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When we are fatigued, we feel that our performance is worse than when we are fresh.
Yet, for over 100 years, researchers have been unable to identify an objective, behavioral
measure that covaries with the subjective experience of fatigue. Previous work suggests
that the metrics of signal detection theory (SDT)—response bias (criterion) and
perceptual certainty (d’)—may change as a function of fatigue, but no work has yet
been done to examine whether these metrics covary with fatigue. Here, we investigated
cognitive fatigue using SDT. We induced fatigue through repetitive performance of
the n-back working memory task, while functional magnetic resonance imaging (fMRI)
data was acquired. We also assessed cognitive fatigue at intervals throughout. This
enabled us to assess not only whether criterion and d’ covary with cognitive fatigue
but also whether similar patterns of brain activation underlie cognitive fatigue and SDT
measures. Our results show that both criterion and d’ were correlated with changes
in cognitive fatigue: as fatigue increased, subjects became more conservative in their
response bias and their perceptual certainty declined. Furthermore, activation in the
striatum of the basal ganglia was also related to cognitive fatigue, criterion, and d’.
These results suggest that SDT measures represent an objective measure of cognitive
fatigue. Additionally, the overlap and difference in the fMRI results between cognitive
fatigue and SDT measures indicate that these measures are related while also separate.
In sum, we show the relevance of SDT measures in the understanding of fatigue, thus
providing researchers with a new set of tools with which to better understand the nature
and consequences of cognitive fatigue.
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INTRODUCTION

Fatigue resulting from cognitive work (cognitive fatigue) is a common experience, caused by tasks
that require care and skill such as air traffic control (Orasanu et al., 2012; Kuo et al., 2017) or driving
(Matthews and Desmond, 2002). Furthermore, cognitive fatigue is a common sequela following
brain injury [e.g., traumatic brain injury (TBI) or stroke] or disease [e.g., multiple sclerosis (MS)
or Parkinson’s disease]. Intuitively, we feel that performance should decline as cognitive fatigue
increases, yet a large body of research shows that this is not the case (Craig and Cooper, 1992;
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Stoner, 1996; Torres-Harding and Leonard, 2005). The
disappointing lack of correlation between the subjective feelings
of cognitive fatigue and objective measures of performance such
as response time (RT) and accuracy has hampered research
in this area. However, fatigue has been linked to decrements
in perceptual sensitivity [i.e., a reduced ability to distinguish
stimuli requiring a response (targets) from stimuli that do not
require a response (non-targets)]—or d’, a measure derived from
signal detection theory (SDT) (Green and Swets, 1966; Lynn
and Barrett, 2014)—in the human factors literature (Matthews
and Desmond, 2002), which may be linked to well-documented
decrements in d’ associated with vigilance tasks (See et al.,
1995). For example, Matthews and Desmond (2002) found that
perceptual sensitivity was reduced and fatigue was increased
following a difficult “drive” in a driving simulator (relative to
an easier drive). Thus, while simple RT and accuracy correlate
poorly with fatigue, the tools of SDT (and perceptual sensitivity
in particular) may provide better objective indices of fatigue.
However, while decrements in d’ have been demonstrated
after fatigue has been induced (i.e., before vs. after fatigue
induction), it has not been shown that progressive increases in
fatigue are associated with progressive decreases in perceptual
sensitivity. Showing a correlation of this sort between d’ and
fatigue would provide researchers with a powerful tool to better
understand fatigue.

While perceptual sensitivity (d’) has been shown to be worse
after fatigue induction (Matthews and Desmond, 2002), the
effect of fatigue on bias (β), or criterion, which is the other
main SDT measure, has not been investigated. In the context
of SDT, criterion refers to the amount of evidence one requires
before releasing a response: a liberal criterion means that one
requires relatively little evidence that a stimulus is a target
before releasing a response; a conservative criterion means
that one requires relatively more evidence before releasing a
response. It is somewhat surprising that changes in criterion
have not been investigated in the fatigue literature since recent
investigations into fatigue have suggested that fatigue reflects,
at least in part, a change in the balance between effort
and reward (Dobryakova et al., 2015; Wylie et al., 2017b;
Massar et al., 2018; Müller and Apps, 2018). Signal detection
theory predicts that changes in the payoff matrix—that is,
the balance between effort and reward—will be reflected in
changes in criterion. It has been repeatedly shown that changing
the payoff matrix by increasing the reward subjects receive
reduces fatigue (Matthews and Desmond, 2002; Boksem et al.,
2006; Lorist et al., 2009), but hitherto, there have been no
investigations into whether changes in fatigue are correlated with
changes in criterion.

