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Abstract: Background: While several publications have focused on the intuitive role of augmented
reality (AR) and virtual reality (VR) in neurosurgical planning, the aim of this review was to explore
other avenues, where these technologies have significant utility and applicability. Methods: This
review was conducted by searching PubMed, PubMed Central, Google Scholar, the Scopus database,
the Web of Science Core Collection database, and the SciELO citation index, from 1989–2021. An
example of a search strategy used in PubMed Central is: “Virtual reality” [All Fields] AND (“neuro-
surgical procedures” [MeSH Terms] OR (“neurosurgical” [All Fields] AND “procedures” [All Fields])
OR “neurosurgical procedures” [All Fields] OR “neurosurgery” [All Fields] OR “neurosurgery”
[MeSH Terms]). Using this search strategy, we identified 487 (PubMed), 1097 (PubMed Central), and
275 citations (Web of Science Core Collection database). Results: Articles were found and reviewed
showing numerous applications of VR/AR in neurosurgery. These applications included their utility
as a supplement and augment for neuronavigation in the fields of diagnosis for complex vascular in-
terventions, spine deformity correction, resident training, procedural practice, pain management, and
rehabilitation of neurosurgical patients. These technologies have also shown promise in other area of
neurosurgery, such as consent taking, training of ancillary personnel, and improving patient comfort
during procedures, as well as a tool for training neurosurgeons in other advancements in the field,
such as robotic neurosurgery. Conclusions: We present the first review of the immense possibilities of
VR in neurosurgery, beyond merely planning for surgical procedures. The importance of VR and AR,
especially in “social distancing” in neurosurgery training, for economically disadvantaged sections,
for prevention of medicolegal claims and in pain management and rehabilitation, is promising and
warrants further research.

Keywords: augmented reality; virtual reality; mixed reality; neurosurgery; brain tumor; robotic
neurosurgery; training; neuronavigation; computed tomography

1. Introduction

Virtual reality (VR) and augmented reality (AR) have intuitively found utility in
neurosurgical planning, considered the increasing availability of papers available on this
subject. However, the utility of VR and AR beyond neurosurgical planning remains
unexplored and, therefore, opens avenues to expand their applicability. We intend to
provide an overview of this vast expanse, beyond mere neurosurgical planning.
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VR involves the user being placed in a system that occludes the natural world and
generates a virtual world that the user can experience. Depending on whether the virtual
world is designed as a virtual environment or convincing substitute for the real world, VR
is further classified as non-immersive and immersive, respectively [1]. AR differs from
VR in that there is a fusion of the natural and virtual world elements in AR, with super-
imposition of virtual images (as holograms) over the real-world environment, allowing
for the simultaneous perception of (and, therefore, the interaction between) the projected
virtual image and natural environment [2,3]. This immersion and interaction were initially
achieved by placing the user within active stereoscopic glasses (for immersion) and pro-
viding controllers that allowed for interaction and aided immersion with haptic feedback.
Modifications to counter the smaller field of view afforded by the glasses, restricted area
of work, and absence of head tracking (that allows for perspective change by the user)
was made over time [4]. However, these modifications were jarringly unnatural when the
virtual image/environment and user’s perspective were misaligned [5,6]. The addition
of tracking the user and providing this feedback to the system allowed for a seamless
user–environment interface [7]. VR has gradually gained importance in neurosurgery, as
illustrated in the article by Tomlinson et al. [7] of VR-based training modules, which en-
hanced the understanding of neuroanatomy using these systems. Subsequent studies have
focused on the utility of VR and AR in neurosurgical planning, drawing disproportionate
focus to this one application. We aim to present an updated overview of the concepts, as
well as the utilization, implications, and future possibilities of VR in neurosurgery, beyond
the bounds of planning alone. Though our present review is not systematic, we have
systematically searched and synthesized the review to reach meaningful conclusions. This
review focuses on the role of VR in neurosurgery training and simulation, intraopera-
tive utility, neuronavigation, postoperative rehabilitation, pain management, and future
challenges.

