healthy A β (healthy τ P) if the second (fourth) component of the equilibrium point 
is zero; otherwise, it is toxic A β (toxic τP). The equilibrium points E1 and E2 contain either healthy A β or healthy 
τ P concentrations, and these are healthy A β and healthy τ P stationary states, respectively. E3 is a “healthy A β
–healthy τ P” stationary state since it does not have any of the toxic loads A β or τ P, i.e., no amyloid plaques or 
neurofibrillary tau tangles. Also, we call this equilibrium point the disease-free stationary state. The other equi-
librium points are brain disease states since these brain states have either amyloid plaques or neurofibrillary tau 
tangles. Now, we are interested in finding an equilibrium point where both toxic loads are present.

Suppose, E∗ = (u∗, ũ∗, v, ṽ∗) is a positive equilibrium point. Then we have u∗ = ã1/(a2 − cuã1) , 
ũ∗ = (a0a2 − a1ã1 − cua0ã1)/(a2 − cuã1)

2 , ṽ∗ = (b0 − b1v∗)(cvv∗ + 1)/(b3cvũ∗v∗ + b3ũ+ b2) , where v∗ sat-
isfies the quadratic equation

For the feasibility of the first two components of the equilibrium point E∗ , we must have a2 > cuã1 and 
a0/a1 > ã1/(a2 − cuã1) . Along with these conditions, we also require b0 > b1v∗ , where v∗ is a positive root of 
the Eq. (8). In this case, the equilibrium point E∗ becomes “toxic A β–toxic τ P” stationary state as it contains both 
amyloid plaques and neurofibrillary tau tangles.

Now, we briefly discuss the stability of the equilibrium points of the system (7). The stability behaviour of 
an equilibrium point of the system depends only on the eigenvalues of the Jacobian matrix calculated at that 
point. For a fixed equilibrium point, if the real parts of all the eigenvalues of the Jacobian matrix are negative, the 
equilibrium point is stable; otherwise, it is unstable. The Jacobian matrix of the system (7) about any equilibrium 
point (us , ũs , vs, ṽs) is given by

w h e r e  J11 = a0 − 2a1us − a2ũs/(1+ cuus)
2,  J12 = −a2us/(1+ cuus)  ,  J21 = a2ũs/(1+ cuus)

2 
J22 = −ã1 + a2us/(1+ cuus),  J32 = −b3vsṽs ,  J33 = b0 − 2b1vs − b3ũsṽs − b2ṽs/(1+ cvvs)

2, 
J34 = −b2vs/(1+ cvvs)− b3ũsvs ,  J42 = b3vsṽs ,  J43 = b3ũsṽs + b2ṽs/(1+ cvvs)

2  a n d 
J44 = −b̃1 + b3ũsvs + b2vs/(1+ cvvs).

Therefore, the eigenvalues of the Jacobian matrix Js are �1,2 = −(T ±

√
T2 − 4D)/2, �3,4 = −(T̂ ±

√
T̂2 − 4D̂)/2 , 

where T = −(J11 + J22),D = J11J22 − J12J21, T̂ = −(J33 + J44) and D̂ = J33J44 − J34J43 . Depending on the param-
eter values, the number of stationary points is different. Hence, in the next section, we discuss the stability of the 
stationary points after fixing the parameter values, motivated  by22.

(7b)
dũ

dt
= −ã1ũ+

a2u

1+ cuu
ũ,

(7c)
dv

dt
= v(b0 − b1v)− b3ũvṽ −

b2v

1+ cvv
ṽ,

(7d)
dṽ

dt
= −b̃1ṽ + b3ũvṽ +

b2v

1+ cvv
ṽ,

E1 =

(
a0

a1
, 0, 0, 0

)
, E2 =

(
0, 0,

b0

b1
, 0

)
, E3 =

(
a0

a1
, 0,

b0

b1
, 0

)
,

E4 =

(
ã1

a2 − cuã1
,
a0(a2 − cuã1)− a1ã1

(a2 − cuã1)2
, 0, 0

)
, E5 =

(
0, 0,

b̃1

b2 − cvb̃1
,
b0(b2 − cvb̃1)− b1b̃1

(b2 − cvb̃1)2

)
,

E6 =

(
ã1

a2 − cuã1
,
a0(a2 − cuã1)− a1ã1

(a2 − cuã1)2
,
b0

b1
, 0

)
, E7 =

(
a0

a1
, 0,

b̃1

b2 − cvb̃1
,
b0(b2 − cvb̃1)− b1b̃1

(b2 − cvb̃1)2

)
.