In the work described here, we induced fatigue by asking
subjects to repeatedly perform two conditions of the n-back
working memory task: the 0-back condition and the 2-back
condition (Wylie et al., 2017a,b, 2018). By using the accuracy
on different types of trials (correct rejections and false alarms),
we calculated subjects’ sensitivity and their response bias,
using SDT (Green and Swets, 1966; Lynn and Barrett, 2014).
Furthermore, at baseline, and after each of the eight runs
of the tasks, we assessed subjects’ cognitive fatigue using

the visual analog scale of fatigue (VAS-F) (Shahid et al.,
2011). This design allowed us to assess whether changes
in perceptual sensitivity and criterion were correlated with
subjective reports of cognitive fatigue. Finally, both structural
and functional magnetic resonance imaging (fMRI) data were
acquired while subjects performed the tasks. This allowed us
to assess whether brain areas that were sensitive to changes in
cognitive fatigue were also sensitive to changes in perceptual
certainty and/or criterion. Based on the literature (Chaudhuri
and Behan, 2004), and on our previous work (Dobryakova
et al., 2017), we hypothesized that the striatum of the basal
ganglia would play a central role. Several studies, both from
our lab (e.g., Dobryakova et al., 2013, 2017; Wylie et al.,
2017a) and from others (e.g., Chaudhuri and Behan, 2004;
Tang et al., 2013; Nakagawa et al., 2016), have indicated that
the striatum in general and the caudate in particular are
implicated in fatigue. The role of the striatum was assessed
both from a structural standpoint—investigating whether the
volume of the striatum covaried with cognitive fatigue and
SDT measures—and from a functional standpoint—investigating
whether activation in the striatum covaried with cognitive fatigue
and SDT measures.

MATERIALS AND METHODS

Subjects
Forty-eight healthy volunteers participated in this study. The
behavioral data from nine of these subjects were not available
due to equipment failure. Of the remaining 39 subjects, their
mean age was 43.8 years (± 11.7), and their mean education was
15.4 years (± 2.3), and 15 were women.

Neuroimaging Acquisition
Neuroimaging data collection began on a 3-Tesla Siemens Allegra
scanner (24 subjects) and was completed on a 3-Tesla Siemens
Skyra scanner (15 subjects). For this reason, a regressor for
scanner was included in all group-level analyses, as has been
done in previous research utilizing more than one scanner
(Stonnington et al., 2008; Biswal et al., 2010; Wylie et al.,
2018). A T2∗-weighted echo planar sequence was used to collect
functional images during eight blocks (four at each of two
difficulty levels), with 140 brain volume acquisitions per block
(Allegra: echo time = 30 ms; repetition time = 2,000 ms; field
of view = 22 cm; flip angle = 80◦; slice thickness = 4 mm, 32
slices, matrix = 64 × 64, in-plane resolution = 3.438 × 3.438
mm2; Skyra: echo time = 30 ms; repetition time = 2,000 ms; field
of view = 22 cm; flip angle = 90◦; slice thickness = 4 mm, 32
slices, matrix = 92 × 92, in-plane resolution = 2.391 × 2.391
mm2). A high-resolution magnetization-prepared rapid gradient
echo (MPRAGE) image was also acquired (Allegra: TE = 4.38 ms;
TR = 2,000 ms, FOV = 220 mm; flip angle = 8◦; slice
thickness = 1 mm, NEX = 1, matrix = 256 × 256, in-
plane resolution = 0.859 × 0.859 mm2; Skyra: TE = 3.43 ms;
TR = 2,100 ms, FOV = 256 mm; flip angle = 9◦; slice
thickness = 1 mm, NEX = 1, matrix = 256 × 256, in-plane
resolution = 1 × 1 mm2) and was used to register the functional
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data into standard MNI space for group analysis and for the
volumetric analyses.

Behavioral Paradigm and Data
Behavioral data acquisition and stimulus presentation were
administered using the E-Prime software (Schneider et al., 2002).
During the fMRI scan, participants were presented with the
n-back working memory task in which task difficulty was varied
by presenting the 0-back condition, which places a low load
on working memory, and the 2-back condition, which places
a higher load on working memory. There were four blocks
of each level of the n-back task (eight blocks total), with 65
trials per block. The four blocks of each task were always
presented together (that is, the two tasks were not interleaved),
and the order of presentation (0-back first vs. 2-back first) was
counterbalanced across subjects. During the 0-back task (control
task), participants were asked to respond each time the target
letter “K” was presented on the screen, while during the 2-back
task, participants were asked to respond when the target letter
corresponded to the letter presented two trials before (e.g., R N
Q N. . .). Letters were presented in white (Arial 72 point font) on
a black background. Of the 26 letters in the English alphabet, 10
were excluded to enhance the discriminability of the letters used
as stimuli. The following letters were used (with equal frequency):
A, B, C, D, F, H, J, K, M, N, P, Q, R, S, T, V, and Z. The letter
stimuli remained on the screen for 1.5 s, followed by a 500 ms
inter-trial interval (ITI), and the time between successive trials
was jittered to allow for the data to be deconvolved as an event-
related design. The jittering was optimized using the Optseq2
program1. The jittering was achieved by inserting between zero
and six null events between successive trials. The duration of each
null event was a multiple of the length of the trial (in this case,
2 s), drawn from a distribution following a power function. The
majority of inter-trial intervals were 500 ms (zero null events),
followed by 2 s (one null event) and so on. The average ITI was
1,587.87 ms (±1,769.7). All subjects practiced both tasks prior to
the scanning session.

In order to ensure comparable stimulation across subjects,
the stimuli always remained on the screen for 1.5 s (that is,
they were not removed when subjects responded), and each
run lasted the same amount of time (260 s). The average
amount of time between successive blocks was 2 min 04 s
(SD = 2 min 17 s).