2. Materials and Methods

Though the present review is not intended to be a systematic review of the literature,
we systematically conducted our search to remove redundancy and be more comprehensive
in our narrative review. Systematic review for VR in neurosurgery, beyond planning, is not
feasible, owing to limited homogenous studies. The lack of sufficient studies exemplifies
the infancy of this aspect of VR and AR to conduct a systematic review. To construct
this narrative review, we searched PubMed, PubMed Central, Google Scholar, the Scopus
database, the Web of Science Core Collection database, and the SciELO citation index, from
1989–2021. Two authors (RM and HD) independently reviewed the retrieved studies, with
title and abstract for further detailed review. An example of search strategy used in PubMed
Central is as: “Virtual reality” [All Fields] AND (“neurosurgical procedures” [MeSH
Terms] OR (“neurosurgical” [All Fields] AND “procedures” [All Fields]) OR “neurosurgical
procedures” [All Fields] OR “neurosurgery” [All Fields] OR “neurosurgery” [MeSH Terms]).
The search was started on 1 November 2020 and finished on 25 August 2021. Title and
abstract were screened to identify articles providing discussion on the utility of VR, in
addition to neurosurgical planning. Only articles in the English language were included.
The full text of the articles was retrieved and reviewed from the eligible list to identify their
inclusion to synthesize this review. In addition, the bibliography of the included articles
was screened to identify other potentially eligible articles. We have excluded studies on
neurosurgery planning and focused on studies exploring the use of VR in other scenarios
in neurosurgery.

3. Results

Using the search strategy, we identified 487 (PubMed), 1097 (PubMed Central), 275 cita-
tions (Web of Science Core Collection database). This review is based on 95 references [1–95].
We identified the utility of VR in neurosurgery, beyond planning, in the areas of neuro-
surgery training [2,8–37], neuronavigation [15,35–51], robotic neurosurgery [8,52–55], pain
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management [56–66], rehabilitation [67–76], and consent taking [77–80], as well as diagnos-
tic tools [81–95] (Table 1).

Table 1. Studies exploring the use of VR, beyond neurosurgical planning, as well as their advantages
and disadvantages.

Issues Addressed for the
Use of VR As: Studies Advantages Disadvantages

1. Neurosurgery training

Abhari et al. [2]; Chan et al. [8];
Drouin et al. [9]; Gasco et al. [10];
Higginbotham et al. [11]; Hooten et al. [12];
Hu et al. [13]; Hu et al. [14]; Kockro et al. [15];
Konakondla et al. [16]; Lafage et al. [17];
Lee et al. [18]; Lee et al. [19]; Lemole et al. [20];
Lobel et al. [21]; Lohre et al. [22];
Moult et al. [23]; Pfandler et al. [24];
G. Riva et al. [25]; Montemurro et al. [26];
Robison et al. [27]; Sabbadin et al. [28];
Sabbagh [29]; Wei et al. [30]; Weigl et al. [31];
Wewel et al. [32].

• World-wide
applicability

• Real world situations
can be radically more
challenging

• Cost-effective • False sense of
confidence

• Multiple scenarios
practiced

• Stimulation of stress
situations

2. Neuronavigation

Bichlmeier et al. [38]; Edwards et al. [39];
Fick et al. [40]; Grimson et al. [41];
King et al. [42]; Kockro et al. [15];
Condino et al. [43]; Kockro et al. [44];
Shahidi et al. [45]; Roethe et al. [46]

• Margins of resection
improved

• Brain shift may lead to
errors

• When visual
differentiation is lost,
enables identification

• Falling over of pial
margins prevents ideal
use

• Critical margins can be
pre-sought

3. Robotic neurosurgery
Chan et al. [8]; Madhavan et al. [52];
Pandya et al. [53]; Lee et al. [54];
Ramaswamy et al. [55]

• Increased precision • Real world feedback
absent

• Critical areas: tremor,
suturing

• Unsupervised errors
possible

• More degree of freedom
of movement

4. Pain management

Christiano et al. [56]; Meng et al. [58];
Pourmand et al. [59];
Bani Mohammad et al. [60]; Shakur et al. [61];
Walker et al. [62]; Wong et al. [63].

• Reduces medication
dependence • False sense of relief of

pain

• Prevents depressive
symptoms

5. Rehabilitation

Christiansen et al. [67]; Davies et al. [69];
Gourlay et al. [49]; Davies et al. [71];
Maresca et al. [72]; Sengupta et al. [73];
Schultheis et al. [74]; Weiss et al. [75];
Weiss et al. [76].