(8)b3cvũ∗v
2
∗
+ (b2 + b3ũ∗ − b̃1cv)v∗ − b̃1 = 0.

Js =



J11 J12 0 0

J21 J22 0 0

0 J32 J33 J34
0 J42 J43 J44


,
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Results and discussion
Tau is a microtubule-associated protein predominantly expressed in nerve cells promoting microtubule assembly 
and stabilization. It is a cytosolic protein mainly present in axons and involved in anterograde axonal transport. 
Tau protein alters its metabolism in several neurodegenerative diseases (e.g., AD). Thus alterations in the amount 
of the tau protein, missense mutations, post-transcriptional modifications, aberrant tau aggregation, or a different 
expression of some of its isoforms could provoke pathological effects resulting in the appearance of neuronal 
disorders known as tauopathies. Researchers are making a substantial effort to generate tau oligomers by purified 
recombinant protein strategies for studying oligomer conformations and their toxicity. Still, there is no specific 
toxic tau protein has been  identified41. However, some cellular biosensor technology has been discovered to 
monitor the formation of tau oligomers and aggregates in the living  cells41, e.g., fluorescence resonance energy 
transfer (FRET), bimolecular fluorescence complementation (BiFC), and split luciferase complementation (SLC).

Based on the pathology, there are two groups of disease propagation which are classified as: primary, when 
tau is the main lesion, and secondary, when tau is associated with other  pathology42,43. Here, for the primary 
tauopathy, the non-zero concentration of toxic τ P exists independent of the concentration of A β . On the other 
hand, this dependency needs for the secondary tauopathy. After observing several characteristics of the mod-
els, we move to an interesting scenario in the brain network model where some regions in the brain satisfy the 
primary tauopathy, and the other regions satisfy the secondary tauopathy. This is called a mixed tauopathy, and 
it is more realistic than primary or  secondary44. We also study the damage dynamics in each of the tauopathies.

In this work, we use actual brain connectome  data38–40 for the network model available on the website https:// 
brain graph. org. We choose high-resolution data consisting of 1,015 nodes and a different number of edges. We 
compared different data sets in the brain connectome to check the numerical artifact, and the results are consist-
ent. We have used the C programming language and Matlab for all the computations and simulations.

As the first step in the disease propagation analysis, we set seeding sites of toxic amyloid-beta and toxic 
tau proteins in the brain region(s) associated with Alzheimer’s disease. In the AD-affected brain, researchers 
observed that the amyloid-beta plaques start their propagation from temporobasal and frontomedial regions in 
the  brain19,22,27,45,46. All the nodes in these two regions are the initial seeding sites for the toxic A β [see Fig. 1]. 
On the other hand, locus coeruleus and transentorhinal associated regions are the initial tau staging sites for 
the  AD34,47 [see Fig. 1]. Seeding sites are highlighted in red, whereas the gray color corresponds to the zero 
toxic loads in the brain connectome. Initially, we set all the nodes to a healthy state (i.e., E3 ) except the seeding 
nodes. We add small toxic loads 0.25% and 0.38% in the toxic A β and toxic τ P concentrations for the seeding 
sites, respectively. In modelling other scenarios, one may choose some other percentages of the toxic loads for 
the computations. We use the same initial conditions every time for finding the solution of the network model.

Primary and secondary tauopathies. For the analysis of disease progression in the brain initially, we 
take a globally-constant synthetic parameter values throughout all the regions in the brain connectome. The first 
example is corresponding to the primary tauopathy. All the uniform parameter values for the primary tauopathy 
are in Table 1 except the coupling parameter b3 and the parameters cu and cv . The coupling parameter is not a 
passive facet of disease phenomenology but plays a much more integral role in secondary  tauopathy22. In the pri-
mary tauopathy, first we fix b3 = 4.14 and study the effect of the parameters cu and cv on the local network model.

Firstly, we take cu = cv = 0 . All possible stationary states exist (described in the earlier section) for the system 
with these parameter values. Here, all the stationary states are unstable except for the positive stationary state 

Figure 1.  (Color online) Initial seeding sites for Alzheimer’s disease: (left) toxic A β and (right) toxic τP.

Table 1.  Fixed parameter values for the primary tauopathy.

