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Protein family review
Angiotensin-I-converting enzyme and its relatives
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Summary 

Angiotensin-I-converting enzyme (ACE) is a monomeric, membrane-bound, zinc- and chloride-
dependent peptidyl dipeptidase that catalyzes the conversion of the decapeptide angiotensin I to
the octapeptide angiotensin II, by removing a carboxy-terminal dipeptide. ACE has long been
known to be a key part of the renin angiotensin system that regulates blood pressure, and ACE
inhibitors are important for the treatment of hypertension. There are two forms of the enzyme
in humans, the ubiquitous somatic ACE and the sperm-specific germinal ACE, both encoded by
the same gene through transcription from alternative promoters. Somatic ACE has two tandem
active sites with distinct catalytic properties, whereas germinal ACE, the function of which is
largely unknown, has just a single active site. Recently, an ACE homolog, ACE2, has been
identified in humans that differs from ACE in being a carboxypeptidase that preferentially
removes carboxy-terminal hydrophobic or basic amino acids; it appears to be important in
cardiac function. ACE homologs (also known as members of the M2 gluzincin family) have been
found in a wide variety of species, even in those that neither have a cardiovascular system nor
synthesize angiotensin. X-ray structures of a truncated, deglycosylated form of germinal ACE and
a related enzyme from Drosophila have been reported, and these show that the active site is deep
within a central cavity. Structure-based drug design targeting the individual active sites of somatic
ACE may lead to a new generation of ACE inhibitors, with fewer side-effects than currently
available inhibitors.
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Gene organization and evolutionary history
Angiotensin-I-converting enzyme (ACE, also known as pep-

tidyl-dipeptidase A or kininase II) was first isolated in 1956

and shown to be a chloride-dependent metalloenzyme that

cleaves a dipeptide from the carboxyl terminus of the

decapeptide angiotensin I to form the potent vasopressor

(blood vessel constrictor) angiotensin II [1]. In addition, it

inactivates the vasodilator bradykinin by sequential removal

of two carboxy-terminal dipeptides. Indeed, it is a broad-

specificity dipeptidyl carboxypeptidase and may also act on

non-vasoactive peptides. There are two forms of ACE in

humans, encoded by a single gene located on chromosome

17 at q23; it is 21 kb in length and contains 26 exons and 25

introns. The longer form, known as somatic ACE (sACE), is

transcribed from exons 1-12 and 14-26, whereas the shorter

form, known as germinal or testicular ACE (gACE), is tran-

scribed from exons 13-26. The promoter for sACE is in the

5� flanking region of the first exon, whereas that for gACE is

located within intron 12 [2].

Somatic ACE consists of an intracellular domain, a trans-

membrane domain and two similar extracellular domains,

the amino or N domain and the carboxy or C domain

(Figure 1). The structure of the ACE gene is the result of gene

duplication; the N and C domains are similar in sequence,

and the homologous exons encoding the N and C domains

(exons 4-11 and 17-24, respectively) are very similar in size

and have similar codon phases at exon-intron boundaries.

Each of the domains contains a catalytically active site char-

acterized by a consensus zinc-binding motif (HEXXH in the

single-letter amino-acid code, where X is any amino acid)

and a glutamine nearer the carboxyl terminus that also binds

zinc; ACE and its homologs (see below) therefore make up

the M2 gluzincin family [3].



ACE homologs have also been found in other animal species,

including chimpanzee, cow, rabbit, mouse, chicken, goldfish,

electric eel, house fly, mosquito, horn fly, silk worm,

Drosophila melanogaster and Caenorhabditis elegans, and

in the bacteria Xanthomonas spp. and Shewanella oneiden-

sis [3]. The cDNA of one form of D. melanogaster ACE

(termed AnCE) encodes a protein of 615 amino acids that

has a high degree of similarity to both domains of human

sACE, indicating that the D. melanogaster protein is a

single-domain enzyme [4]. It contains a signal peptide but

no carboxy-terminal membrane-anchoring hydrophobic

sequence. Kinetic studies suggest that it resembles the C

domain of human sACE, as well as gACE. Other evidence

suggests that it might resemble the ancestral form of the

ACE gene before the gene duplication that is posited to have

taken place in the deuterostome lineage and estimated to

occur 330-350 million years ago (the time of the appearance

and radiation of amphibians) [5]. 