• Allows effective
training • Real world situations

can be more challenging
• Cost-effective

• Wide applicability
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Table 1. Cont.

Issues Addressed for the
Use of VR As: Studies Advantages Disadvantages

6. Consent taking Jena et al. [77]; Perin et al. [78].

• Allows patients to better
understand procedure • Actual procedure may

be different hence
chance of false security• “Informed” in the real

sense

7. Diagnostic tool

Lafage et al. [17]; Liebig et al. [81];
Mitha et al. [83]; Rudarakanchana et al. [84];
Incekara et al. [86]; Sekhar et al. [89];
Roh et al. [91]; Delion et al. [92];
Steineke et al. [94].

• Stimulate various
situations • May lead to false

diagnosis

• Added tool

4. Discussion
4.1. Brief History

Though VR was in use for panoramic viewing in the early eighteenth century, the first
VR simulator was a flight simulator, invented in 1929, and the term “Virtual reality” was
coined in 1987 [52]. The evolution of VR began with the induction of a young electrical
engineer, Tom Furness of the United States Air Force [79]. This insightful invention resulted
in him being labelled the “The Godfather of Virtual Reality” [57]. A VR system in medicine
was first introduced by Robert Mann in orthopedics, followed by the induction of the
head-mounted device (HMD) in the 1980s [60]. VR was first used in the treatment of
arachnophobia (fear of spiders) in 1998, and this remains the first documented use of this
technology in the treatment of pathology [64]. However, the first use of VR in the treatment
of a neurosurgical disorder is relatively recent. This occurred in 2009 when David. B Clarke
excised a Left frontal meningioma using the NeuroTouch neurosurgical simulator [80].

Throughout the literature, VR has been used interchangeably to denote VR, AR, and
even mixed reality (MR). However, VR, AR, and MR are fundamentally different technolo-
gies. VR refers to computed generated three-dimensional (3D) immersive environments,
AR refers to the projection of computer-generated images onto real-world images, and MR
refers to the projection of virtual objects into the real world, where the objects are spatially
aware and responsive [13]. Disadvantages of nausea, vomiting, temporarily impaired
vision, and lack of sense of presence, noticed in the early usage, was due to the technical
limitations of VR technology available at the time, as well as the inability of the human eye
to fixate in-depth in a 3D-rendered image [13,39,87]. Similar disadvantages during surgery
have also been reported with the use of high definition 4K 3D exoscopes [96,97]. This has
been significantly addressed and improved with advances in technology and subsequent
iterations of the concept.

4.2. Virtual Reality for Neuronavigation

AR and VR facilitate navigation during complex and otherwise difficult neurosurgical
interventions, in addition to their other potential functions [44]. Two decades earlier, a
report, published by neurosurgeons from Women and Brigham hospital, illustrated the
potential advantage of using VR as a neuronavigation tool in 300 patients [41]. The report
consisted of using VR by constructing a 3D model of the patient’s head and fusing this with
real-time MRI on a “double doughnut-MRI” or open magnet MRI [41]. This facilitated the
intraoperative navigation in minimally invasive surgeries by 3D construction of images
preoperatively, an intraoperative fusion of these images with real-time MRI, and segmen-
tation of the MRI, where essential landmarks and critical neurovascular structures were
superimposed on the patient’s head on the screen [30]. In the words of Grimson et al. [41],
“Virtual-reality technology is giving surgeons the equivalent of X-ray vision, helping them
to remove tumors more effectively, to minimize surgical wounds and to avoid damaging
critical tissues” [41]. Volume graph-guided neuronavigation highlights the role of AR as a
navigation tool for complex neurosurgical interventions by converting the operating field
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into a virtual operating tool [15]. Microscope-assisted guided interventions (MAGI) provide
3D navigation, where preoperative 3D images are superimposed on the eyepieces of the
operating microscope [39]. The advantage of MAGI, as compared to the pointer-based
navigation system, is that the surgeon does not have to shift his focus from the operative
site to the screen; additionally, MAGI provides information regarding the location of nearby
structures, as compared to the structures visualized only under the pointer in a pointer-
based navigation system [42]. Similarly, AR and VR are being used in image-enhanced
endoscopy, where real and virtual images are superimposed with multiple layers to provide
enhanced surgical exposure [45]. Bichlmeier et al. [38] introduced the concept of a virtual
mirror in AR, similar to the utilization of the dental mirror, to visualize different aspects of
the surgical territory. In a recent article, T. Fick et al. [40] have shown that a stand-alone AR
HMD can be used in lieu of conventional neuronavigation, with significant advantages,
such as direct superimposition of images the patient, improved ergonomics, and diminish-
ing attention shifts [40]. The main benefit of AR HMD visualization in brain tumor surgery
is the integrated continuous display, allowing for pointer-less navigation [46]. Naviga-
tion view provides the highest usability, while blocking the operative field less frequently.
Roethe et al. [46] reported the use of the AR display in 44.4% of resection time, with a
predominant AR type navigation view (75.7% of time), followed by target volume view
(20.1% of time). Intraoperative VR has been described for critical mapping and discerning
eloquent regions of the brain, especially in awake craniotomies. VR for awake craniotomy
provides an immersive environment that is absent in traditional mapping techniques [47].