The following behavioral data were analyzed: overall accuracy,
which was the number of trials in which the correct response
was made divided by the total number of trials, the reaction
times (RTs) of the correct trials, and signal detection metrics.
Signal detection analysis was used to separate discrimination
sensitivity from response bias—factors that can independently
affect accuracy (Macmillan and Creelman, 1991; Anderson
et al., 2011). The ability to correctly identify target stimuli was
measured using the discriminability index (d’), calculated as
(zFA - zHR), where z is the inverse of the standard normal
cumulative distribution, FA is the false-alarm rate (the proportion
of responses made to stimuli that were not targets), and HR is

1https://surfer.nmr.mgh.harvard.edu/optseq/

the hit rate (the proportion of correct identifications of target
stimuli). In the context of this experiment, where all stimuli were
readily discernable, d’ is best thought of as perceptual certainty
rather than as sensitivity to stimulation. Response bias was
measured using “criterion” (β), calculated as −1/2(zHR + zFA)
with higher values (fewer false alarms and fewer hits) indicating
reduced response bias or more conservative responding. Lower
criterion values (more hits and more false alarms) indicated
increased response bias and more liberal responding.

VAS-F
To evaluate the level of on-task or “state” fatigue, participants
were presented with a visual analog scale (VAS) before and after
each block of the n-back task. Participants were asked: “How
mentally fatigued are you right now?” and were asked to indicate
their level of fatigue on a scale from 0 to 100, with 0 being not
fatigued at all and 100 being extremely fatigued. In order to mask
the purpose of the study, five additional VASs were administered
as well, in randomized order. These assessed happiness, sadness,
pain, tension, and anger.

Because VAS-F scores were obtained before and after each
run, the amount of fatigue during each block was estimated by
using the mean of the scores before and after the relevant block;
this value was used in the correlational analyses. Furthermore,
because we were specifically interested in cognitive fatigue, we
divided the data into blocks on which subjects reported at least
some fatigue and blocks on which they reported no fatigue (zero
on the VAS-F; see Table 1). This was done because it is reasonable
to hypothesize that when at least some fatigue was reported,
subjects were engaged in the task and that fatigue-related areas
should be active. However, when no fatigue was reported, it is
less clear what to hypothesize. This may have represented a failure
of introspection, in which case it would be a mistake to attempt
to relate the fatigue score to brain activation. Alternatively, it
could represent zero fatigue, which might be related to minimal
activation (or even deactivation) in fatigue-related areas, or it
could represent some combination of these cases. Because of
this, we felt it more straightforward to analyze only those data
for which we had clear hypotheses. A chi-squared test showed
the number of runs with and without fatigue was comparable
across the two tasks (χ2(1) = 1.40, p = 0.24). The blocks on
which subjects reported at least some fatigue were used for the
main analyses. Finally, because the VAS-F scores were skewed,
they were transformed using the Box-Cox method to ensure that
assumptions of normality were not violated (Box and Cox, 1964).
The Box-Cox method is a power transformation in which a range
of power transformations are considered and the one that best
transforms the data into a normal distribution is selected.

TABLE 1 | Number and percentages of runs on which subjects reported no
fatigue relative to runs where they reported at least some fatigue, as a function of
task (0-back vs. 2-back).

0-Back 2-Back

Fatigue 115 (76%) 102 (69%)

No fatigue 36 (24%) 45 (31%)
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Analyses
RT and Accuracy
Mean RT was calculated using accurate trials. For both the RT and
accuracy data, a linear mixed effects [LME; using the R statistical
package (version 3.4.3)] was used with the factors of task (0-back
vs. 2-back), run (runs 1–4 of each task), and VAS-F (the visual
analog scale of fatigue) as a quantitative variable; subject was
a random factor.

SDT Measures (d’ and Bias)
For each of the SDT measures [sensitivity (d’) and response
bias], an LME was used with the factors of task (0-back vs. 2-
back), run (runs 1–4 of each task), and VAS-F (using the same
transformed and averaged values as were used for the RT and
accuracy analyses), as a quantitative variable and subject was
included as a random factor.

Neuroimaging
The neuroimaging data was preprocessed using fMRIPrep 1.4.1
(Esteban et al., 2019; RRID:SCR_016216), which is based on
Nipype 1.2.0 (Gorgolewski et al., 2011; RRID:SCR_002502).

Anatomical Data Preprocessing
For anatomical preprocessing, the T1-weighted (T1w)
image from each subject was corrected for intensity non-
uniformity (INU) with N4BiasFieldCorrection (Tustison
et al., 2010), distributed with ANTs 2.2.0 (Avants et al., 2008;
RRID:SCR_004757), and used as T1w-reference throughout
the workflow. The T1w-reference was then skull-stripped
with a Nipype implementation of the antsBrainExtraction.sh
workflow (from ANTs), using OASIS30ANTs as target template.
Brain tissue segmentation of cerebrospinal fluid (CSF), white
matter (WM), and gray matter (GM) was performed on the
brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823,
Zhang et al., 2001).