Healthy A β Toxic A β Healthy τP Toxic τP

ρ = 1 ρ = 1 ρ = 1 ρ = 1

a0 = 1.035 ã1 = 0.828 b0 = 0.69 b̃1 = 0.552

a1 = 1.38 a2 = 1.38 b1 = 1.38 b2 = 1.38

https://braingraph.org
https://braingraph.org
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E∗ . Therefore, the disease propagates from the initial seeding sites and converges to the positive steady state E∗ 
of the local system. We plot the spatial averages of the solutions of the local network model in Fig. 2a. Similarly, 
the spatial averages of the solutions of the local network model for two other values of the parameters cu and cv 
are shown in Fig. 2b,c. With an increase in the parameters cu and cv , the required time to propagate the disease 
in the whole brain connectome increases.

We see some spikes in the spatial-average solution of toxic τ P in Fig. 2. Here, two eigenvalues of the Jacobian 
matrix around the positive stationary states are negative real numbers, but the other two are complex numbers 
with negative real parts. Therefore, the solution converges to the stable positive stationary state, but oscillations 
happen in a small neighbourhood of the point before converging to the solution. With an increase in the param-
eters cu and cv , the amplitude of the oscillations decrease [see Fig. 2b,c]. Generally, at the initial stage, toxic τ P 
grows at the seeding sites and distributes the concentration throughout the brain connectome. After this spread-
ing stage, toxic τ P concentration rises in the whole brain. So the average density of toxic τ P grows very fast, and it 
crosses the stationary state component corresponding to toxic τ P. Generally, the cerebrovascular system reduces 
the toxic density in the brain and keeps it free from harmful agents. Due to the high accumulation rate of toxic 
τ P all over the brain, the cerebrovascular system can not control the whole toxic density. At last, it reduces some 
toxic levels of τ P, not the total concentrations, and saturates to the disease state “toxic A β–toxic τP”.

Now, we analyze the general dynamics at each node located in different regions in the brain connectome. 
We provide the parameter values in Table 1 along with b3 = 4.14 and cu = cv = 0.1 . The distributions of toxic 
A β and toxic τ P in the brain connectome are shown in Fig. 3. Here, non-uniform density distributions of all 
four components exist in the brain connectome, and they occur due to the initial seeding of toxic loads in some 
particular regions. To verify the non-uniformity, we plot the solution profiles for toxic A β and toxic τ P corre-
sponding to each of the nodes in Fig. 4. Here, we see three different solution behaviours for toxic A β and toxic 
τ P. For the case of toxic A β , the dashed-dotted, solid, and dotted curves correspond to the seeding connected 
nodes (temporobasal and frontomedial regions), disconnected nodes, and the rest of the nodes, respectively. The 
same types of curves are plotted for toxic τP.

The solutions of toxic A β and toxic τ P converge to three different concentrations as demonstrated by Fig. 4. 
But, the system has only one stable stationary point. This means the solution converges to some other station-
ary point(s) Ei(0 ≤ i ≤ 7) . If a node is connected with other nodes, then the solutions converge to the positive 
stationary point E∗ . On the other hand, suppose a node is not connected to the other nodes. Now, if this node is 
inside the seeding sites of toxic A β or toxic τ P, then the solution converges to E6 or E7 , respectively; otherwise, 

Figure 2.  (Color online) Spatial averages of the solutions of the local model with different values of cu and cv : 
(a) cu = cv = 0 , (b) cu = cv = 0.1 and (c) cu = cv = 0.2 . The curves (solid), (dashed-dashed), (dashed-dotted) 
and (dotted) are corresponding to the spatial averages of u, ũ , v and ṽ , respectively.

Figure 3.  (Color online) Toxic A β and toxic τ P concentrations in the brain connectome at different times (left 
to right: t = 50, 75, 85 and 100) for the local model corresponding to the primary tauopathy. Upper and lower 
panels are corresponding to toxic A β and toxic τ P, respectively.
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it remains in “healthy A β–healthy τ P” state, i.e., converges to E3 . This happens due to the existence of stable 
manifolds of the stationary points E3 , E6 , and E7 , called semi-stable stationary points. These results are distinct 
from those obtained  earlier22,32,33. Indeed, if we consider the exponential growth in A β and τ P, i.e., the network 
model corresponding to the system (1), then we can not get semi-stable stationary  points22.