4.3. Virtual Reality as a Diagnostic Tool

Cerebrovascular surgery and neuro-interventional surgery rely heavily upon advanced
neuroimaging techniques for operative decision-making and prognostication [83]. Clinical
application of VR can augment the diagnostic accuracy and efficacy of these techniques [83].
Hybrid angio-suites enable neurointerventists to develop a VR immersive model, based
on patient-specific anatomy for better procedural skill, training, and crisis resource man-
agement [84]. Unique metric-based performance assessment, outside the angio suite, and
ability to perform complex neuro intervention, including mechanical thrombectomy, with
the same set of principles as in a live patient, has been a great utility of VR technology [81].
Surgeons benefit from access to VR patient specific models too, for better diagnosing or
planning management strategies [26,40], as well as for planning complex combined or
hybrid procedures that require a combination of interventional and conventional surgical
methods [73]. This advantage holds true, irrespective of the surgeons existing skill set and
years of experience.

Another example of the clinical application of VR in diagnostics is to compare pre-
operative imaging with postoperative imaging, in order to identify junctional kyphosis
in adult spinal deformity correction and eliminate its confounding effects on the sagittal
alignment after the deformity correction procedure [17]. Taken together, this indicates that,
although VR may not supplant traditional imaging modalities in the diagnosis of disorders,
it allows for expansion of the fidelity and accuracy of these measures.