Anatomical Normalization
Volume-based spatial normalization to one standard space
(MNI152NLin2009cAsym) was performed through non-linear
registration with antsRegistration (ANTs 2.2.0), using brain-
extracted versions of both T1w reference and the T1w template.
The following template was selected for spatial normalization:
ICBM 152 Non-linear Asymmetrical template version 2009c
(Fonov et al., 2009, RRID:SCR_008796; TemplateFlow ID:
MNI152NLin2009cAsym).

Anatomical Volumetric Calculations
For each subject, the normalized volume of the striate
was calculated using the results generated by Freesurfer’s
segmentation. Specifically, the volume of the nucleus accumbens,
the caudate, and the putamen (bilaterally) were added together
and the result was divided by the total intracranial volume. This
was used for our volumetric analyses in which we correlated the
normalized striatal volume with subjects’ VAS-F, criterion, and
d’ scores.

Functional Data Preprocessing
For functional data preprocessing, the following preprocessing
was performed on each of the eight BOLD runs of fMRI data

per subject (i.e., four runs of each task). First, a reference volume
and its skull-stripped version were generated using a custom
methodology of fMRIPrep. The BOLD reference was then co-
registered to the T1w reference using flirt (FSL 5.0.9, Jenkinson
and Smith, 2001) with the boundary-based registration (Greve
and Fischl, 2009) cost-function.

Co-registration
Co-registration was configured with nine degrees of freedom
to account for distortions remaining in the BOLD reference
volume. Head-motion parameters with respect to the BOLD
reference (transformation matrices and six corresponding
rotation and translation parameters) were estimated before any
spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al.,
2002). BOLD runs were slice-time corrected using 3dTshift from
AFNI 20160207 (Cox and Hyde, 1997, RRID:SCR_005927).

Resampling
The BOLD time-series (including slice-timing correction) were
resampled onto their original, native space by applying a
single, composite transform to correct for head-motion and
susceptibility distortions. These resampled BOLD time-series will
be referred to as preprocessed BOLD in original space, or just
preprocessed BOLD. The BOLD time-series were resampled into
standard space, generating a preprocessed BOLD run in MNI space
(using the “MNI152NLin2009cAsym” template).

Confounding Variables
Several confounding time-series were calculated based on the
preprocessed BOLD: framewise displacement (FD), DVARS, and
three region-wise global signals. FD and DVARS are calculated
for each functional run, both using their implementations in
Nipype (following the definitions by Power et al., 2014). The three
global signals were extracted within the CSF, the WM, and the
whole-brain masks. Additionally, a set of physiological regressors
was extracted to allow for component-based noise correction
(CompCor, Behzadi et al., 2007). Principal components were
estimated after high-pass filtering the preprocessed BOLD time-
series (using a discrete cosine filter with 128 s cut-off) for the
two CompCor variants: temporal (tCompCor) and anatomical
(aCompCor). tCompCor components were then calculated from
the top 5% variable voxels within a mask covering the subcortical
regions. This subcortical mask was obtained by heavily eroding
the brain mask, which ensured that it did not include cortical
GM regions. For aCompCor, components were calculated within
the intersection of the aforementioned mask and the union
of CSF and WM masks calculated in T1w space, after their
projection to the native space of each functional run (using
the inverse BOLD-to-T1w transformation). Components were
also calculated separately within the WM and CSF masks. For
each CompCor decomposition, the k components with the
largest singular values were retained, such that the retained
components’ time series were sufficient to explain 50% of variance
across the nuisance mask (CSF, WM, combined, or temporal).
The remaining components were dropped from consideration.
The head-motion estimates calculated in the correction step
were also placed within the corresponding confound file. The
confound time series derived from head-motion estimates and
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global signals were expanded with the inclusion of temporal
derivatives and quadratic terms for each (Satterthwaite et al.,
2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5
standardized DVARS were annotated as motion outliers. The
CompCor components, motion parameters, and FD values were
included in the deconvolution as regressors of no interest.

Interpolation
All resamplings were performed with a single interpolation
step by composing all the pertinent transformations (i.e., head-
motion transform matrices, susceptibility distortion correction
when available, and co-registrations to anatomical and output
spaces). Gridded (volumetric) resamplings were performed
using antsApplyTransforms (ANTs), configured with Lanczos
interpolation to minimize the smoothing effects of other
kernels (Lanczos, 1964). Non-gridded (surface) resamplings were
performed using mri_vol2surf (FreeSurfer).

Deconvolution
The resulting data were then deconvolved. In the deconvolution,
signal drift was modeled with a set of basis functions; the motion
parameters were used as regressors of no interest, and TRs with
motion exceeding 1.7 mm (half a voxel, in native space) were
excluded from analysis [resulting in the exclusion of an average
of 3.8 TRs (2.8%) per subject and an average of 0.5 TRs (0.4%)
across the dataset]. The CompCor components and FD values
were also included as regressors of no interest. The regressors
of interest were the correct trials of each block. Each block was
deconvolved separately, and the coefficient of fit of the correct
trials was entered into the group-level analysis.