Now, we are in a position to analyze the neuronal damage of the nodes in the brain connectome in fur-
ther detail. We solve the local and nonlocal versions of the neuronal damage model (6) along with the local 
interaction of the model (5). In this case, we take the temporal parameter values from Table 1 along with 
b3 = 4.14 , cu = cv = 0.1 . We choose k1 less than k2 to see the influence of toxic τ P neurofibrillary tangles on 
neural  damage48–50 and k3 larger than k2 , for enhancing the toxic effect of τ P in the presence of toxic A β50–54. 
Following these parameter restrictions, we fix k1 = 10−4 , k2 = 10−2 and k3 = 10−1 . For k4 = 10−3 , we plot the 
neuronal damage solutions for the local and nonlocal models ( σ = 0.25 ) in Fig. 5. Similar to Fig. 4, four types 
of damage profile exist for the neuronal damage model. Solid, dashed-dotted, dashed-dashed and dotted curves 
are corresponding to the neuronal damages of the nodes which are converging to the stationary points E∗ , E7 , 
E6 and E3 , respectively. The time taking to damage the nodes for the nonlocal model is larger compared to that 
of the local model. Also, an increase in the parameter k4 causes faster neuronal damage in the brain connectome 
[see Fig. 6].

For the case of secondary tauopathy, the stationary points E5 and E7 do not exist. Therefore, if a node is 
connected with other nodes or it is located in the seeding sites of toxic τ P, solutions converge to the positive 
stationary point E∗ . Now, if a node is disconnected and it is located inside the seeding sites of toxic A β , then the 
solution converges to E6 ; otherwise, it remains in a healthy stationary state. In this case E3 and E6 are semi-stable 
stationary points.

Figure 4.  (Color online) Node-wise toxic propagations over time: (a) toxic A β and (a) toxic τP.

Figure 5.  (Color online) Node-wise damage dynamics over time for local and nonlocal interactions in the 
neuronal damage model: (a) local and (b) nonlocal with σ = 0.25.
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The toxic propagations and the concentrations for the local and nonlocal network models are the same, cor-
responding to both the tauopathies. This happens due to the uniform parameter values all over the regions in 
the brain connectome. However, a qualitative change can be seen in the nonlocal interactions for non-uniform 
parameter values in the brain connectome. We study this behaviour in the following subsection.

Mixed tauopathy. We have studied the local and nonlocal network models with global constant parameter 
values. In the analysis of the whole living brain, this consideration of uniform parameters would need to be 
generalized further. The positron emission tomography (PET) imaging studies of A β and τ P radiotracer uptake 
provide us with a better  insight55. In AD, the distribution of PET-τ SUVR intensities is biased in different parts of 
the brain. We incorporate this idea in the network model along with the AD patient data. We consider a sample 
parameter data provided in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.
edu)22.

For the mixed tauopathy, we study a mixed version of primary and secondary tauopathies, i.e., some parts in 
the brain connectome satisfy secondary tauopathy, and the rest satisfies primary tauopathy. A mixed neuropathol-
ogy with amyloid-beta plaques and tau pathology is present in nearly 40% of patients and are associated with an 
increased rate of dementia and a decreased survival  time56. First, we set all the nodes in the brain connectome 
to a secondary tauopathy by considering the parameters in Table 2, b3 = 4.14 and cu = cv = 0.1 . According 
to the ADNI data, a modified value of the coupling parameter b3 in some of the regions, given in Table 3, and 
the rest regions b3 = 4.14 . The modification is symmetric, i.e., b3 has the same value for both the left and right 
hemispheres in the corresponding regions. Motivated  by22, we also modify b2 and b3 in some of the regions [see 
Table 4], so that the system has a state of primary tauopathy.

We use the same seeding sites as the initial condition for the mixed tauopathy. The solutions of the local and 
nonlocal models corresponding to the toxic τ P are shown in Fig. 7. Due to the mixed parameter values in the 
brain region, the concentrations (all four components) are different in each node in the brain connectome. With 
decreasing the parameter values of η , we see a higher toxic density accumulation in some nodes. The targeted 
nodes depend on the degree of the node, i.e., the number of nodes connected with the node. Therefore, the 
spreading pattern of the toxic concentrations for the mixed tauopathy is different from primary or secondary 
tauopathies.

We plot the dynamics of toxic τ P in each of the regions in Fig. 8. The spreading profiles of the toxic concen-
tration in different nodes are different. Therefore, the time required to damage the nodes is different [see Fig. 9].