4.4. Virtual Reality in Neurosurgery Training

A detailed roadmap of neuroanatomy confers a higher degree of confidence and
success in neurosurgical procedures [15]. This guiding principle has led to several ad-
vancements in the last few decades, addressing the needs of neurosurgical training and
simulation (Figure 1) [2,15]. A key challenge faced by the neurosurgeon-in-training is
performing a procedure with bimanual-dexterity in a narrow corridor bound by complex
and vital neurovascular structures and non-resilient bones. Neuronavigation is heavily
relied upon by neurosurgeons-in-training for planning their approach and localization;
however, it is not suitable for developing spatial reasoning abilities and an over reliance on
neuronavigation paradoxically extends the development of skills [1]. Moreover, as surgery
progresses, the brain gradually shifts, which renders the navigation system, using preop-
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erative images, less useful and accurate. To avoid this problem, an intraoperative brain
imaging system (IBIS) was devised that identifies any discrepancy between intraoperative
ultrasound and preoperative imaging [9]. Using IBIS, the intraoperative stimulation is
modified in real-time, and inaccuracies are updated using AR [9,19]. VR, when used in
simulation and training, proved to be a better alternative to reduce the cognitive load and
operative stress duration, and proved to enhance efficacy for novice neurosurgeons [31].
VR tools available for neurosurgical education and training include a multifunction head-
mounted display (HMD: Microsoft HoloLens, Google Glass), haptic feedback (NeuroVR,
Immersive touch, Procedicus Vascular Interventional System Trainer (VIST)), synthetic
tissue simulator (Creaplast, SynDaver, iDU optics 3D-printed models, Thomas Jefferson
university durotomy repair module), VOSTARS (video and optical see-through augmented
reality surgical systems) HMD-based surgical navigation platform, and surgical planning
devices (surgical theatre, Dextroscope, VPI reveal, Synaptive Medical). VR and computer
simulation are used in areas of medicine, military, and pilot training to reduce the danger(s)
involved by providing a virtual simulator and visual and haptic feedback [12,17,71]. The
challenge often faced is that physics-based simulators are computationally demanding and
need resources, in terms of software and computing skills, to provide visual and haptic
feedback, in addition to formal training in 3D immersive simulation [12,21,55]. HMD
are the most engaging displays in VR, others being google glass, consisting of an LED or
OLED display with a high refresh rate (120 Hz) and latency time of 20 milliseconds or
less [18,28]. VR systems currently in use in neurosurgery training and simulation include
part-task simulators (e.g., ventriculostomy catheter insertion models and subpial resection
models), procedure simulation (NeuroTouch), surgical rehearsal platform (Dextroscope,
virtual endoscopy), and robotic neurosurgery paradigms [8,20,35,84]. Further, VR plays an
essential role in tele-proctoring, in order to train surgeons on complex procedures, regard-
less of their geographical location [11]. These immersive technologies impact global virtual
connections, to empower low-and-middle-income countries and potential applications, in
times of ongoing pandemics, such as COVID-19. Telemedicine will likely play an important
role in future outpatient neurosurgery consultations, as this technology allows the surgeon
to interact with the patient in a “merged reality” space, facilitating verbal, visual, and
manual interaction between them [98–100]. Certain quality control standards should be
adhered to while using VR technology as a neurosurgical educational tool. These include,
but are not limited to, high-resolution images, appropriate sound quality, haptic and visual
feedback, high processing power, internet speed, the structure of the organs, and tissue
fidelity. Key advantages of using VR technology in neurosurgery training, as compared to
human and animal models, are its low cost, non-invasive nature, limitless repetition ability,
and the sheer variety and diversity in cases that can be simulated. However, realism and
resolution are an ever-present concern [16]. The VR environment can be used to quantify
surgeon performance, assess surgeon proficiency, and track training progression [101–103].
Young surgeons demonstrated greater enthusiasm and enjoyment in learning with AR
HMD visualization [102]. Though more than 1000 articles were published on the use of
VR in the medical sector, with significant numbers dedicated to neurosurgery, there are
no controlled designed studies or high-quality studies with homogenous devices, thereby
limiting the available evidence on the uses of VR technology in neurosurgery.
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Figure 1. Application of VR for teaching placement of bed side ICP monitor via an external ventricu-
lar drain.

Research and technical developments in spinal surgery exceed other surgical special-
ties with advancements in navigation, endoscopy, and the advent of robotic spinal surgery.
However, the development of AR, VR, and MR in spine and orthopedic surgery is similar
to brain surgery, in terms of cost-effectiveness, levels of recommendations, evidence, and
lack of standardized measures. Common spinal procedures, for which simulation-based
training is currently used, in order of frequency, are pedicle screw insertion, vertebroplasty,
posterior cervical laminectomy, and foraminotomy [10,23,24]. Leading simulator technolo-
gies in spinal surgery include Immersive Touch Simulator, Novint Falcon, Stealth 3D, and
Osso VR, employing AR, VR, and MR techniques [10,22,23,30]. Gradually, the world has
witnessed a parallel increase in literature on VR in minimally invasive spine surgery, spine
endoscopy, tumor management, and spinal deformity correction [13,14,17,22,30,32].

4.5. Virtual Reality and Pain Management

In pain management, VR has initially been studied to treat trigeminal rhizotomy.
Specifically, VR-assisted percutaneous radiofrequency trigeminal rhizotomy has shown
safety and efficacy in studies and stresses the utility of virtual 3D CT scans in assessing
the position and depth of the needle [56,58,61]. VR has also shown efficacy in managing
pain during minor procedures and other chronic illnesses [60,62,63]. While this may not be
strictly ‘neurosurgical‘, it is of importance in the ancillary management of patients during
their stay in the neurosurgical service. Of particular importance in neurosurgery is that VR
has shown to be efficacious in managing chronic pain that fails conventional opioid and
physical therapy [59]. This opens avenues in the utility of VR for chronic pain disorders in
neurosurgery, such as failed back and regional specific pain syndromes.