Group-Level Analyses
Because correlations were found between d’ and VAS-F, criterion
and VAS-F, and between d’ and criterion (formal analysis
described below), three group-level analyses were conducted: one
for VAS-F, one for d’, and one for criterion. In all cases, an
LME was used (3dLME from the AFNI suite of processing tools)
with the factors of task (0-back vs. 2-back) and run (runs 1–
4 of each task) and with subject included as a random factor.
For the analysis of fatigue, the VAS-F scores were included as a
quantitative variable. For the analysis of perceptual sensitivity,
the d’ scores were included as a quantitative variable. For the
analysis of bias, the criterion scores (β) were included as a
quantitative variable.

The results of these whole-brain analyses were corrected for
multiple comparisons by using an individual voxel probability
threshold of p < 0.001 and a cluster threshold of 13 voxels (voxel
dimension = 3 × 3 × 3 mm). Monte Carlo simulations, using
3dClustSim (version AFNI_17.2.16, compile date: Sept 19, 2017),
showed this combination to result in a corrected alpha level of
p < 0.05. Furthermore, because we were specifically interested in
the striatum, we also calculated the cluster threshold necessary
to correct for multiple comparisons in an area restricted to the
nucleus accumbens, the caudate nucleus, and the putamen, based
on the anatomical location of these structures. This calculation
showed that with an individual voxel probability threshold of

p < 0.001 and a cluster threshold of three voxels, the corrected
alpha level would be p < 0.05.

RESULTS

RT and Accuracy
For RT, the main effects of task and run were significant with
no evidence for an interaction. The main effect of task [F(1,
186.5) = 29.10, p < 0.0001] was due to subjects responding with
longer latencies for the 2-back task (771 ms) than for the 0-
back task (615 ms). The main effect of run [F(3, 180.8) = 2.97,
p < 0.05] was due to subjects responding with progressively
longer latencies during the first three runs and then faster
latencies on the fourth run: 667, 703, 715, and 687 ms for runs 1–
4, respectively. Importantly, there was neither an effect of VAS-F
nor did VAS-F interact with any of the factors.

For the accuracy data, the main effect of task was significant
[F(1, 191.6) = 15.64, p < 0.0001]. This resulted from greater
accuracy on the 0-back task (93.9%) than on the 2-back task
(88.8%). No other effects or interactions were significant: as with
the analysis of the RT data, there was neither an effect of VAS-F
nor did VAS-F interact with any of the factors.

SDT Measures
Preliminary Analysis
We first tested the independence of d’ and criterion by analyzing
d’ as a function of task, criterion, and run using an LME. There
was a strong negative relationship between d’ and criterion [F(1,
131) = 192.39, p < 0.0001], showing that d’ and criterion were
not independent (see Supplementary Figure 4). The coefficient
was −1.69, indicating that as subjects’ perceptual certainty
(d’) increased, they became less conservative in their response
bias. Additionally, to ensure that our tasks induced fatigue, we
analyzed the VAS-F scores as a function of task and run (also
using an LME). The only significant effect in this analysis was
that of run [F(3, 177.12) = 4.51, p < 0.005]. This resulted from
subjects reporting increasingly more fatigue across the four runs
of the task (runs 1–4: 22.9, 24.0, 27.3, and 27.9, respectively).

Analysis of Criterion
For the analysis of criterion (response bias), there was a main
effect of task [F(1, 174.5) = 11.56, p < 0.001), which was due to a
higher criterion (conservative bias) during the 0-back task (0.70)
than during the 2-back task (0.60). There was also a significant
relationship between criterion and VAS-F [F(1, 169.6) = 4.55,
p < 0.05]. As Figure 1 shows, this was a positive correlation
[coefficient (or slope of the linear relationship) = 0.08]: the more
fatigue subjects reported, the higher their criterion (i.e., the more
conservative their response bias).

Analysis of Sensitivity
The analysis of sensitivity (d’) showed a main effect of task [F(1,
175.3) = 200.97, p < 0.001], which was due to higher perceptual
certainty (sensitivity) on the 0-back task (3.12) than on the 2-back
task (2.22). The main effect of VAS-F was also significant [F(1,
147.9) = 3.86, p = 0.05]. As Figure 2 shows, this was due to a
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FIGURE 1 | Bias (response criterion) as a function of cognitive fatigue (VAS-F).
As cognitive fatigue increased, subjects increased their response criterion. For
ease of interpretation, the “raw,” un-transformed VAS-F scores are shown in
the plot. VAS-F, visual analog scale of fatigue.

FIGURE 2 | Perceptual certainty (d’) as a function of cognitive fatigue (VAS-F).
As cognitive fatigue increased, subjects’ perceptual certainty decreased. For
ease of interpretation, the “raw,” un-transformed VAS-F scores are shown in
the plot. VAS-F, visual analog scale of fatigue.

negative correlation between perceptual certainty and cognitive
fatigue scores (coefficient = −0.19): as subjects became more
fatigued, their perceptual certainty decreased. No other effects or
interactions were significant.