A second ACE-related gene product, termed Acer, has also

been identified in D. melanogaster. Selective inhibition by

phosphinic peptides (containing -PO2-CH2- links instead of

-CO-NH- links) indicates that Acer has active site features

characteristic of the N domain of sACE. Four additional

ACE-like genes have been found in the Adh region of

Drosophila chromosome 2, and it has been suggested that

this is a reflection of an ancestral gene structure present in

both protostome and deuterostome lineages. It is further

suggested that the duplication within the ACE gene in verte-

brate genomes predates the divergence of these lineages [6].

Recently, a further human homolog of ACE, referred to as

ACE2, was identified and shown to be an essential regulator

of cardiac function [7]. It differs from ACE in that it contains

a single zinc-binding catalytic domain, is a carboxypeptidase

with preference for carboxy-terminal hydrophobic or basic

residues, and is not affected by ACE inhibitors. Angiotensin I

and II, as well as numerous other biologically active pep-

tides, are substrates for ACE2, but bradykinin is not.

Genomic structure analysis indicates that ACE and ACE2

arose by duplication from a common ancestor. 

Characteristic structural features
Human sACE is a type-I membrane-bound protein. It con-

sists of a 28-residue carboxy-terminal cytosolic domain, a

22-residue hydrophobic transmembrane domain and a 1227-

residue extracellular domain that is heavily glycosylated

(30% by weight; see Figure 1). The extracellular domain is

further divided into two homologous domains, a 612-residue

N domain at the amino terminus linked by a 15-residue

sequence to a 600-residue C domain. Each of the extracellu-

lar domains contains an HEXXH sequence in which the two

histidine residues serve as zinc-binding ligands; together

with a glutamine located 23-24 residues toward the carboxyl

terminus and a water molecule, they provide the metal with

tetrahedral coordination geometry. Detailed kinetic and

mutational analyses have demonstrated that both zinc sites

have catalytic activity [8,9].

Human gACE corresponds to the C domain of sACE. It has

the same 28-residue cytosolic and 22-residue transmem-

brane domains and, except for its first 36 residues, the same

615-residue extracellular domain. Recently, the three-

dimensional structure of a deglycosylated, truncated version

of gACE was determined by X-ray crystallography [10], as

was the structure of intact Drosophila AnCE [11]. As might

be expected, the two structures are quite similar: both have a

preponderance of �-helices (over 70%) surrounding a deep

central cavity that divides the molecule into two halves

(Figure 2). The active site is deep within the cavity and

access by substrates is limited by the cavity’s dimensions.

Although neither gACE nor AnCE has any sequence similar-

ity to rat neurolysin or Pyrococcus furiosus carboxypepti-

dase, the three-dimensional structures of all these enzymes

bear a striking resemblance to each other.

Localization and function
Human sACE, like all ACE or ACE-like gene products, has a

signal peptide that directs it to an extracellular localization.