4.6. Virtual Reality in Rehabilitation

VR has been used in several novel ways, from creating a virtual environment to allow
the patient to train in to the establishment of telerehabilitation services, in order to allow
patients (who are understandably hard-pressed to travel) to pursue rehabilitation services
at home, while their therapist can monitor progress from a different location [49,67,69,71].
In addition to this, in an interesting article by Christiansen et al. [67], VR was used to assess
and quantify the level of cognitive deficit, following traumatic brain injury, by providing
the patient with simple sequencing tasks. Nearly every rehabilitation domain has shown
promise with the incorporation of VR, with examples including the assessment of driving
with patients following trauma and providing leisure opportunities using video-based VR
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in young adults with physical and intellectual disabilities. Maresca et al. [72] reported a
positive impact on cognitive domains, motor recovery, balance improvement, and reduction
in anxiety and depression in a 60-year old individual with incomplete cervical spinal cord
injury, treated with combined traditional physiotherapy and VR rehabilitation system.
Another prospective study reported similar results on balance improvement in spinal cord
injury patients treated with a VR rehabilitation system [73].

The advantages conferred by VR stem from the ability to gradually increase the com-
plexity of tasks, facilitate simultaneous audio, visual, motor, and cognitive rehabilitation
remain engaging and entertaining and offer positive, reward-based feedback, which are
of paramount importance in preventing patient frustration and dropouts. Additionally,
future strategies would be to make VR-based rehabilitation more universally accessible
to promote patient compliance. When considering patients with long-term rehabilitative
needs, VR and AR would be more economically viable, thereby alleviating the financial
burden of an already distressed portion of society. In a seminal article, Weiss et al. [75]
poignantly observes that there is real-world improvement in patients that correlate with
improvement in the virtual world, and sufficient research and optimization should be
directed towards improving VR rehabilitation systems.

4.7. Virtual Reality and Robotic Neurosurgery

The neuroArm leads this movement as an image-guided teleoperated neurosurgical
robot [53]. As with all new technologies, a significant amount of learning and relearning
must occur before the operator gains sufficient proficiency. This creates a unique problem,
as surgeons find themselves requiring training, in a short period of time (as dramatically
new interventions have a latent lead time, followed by an exponential growth phase), with
restricted access to the instrumentation being studied [8]. The utility of VR, in allowing
surgeons to train in the absence of readily deployed systems or time slots with those
systems, has precedence in the field of laparoscopy [93]. A more recent example is the
pattern of adoption faced with the da Vinci Surgical System (Intuitive Surgical, Sunnyvale,
California) and its companion VR trainer, the DV-Trainer (Mimic Technologies, Seattle,
Washington) [54]. The same may be anticipated as robotic neurosurgery becomes more
widely adopted. VR, in this interesting application, traces its roots back to its earliest
widespread adoption, as similar to the field of avionics, ‘trainers’ can be developed designed
on the same master console or interface used by the surgical robot [8]. Added advantages
are that, by designing the system on the same interface, the incorrect transfer of motor skills
and haptic mismatch does not occur, as the development of a haptic interface that mimics
an instrument is a difficult task [70]. VR systems are additionally more cost-effective than
additional robotic units, which require installation for training. Moreover, although there
is a surge in robotic neurosurgery in different neurosurgical pathologies, most robotic
neurosurgery advancement is limited to the computer interface between the surgeon and
patient, further validating the use of VR trainers [52].

An exciting vision of the future of robotics integrated with AR was presented by
Madhavan et al. [52], where a telerobotic system was fused with an AR overlay that allows
for the dexterity and precision of the robotic system, fused with the added information
(such as projected position(s) of vital structures and the pathology in question) from
an AR overlay. Added functionality to the system can also be brought in using AR to
measure distances and implants, obviating the need for conventional measuring devices
and consolidating instrument diversity (which is especially advantageous in a robotic
system).