Structural Neuroimaging Results
We performed three volumetric analyses: we correlated striatal
volume with 1) VAS-F, 2) d’, and 3) criterion. In all cases, the
volumetric data was correlated with the average of the fatigue
and SDT measures, which were averaged across task and run
(using only those runs where fatigue was reported). To correct
for multiple comparisons, we used the Bonferroni approach,
in which family-wise errors are corrected by requiring that the
p-values are less than 0.05/3 (0.017). The correlation between
striatal volume and d’ was significant (r = 0.51, p < 0.005),
as was the correlation between striatal volume and criterion
(r = −0.52, p < 0.005). However, the correlation between
striatal volume and VAS-F was not significant (r = −0.27,

p = 0.13). Because the caudate nucleus has been associated
with cognitive fatigue in previous work (Chaudhuri and Behan,
2004; Wylie et al., 2017a), we performed two exploratory
analyses in which the volumes of the left and right caudate
were correlated with VAS-F. The correlation between VAS-F
and the left caudate was not significant (r = −0.28, p = 0.12),
but the correlation between VAS-F and the right caudate
did reach conventional levels of significance (r = −0.36,
p < 0.05).

Functional Neuroimaging Results
In the behavioral analyses above, we found a significant
relationship between d’ and criterion, as well as a significant
relationship between VAS-F and both d’ and criterion. Therefore,
for the analyses of the neuroimaging data, we performed separate
analyses for VAS-F, d’, and criterion.

Fatigue (VAS-F) Effects
Brain activation correlated with the VAS-F in the caudate
of the basal ganglia and the superior frontal gyrus (see
Table 2 and Figure 3). Figure 3 shows the negative
relationship between the BOLD signal and VAS-F in the
caudate (coefficient = −0.047). Furthermore, there was an
interaction between task and VAS-F in several frontal areas
including the superior frontal gyrus, the insula, and the inferior
frontal gyrus (see Table 2). Figure 4 shows the interaction
in the insula, which resulted from a negative relationship
between the BOLD signal and VAS-F for the 0-back task
(coefficient = −0.015) and a positive relationship for the 2-back
task (coefficient = 0.050). This pattern was also shown in the
superior and inferior frontal gyri.

Criterion Effects
The BOLD signal correlated with criterion in the caudate and
putamen of the basal ganglia (see Table 3 and Figure 3). Figure 3
shows the negative relationship between the BOLD signal and
criterion (coefficient = −0.059) in the caudate. There were also
interactions between task and criterion in frontal areas [superior

TABLE 2 | Fatigue (VAS-F) effects.

Condition/Location BA X Y Z Voxels F statistic

VAS-F

Basal ganglia

Caudate – −6.6 9.0 14.0 3 11.38

Frontal

Superior medial gyrus 10 −0.1 67.4 10.0 16 17.64

Task × VAS-F

Frontal

Superior frontal gyrus 10 −27.2 64.0 10.0 20 18.94

Insula 45 −34.1 26.1 6.0 28 23.13

Inferior frontal gyrus 11 41.5 36.5 −10.0 21 17.05

The brain areas associated with the main effect of VAS-F (top) and with the
interaction of task and VAS-F (bottom). BA, Brodmann’s area; X Y Z, the location of
the voxel with peak intensity in each cluster; Vox, the number of voxels in the region
of overlap.
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FIGURE 3 | The main effect of fatigue (VAS-F) and criterion in the caudate nucleus of the basal ganglia. Because this was within our region of interest, the cluster
level threshold was k ≥ 3 voxels. The location of the local maxima of activation is shown in the panels on the left. For the main effect of VAS-F, the location was −7,
9, 14 (X Y Z); for the main effect of criterion, the location was 14, 19, −2 (X Y Z). The panels on the right show the relationship between brain activation and VAS-F
(top) and criterion (bottom). For ease of interpretation, the “raw,” un-transformed VAS-F scores are shown in the plot. VAS-F, visual analog scale of fatigue.

orbital and superior frontal gyri, supplementary motor area
(SMA), and precentral gyrus], and parietal areas (superior and
inferior parietal lobules) (see Table 3). The interaction in the
SMA is shown in Figure 5, where the relationship between the
BOLD signal and criterion was weakly positive for the 0-back
task (coefficient = 0.011), but is strongly negative for the 2-back
task (coefficient = −0.157). A similar pattern was shown in
the other areas where an interaction was found. For example,
Figure 5 shows a similar pattern in the superior parietal lobule:

the relationship between the BOLD signal and criterion was
positive for the 0-back (coefficient = 0.056) and strongly negative
for the 2-back (coefficient = −0.108).

d’ Effects
There were no areas where there was a main effect of perceptual
certainty (d’) on the BOLD signal. However, there were
interactions between task and perceptual certainty (d’)
in the putamen of the basal ganglia, frontal areas (SMA
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FIGURE 4 | The interaction of task and fatigue (VAS-F) in the insula. The location of this interaction is shown by the green arrow (local maxima X Y Z: -34, 26, 6).
Because this was not within our region of interest, the cluster level threshold was k ≥ 13 voxels. The pattern of the interaction was similar in the superior
frontal/orbital gyrus (the location of which can be seen in the left panel). For ease of interpretation, the “raw,” un-transformed VAS-F scores are shown in the plot.
VAS-F, visual analog scale of fatigue.

TABLE 3 | Criterion effects.