Each vertebrate ACE also has a carboxy-terminal hydrophobic

sequence that anchors it to the cell membrane whereas non-

vertebrate ACEs lack such a sequence and are extracellular
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Figure 1
Schematic representation of the primary structure of several members of
the ACE protein family. The locations of the active-site zinc-binding
motifs are indicated by HEXXH; transmembrane domains are in black.
The sequence of gACE is identical to that of the C domain of sACE,
except for its first 36 residues. Human gACE and sACE have the same
carboxy-terminal transmembrane and cytosolic sequences, whereas ACE2
has a distinct transmembrane and cytosolic sequence. Neither of the
Drosophila ACEs, AnCE and Acer, has a membrane-anchoring sequence.
Dimensions are not to scale. N, amino terminus; C, carboxyl terminus.
The single lines are regions of sequence with no similarity to other
proteins. The carboxyl end of ACE2 is homologous to collectin, a non-
enzymatic protein associated with renal injury [18].
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soluble enzymes. Human sACE is expressed strongly in

many types of endothelial cells, especially in the capillaries

of the lung, as well as in epithelial cells in the kidney, small

intestine and epididymis. Microarray analysis of gene

expression indicates that sACE mRNA is expressed in virtu-

ally all tissues [12].

The extracellular localization of sACE on endothelial cells

positions it optimally for interaction with its substrate

angiotensin I. It has been shown, in fact, that a single

passage of blood through the pulmonary vasculature is suffi-

cient to convert all circulating angiotensin I to angiotensin II

[13]. Despite this high efficiency, angiotensin I is not the sole

substrate for ACE. In addition to bradykinin, other bioactive

peptides can be acted upon by ACE. N-acetyl-Ser-Asp-Lys-

Pro, a negative regulator of the recruitment of pluripotent

hematopoetic stem cells into the cell cycle, is specifically

degraded by the N-domain active site of sACE [14]. The

localization of ACE on the epithelial cells of the small intes-

tine and the renal proximal tubule also suggests that pep-

tides affecting these tissues may well serve as substrates.

Moreover, the fact that ACE-like enzymes are found in

species that do not produce angiotensin I indicates that they

must be involved in processing other types of peptides. The

effects of disrupting the mouse ACE gene are consistent with

this hypothesis: ACE-/- mice have low blood pressure but also

exhibit severe abnormalities in renal structure and function.

Mice expressing only the N domain of sACE, and in soluble

form, have much the same phenotype as ACE-/- mice [15].

The gACE isoform is expressed only in developing sperm

cells and mature sperm. Sperm lacking gACE are deficient

in transport and attachment to the zonae pellucidae of

oocytes, and male ACE-/- mice have markedly diminished

fertility [16], even though they have normal testis structure,

sperm count, sperm morphology and sperm motility [17].

The specific substrate of gACE, if it has one, is unknown,

and the precise role of the enzyme in reproduction remains

to be established.

ACE2 is a type-I membrane-bound glycoprotein present on

endothelial and epithelial cells. It has been found mostly in

heart, kidney and testis with lesser amounts in colon, small

intestine and ovary [18-20]. It has been implicated in cardiac

function [7] but details of its specific role are just beginning

to emerge.

Mechanism
Details of the catalytic mechanism of ACE have yet to be elu-

cidated, but other zinc metalloenzymes with the same

HEXXH metal-binding motif are thought to initiate sub-

strate hydrolysis by an attack at the scissile carbonyl group

of the substrate by the water molecule coordinated to the

metal and assisted by the glutamate (E) in the HEXXH

sequence. The X-ray structure of gACE shows two histidine

residues within hydrogen-bonding distance of the amide car-

bonyl group of the inhibitor lisinopril bound at the active

site, and these may function much like corresponding

residues in the active site of the extensively studied metallo-

proteinase thermolysin [21]. The C-domain active site of

sACE, as well as that of ACE2 and to a lesser extent also

gACE, are activated by high concentrations of chloride. The

effect is primarily an enhancement of substrate binding but

its physiological significance is not well understood.

Using the assumed mechanistic analogy to other zinc metallo-

peptidases, plus the knowledge that several snake-venom

peptides potentiate the action of bradykinin by inhibiting

ACE, efforts were undertaken to develop orally-active ACE

inhibitors based on metal-binding versions of venom peptide

analogs for potential use in the treatment of hypertension.