4.8. Consent Taking and VR

Informed consent (IC) is defined as “the communication process between a patient
and physician that results in the patient’s authorization or agreement to undergo a specific
medical intervention”. Neurosurgery is a high-risk specialty, with the highest rates of
legal claims among all other specialties [77]. In a recent randomized controlled trial [78],
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33 patients were randomized 1:1:1 to three groups. In the two experimental groups,
patients underwent 3D, immersive, informed consent with two different surgical planners
(group 1 and group 2). In the control group, patients underwent an informed consent,
supported by traditional 2D radiological images. All these patients were asked to fill the
Spielberger state and trait anxiety self-evaluation questionnaire (state anxiety inventory
(STAI Y-1) and trait anxiety inventory (STAI Y-2)), to assess individual situational and trait
anxiety (higher scores reflect higher anxiety levels) after standard surgical consent and the
planner(s) explained the surgical aspects and nuances using the Surgical Theater™ and
Vesalius™ surgical planning platforms [65]. The patients in the VR groups appreciated
this communication experience, while their objective comprehension was higher (score
mean (SD): group 1 82.65 (6.83); group 2 77.76 (10.19)), as compared with the control
group (57.70 (12.49); p < 0.001) [61]. Although, the idea may be controversial, as providing
extra information about surgical risks and complications may augment patients’ anxiety,
especially when complications can be disabling. However, this avenue of VR utilization
goes beyond regular neurosurgical planning and needs to be investigated significantly to
reduce medicolegal risks and ensure patient understanding.

4.9. Additional Avenues and Challenges of VR in Neurosurgery

VR has been utilized for training non-technical skills, such as communication, team-
work, and situational awareness in health care professionals [34]. Extrapolating on this
idea, VR and AR may, in the future, additionally find applicability in the training of surgical
scrub nurses and operating room technicians, who require significant exposure before
attaining the technical proficiency required of them. Although stated in the context of
robotic assistants, the words of Laligam Shekar et al. state that “when observed, such
surgeon–assistant teams appear to be as graceful as a ballet or symphony. But such a team
takes time and active effort to develop” [89]. The answer to this might lie in the field of
VR. VR has also shown promise in mapping social cognition during awake craniotomy and
other complex cognitive functions that are routinely not mapped during surgery [66,92].
Katsevman et al. [47] reported the use of a VR protocol as a feasible functional tool in
awake-patient brain tumor surgery by using it as a complement during cognitive screening,
in addition to language testing. Similarly, Mazerand et al. [50] showed the use of intra-
operative visual field assessment with a virtual reality headset during direct subcortical
stimulation, to map the optical radiations and prevent a permanent visual field defect
during awake surgery (a promising approach).

Significant technical hurdles faced during awake surgery, such as mapping of the optic
radiation, have also been overcome with the utility of VR [50].

Finally, VR has also been used to improve patient compliance and comfort. Studies
have shown the utility of VR in preparing patients for MRI examinations and VR headsets
are commonly used to prevent the intense discomfort faced by patients while undergoing
the MRI [9,68]. These examples further indicate that the utility of VR and AR, which was
initially limited by technological sophistication, is now inherently limited by artificially
narrowed horizons.

VR has faced challenges, predominantly due to the technical complexities in designing
clinically valuable and relevant models. The main issues that have halted the monumental
rise of VR in neurosurgery include, but are not limited to, feasibility in application and
transference to real-life scenarios, ethics in supplementing with standard practices, and
cost-effectiveness analyses. One of the critical drawbacks of VR application in neurosurgery,
beyond presurgical planning, is the learning curve associated with it, when used to augment
surgical procedures; this is much more significantly evident with the advancement of
robotic neurosurgery [52,86]. This steep learning curve in VR-assisted neurosurgery is an
additional burden to the already time-consuming neurosurgical residency, which often
requires further training and fellowships to acquire competence and expertise in specific
neurosurgical procedures [16].
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4.10. Strengths and Limitations of the Study

The evaluation of neurosurgical performance, in which VR is used, is a newborn
field of interest. This review has the feature of showing the different fields in which
AR and VR are used in neurosurgery, as well as their possible implications in the next
future. However, it has the limitations that, in order to limit the broad topic dealt and not
disperse the information gathered in this review, tractography and white matter integrity
in neuronavigation were not discussed.

5. Conclusions

VR and AR show benefits in preoperative planning and multimodal neuronavigation
for spine and brain surgery. In addition, the included studies suggested that VR and
AR have beneficial effects for medical education and neurosurgical training. This paper
reported the immense possibilities of VR in neurosurgery, beyond merely planning for
surgical procedures. To generate relevant evidence in the next future, we need to rigorously
evaluate AR and VR implementations, in order to better understand the strengths and
limitations of HMD and other tools used during surgery, as well as in all fields of neuro-
surgery. The importance of VR and AR, especially in “social distancing”, in neurosurgery
training for economically disadvantaged sections, prevention of medicolegal claims, and
pain management and rehabilitation is promising and warrants further research.
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