Condition/location BA X Y Z Voxels F statistic

Criterion

Basal ganglia

Caudate nucleus – 14.0 19.3 −2.0 6 14.88

Putamen/thalamus – −16.9 −8.2 −6.0 14 14.43

Task × criterion

Frontal

Superior orbital/frontal gyrus 10 24.3 64.0 2.0 16 17.15

Superior frontal gyrus 6 −23.8 −1.4 46.0 53 21.09

SMA 6 −6.6 2.1 62.0 45 19.90

Precentral gyrus 6 −51.3 2.1 50.0 17 18.38

Precentral gyrus 6 24.3 −4.8 46.0 14 15.27

Parietal

Superior parietal lobule 7 −20.4−63.2 50.0 39 19.87

Inferior parietal lobule 7 −34.1−52.9 54.0 37 19.80

The brain areas associated with the main effect of criterion (top) and with the
interaction of task and criterion (bottom). BA, Brodmann’s area; X Y Z, the location
of the voxel with peak intensity in each cluster; Vox, the number of voxels in the
region of overlap.

and precentral gyrus), and in parietal areas (superior
and inferior parietal lobule) (see Table 4). As Figure 5
shows, the relationship between the BOLD signal and
d’ in the SMA was weakly negative for the 0-back task
(coefficient = −0.009), but markedly positive for the 2-back
task (coefficient = 0.084). This was also the case in the superior
parietal lobule (see Figure 5): the relationship between the
BOLD signal and d’ was weakly negative for the 0-back task
(coefficient = −0.028) and more strongly positive for the 2-back
task (coefficient = 0.064).

DISCUSSION

Previous work has indicated that the two central metrics of SDT—
perceptual certainty and criterion—may be related to cognitive
fatigue. Perceptual certainty has been shown to decrease after
subjects complete a fatiguing task (Matthews and Desmond,
2002), and changes in fatigue have been linked to changes in
the effort–reward payoff matrix (Dobryakova et al., 2015; Müller
and Apps, 2018). Here, we assessed whether changes in cognitive
fatigue correlated with changes in both perceptual certainty and
criterion and also how these measures changed as a function
of changes in brain activation. Behaviorally, changes in subjects’
VAS-F scores were not correlated with RT or accuracy (see
Supplementary Figures 2, 3) but were correlated with both
criterion and d’, supporting the idea that SDT metrics can be used
to better understand subjective cognitive fatigue. The fMRI data
also support this idea, inasmuch as activation in the striatum was
associated with VAS-F, criterion, and d’. Together, these data not
only show that these metrics are related but also provide some
insight into why they are related.

In the behavioral data, there was a positive relationship
between cognitive fatigue and response bias (criterion), such that
as subjects reported more fatigue, their response bias became
more conservative. When we investigated the areas of the brain
that were responsive to cognitive fatigue and to response bias,
the striatum was involved in both, though the areas responsive
to each did not overlap. Furthermore, the pattern of activation in
the striatum associated with cognitive fatigue was comparable to
the pattern associated with response bias (see Figure 3). Taken
together, these results offer support for the idea that cognitive
fatigue is related to response bias.

Additionally, we found that cognitive fatigue was negatively
related to perceptual certainty (d’). That is, as subjects reported
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FIGURE 5 | The task × criterion interaction (left column) and task × d’ interaction (right column) in the supplementary motor area (SMA) (top row local maxima; X Y
Z: −7, 2, 62) and in the superior parietal lobule (bottom row local maxima; X Y Z: −20, 63, 50). In both rows, the location of the interaction is shown by the red
arrow. Because this was not within our region of interest, the cluster level threshold was k ≥ 13 voxels.

TABLE 4 | Perceptual certainty (d’) effects.

Condition/Location BA X Y Z Voxels F statistic

Task × d’

Basal ganglia

Putamen – −20.4 −1.4 10.0 6 14.10

Frontal

SMA 6 −6.6 5.5 74.0 37 22.56

Precentral gyrus 6 −30.7 −11.7 58.0 30 21.85

Precentral gyrus 6 −41.0 −4.8 38.0 13 16.38

Pre/postcentral gyrus 6 −58.2 −1.4 22.0 17 21.95

Parietal

Superior parietal lobule 7 −20.4 −63.2 50.0 71 25.29

Inferior parietal lobule 40 −44.4 −39.2 46.0 33 20.58

The brain areas associated with the main effect of d’ (top) and with the interaction
of task and d’ (bottom). BA, Brodmann’s area; X Y Z, the location of the voxel with
peak intensity in each cluster; Vox, the number of voxels in the region of overlap.

more cognitive fatigue, their perceptual certainty declined. This
conforms to everyday experience—when we are fatigued, we
feel “less sharp” and less confident in our assessment of our
surroundings—and is also consistent with previous findings
(Matthews and Desmond, 2002). However, this current result is
the first time that changes in cognitive fatigue have been shown to
be correlated with changes in d’. Furthermore, we also found that

the volume of the striatum was related to SDT measures during
working memory processing. The relationship was negative for
criterion and positive for d’, meaning that individuals with
greater striatal volume showed a more liberal response criterion
and higher perceptual certainty, whereas individuals with a
smaller striatum showed a more conservative response criterion
and lower perceptual certainty. As in the fMRI results, the
directionality of relationship between striatal volume and VAS-
F was the same as that between striatal volume and criterion. For
the VAS-F, this relationship was not significant when the entire
striatal volume was considered. This relationship was significant
when only the caudate nucleus was investigated (albeit, only
on the right) as motivated by prior research (e.g., Dobryakova
et al., 2015, 2018; Wylie et al., 2017a)—further supporting the
importance of the caudate nucleus in the experience of cognitive
fatigue. Taken together, the volumetric results accord well with
the results of the functional neuroimaging data and suggest
that cognitive fatigue is related not only to the activation in
the caudate of the basal ganglia but also to the volume of
the caudate.