Summary
A modified nonlocal coupled heterodimer multiscale model has been developed and applied for a better under-
standing of the dynamics of Alzheimer’s disease. We have derived a nonlocal network model corresponding to 
the model based on a coupled system of integro-differential equations and incorporated the brain connectome 
data into this new model. Further, we have considered a nonlocal interaction in the damage dynamics. The 

Figure 6.  (Color online) Spatial average of the damage of all the nodes with respect to time for different values 
of k4 : k4 = 0.001 (dotted), k4 = 0.01 (dashed-dotted) and k4 = 0.1 (solid).

Table 2.  General synthetic parameter values.

Healthy A β Toxic A β Healthy τP Toxic τP

ρ = 1.38 ρ = 0.138 ρ = 1.38 ρ = 0.014

a0 = 1.035 ã1 = 0.828 b0 = 0.69 b̃1 = 0.552

a1 = 1.38 a2 = 1.38 b1 = 1.38 b2 = 1.035
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stability behaviour of each of the stationary points of the system has been analyzed by using linear stability 
analysis. Two types of tauopathies (primary and secondary) have been discussed in detail, and their combina-
tion has been examined.

For the primary tauopathy, the spreading patterns of the toxic concentration of A β and τ P in the brain con-
nectome are different in different regions. This occurs due to the initial seeding sites in the brain connectome. 
In this case, a total of four different spreading patterns are possible. On the other hand, three different types of 
spreading patterns exist for the secondary tauopathy. Our analysis has also revealed that many types of spreading 
patterns exist in the case of mixed tauopathy. This non-uniform toxic tau protein distribution in the brain con-
nectome confirms good agreement with experimental  results29. The damage dynamics follow the same number 
of spreading patterns. Irrespective of the tauopathies, the nonlocal model takes longer to propagate the disease 
than the local model.

Given that tau is an MT-building protein, its more refined description can be achieved by including cor-
responding microtubules into consideration. Earlier developed models for the analysis of the  microtubules57–59 

Table 3.  Modified b3 values.

Brain region ID and modified b3 value

Pars Opercularis 7.452 Rostral middle frontal gyrus 6.707

Superior frontal gyrus 7.452 Caudal middle frontal gyrus 7.452

Precentral gyrus 5.589 Postcentral gyrus 3.726

Lateral orbitofrontal cortex 6.486 Medial orbitofrontal cortex 6.486

Pars triangularis 5.520e-6 Rostral anterior cingulate 6.210e-6

Posterior cingulate cortex 3.45 Inferior temporal cortex 13.11

Middle temporal gyrus 11.04 Superior temporal sulcus 8.97

Superior temporal gyrus 8.28 Superior parietal lobule 12.42

Cuneus 13.8 Pericalcarine cortex 13.8

Inferior parietal lobule 11.73 Lateral occipital sulcus 15.18

Lingual gyrus 13.8 Fusiform gyrus 7.59

Parahippocampal gyrus 11.04 Temporal pole 1.104e-5

Table 4.  Modified b2 and b3 values.

Brain region Entorhinal cortex Pallidum Locus coeruleus Putamen Precuneus

b2 3.125 2.76 1.38 3.795 3.105

b3 1.104e−5 2.76 1.38 3.795 3.105

Figure 7.  (Color online) Toxic-τ P distributions in the brain over time (left to right: t = 10, 20, 50 and 100) 
for the mixed tauopathy. Upper panel is corresponding to the local model, while middle and lower panels are 
corresponding to the nonlocal model with η = 0.5 and η = 0.25 , respectively.
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can prove to be useful for further refinement of the models presented here. Further, it is now known that AD 
may affect not only the brain but the entire body, including the cardiovascular  system60. Amyloid-beta protein 
fragments that form plaques in the brain of AD patients might stiffen their heart muscles due to the deposition of 
sticky amyloid-beta protein. Researchers discovered that Alzheimer’s is caused by amyloid-beta proteins building 
up in the spaces between brain cells. While this causes noticeable symptoms in the brain, this same protein plaque 
can build up around the heart. The advancement of nonlocal models in this direction represents an important 
avenue of future research, where the methodology developed here may prove to be advantageous, along with 
the integration of such models with coupled modelling approaches accounting for the role of  astrocytes61,62.

Data availability
The data used in this article is available at www. brain graph. org.
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