More broadly, these findings support our hypothesis that
changes in VAS-F would be related to changes in response
bias and extend our prediction toward a fuller definition of
cognitive fatigue: one of the signatures of cognitive fatigue
appears to be a more conservative response bias and lower
perceptual certainty. This is seen in the behavioral data and in
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the relationships between the behavioral data and the BOLD
signal. These results also help to explain why simple performance
measures such as accuracy often fail to correlate with fatigue:
fatigue affects not only the subjects’ ability to distinguish targets
from non-targets (d’) but also their response bias (criterion).
Thus, while subjects’ inability to distinguish targets from non-
targets does cause errors, they appear to compensate for this by
requiring more evidence before releasing their responses. If one
calculates accuracy by averaging across all types of error, this
distinction is lost and fatigue-related changes in performance
are not evident (a result replicated here in the analysis of the
accuracy data, see Supplementary Figure 3). By using SDT on
the behavioral data, we are better able to understand the types of
performance decrements associated with fatigue; by investigating
the associated changes in brain activation, we are able to better
understand the mechanisms underlying these changes.

While changes in brain activation in the striatum were
associated with both cognitive fatigue and with response bias,
the manipulation of task difficulty showed differences in the
brain areas associated with cognitive fatigue and SDT measures.
For example, in a replication of previous work, we found
activation in the insula to be associated with cognitive fatigue
(Wylie et al., 2017a; Müller and Apps, 2019). As Figure 4
shows, fatigue-related activation in the insula showed a strong
positive relationship to brain activation during the difficult 2-
back task and a weaker negative relationship during the easier
0-back task. Finding fatigue-related activation in the insula is
consistent with the role of the insula in processing internal states
such as fatigue (Müller and Apps, 2019); finding a different
relationship between fatigue reported during the two tasks and
activation in the insula may suggest that the fatigue experienced
during the tasks was qualitatively different. For example, the
fatigue experienced during the 0-back task may have been more
closely related to boredom (Milyavskaya et al., 2019), whereas
the fatigue experience during the 2-back task may have been
more closely related to a decrease in the resources necessary to
perform the task.

For criterion and d’, the manipulation of task difficulty was
related to brain areas more closely related to attention and
response selection: superior parietal lobule (SPL) and SMA.
As Figure 5 shows, both of these areas showed a stronger
relationship between SDT metrics and activation during the
2-back than during the 0-back. Furthermore, the relationship
between brain activation and criterion and d’ were reciprocal.
That is, as activation in the SPL and SMA increased during the 2-
back, subjects showed increased perceptual certainty and adopted
a more liberal response bias. This was not the case during the 0-
back task, which is likely due to the fact that the 0-back task is
sufficiently easy that relatively small changes in brain activation
had little effect on perceptual sensitivity and response bias.

Limitations and Future Directions
While we did support our hypotheses, our results are nevertheless
currently limited by having been demonstrated using only the
n-back task. It will be important to show that comparable results
are found using different tasks. Furthermore, these results should
be replicated in a larger sample. While our sample is relatively

large, it is still difficult to generalize to the entire population
based on approximately 40 healthy individuals. Moreover, having
a larger sample would potentially allow us to tease apart
the separate effects of VAS-F, criterion, and d’ (which were
correlated with one another in this sample) through stratifying
the sample or performing mediation analyses. Going forward, it
will be valuable to determine if these new metrics of cognitive
fatigue are sufficiently sensitive to distinguish cognitive fatigue
in neurotypical individuals from clinical populations that are
particularly affected by fatigue (e.g., individuals with MS or TBI).
Additionally, while we favor an interpretation of these data in
terms of effort and reward, it is important to point out that
reward was not explicitly manipulated in this experiment. The
tasks likely differed in their reward value (e.g., the 2-back task
was far more difficult than the 0-back task, and good performance
on the 2-back was therefore likely to have been more implicitly
rewarding than good performance on the 0-back task), but
future work should manipulate reward explicitly to test this
interpretation more directly.

CONCLUSION

The results presented here show that cognitive fatigue is related to
changes in subjects’ response bias (payoff matrix) and perceptual
certainty. Not only are self-report metrics (VAS-F) related to
these SDT metrics but also the striatum is sensitive to all three.
These results may suggest that as cognitive fatigue increases,
subjects make more errors because their perceptual sensitivity
declines and they compensate for this by adopting a more
conservative response bias. The mechanisms underlying these
changes include brain areas associated with effort and reward (the
striatum), attentional processes (fronto-parietal areas), and areas
related to response conflict (SMA).
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