The first such compound, captopril, was approved for use in

1981, and since that time many other similar compounds

have been introduced and studied extensively [22]. ACE

inhibitors are now first-line therapy for hypertension and

also for congestive heart failure, left ventricular systolic dys-

function and myocardial infarction (heart attack), and they

are recommended to slow the progression of diabetic and

non-diabetic nephropathy [23,24]. They have also been
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Figure 2
A schematic representation of the structure of truncated, deglycosylated
human gACE in a complex with the inhibitor lisinopril [11]. The gACE
molecule can be divided into two halves, subdomains I (light gray) and
II (dark gray), that enclose the substrate-binding site. The active-site zinc
atom is shown coordinated to lisinopril (in stick representation). Two
bound chloride ions are designated Cl1 and Cl2. N, amino terminus;
C, carboxyl terminus.
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shown to have a direct anti-atherogenic effect, thereby slowing

the progression of atherosclerotic vascular disease [25].

Frontiers
The recent crystal-structure determination of gACE opens

the way to the design of a new generation of ACE inhibitors

[11]. Although ACE inhibitors have been in clinical use for

over 20 years, are very effective, and clearly have had a

major impact on antihypertensive therapy, they are not

totally without side-effects. The most frequent one is a dry

cough that can occur in from 5-20% of patients and that can

be so debilitating in certain instances as to result in the ces-

sation of treatment [23]. A more serious problem is

angioedema (swellings caused by leakage from blood

vessels), which has an incidence of only 0.1-0.5% but can be

life-threatening [26]. The basis for these side effects is still a

matter of discussion, but it is generally thought that

decreased ACE activity leads to altered concentrations of

bradykinin, other bioactive peptides and even other

angiotensin-related peptides, and that these are responsible

for the side-effects.

All clinical ACE inhibitors developed to date have been

based on the original assumption of an active site related to

that of pancreatic carboxypeptidase A but organized to

cleave a dipeptide rather than a single amino acid from the

carboxyl terminus of its substrate. It is now known that

sACE has two active sites, neither of which resembles that of

carboxypeptidase A, and that these sites are not identical.

Indeed, the N-domain active site preferentially cleaves

bradykinin and other peptides. Clinical ACE inhibitors show

little discrimination between these two active sites, however,

and it is probable that an inhibitor specific for one or the

other could have special benefits. The side effects of conven-

tional ACE inhibitors might not occur with a C-domain-

specific inhibitor, for example.

At present, only the C-domain structure is available, and

although the structure of the N domain can be deduced by

analogy, it would be ideal to have crystal structures for both

the N domain and intact sACE. The complicating effects of

glycosylation and the hydrophobic membrane anchor on

crystallization, which delayed X-ray analysis for many years,

may not be overcome easily, but deglycosylation and trunca-

tion may again prove successful. Structure-based design of

active site-specific inhibitors may well be possible in the

near future.

The discovery of ACE2 and its importance in cardiac func-

tion will certainly spur new efforts toward understanding

the complex and delicately balanced relationships between

the many bioactive peptides on which it may act. Greater

insight into the possible metabolic pathways involving both

angiotensin-related and bradykinin-related peptides, as

well as their receptors and downstream signaling events,

could lead to more finely-tuned therapies appropriate for

individual patients.

It is somewhat ironic that the first ACE crystal structure was

obtained with a version of gACE, which is so much less well

understood in terms of biological function than sACE. The C

domain of sACE is primarily responsible, albeit indirectly,

for maintaining the angiotensin II blood levels that regulate

blood pressure and fluid balance, yet it is also the C domain,

in the guise of gACE, that is found in developing and mature

sperm. There is no indication that conventional ACE

inhibitors have any effect on male fertility or that gACE nor-

mally acts on angiotensin I. It remains to be seen whether

inhibitors can be specifically targeted to gACE, but it does

seem likely that the availability of a crystal structure will

focus attention on this very interesting member of the ACE

protein family.
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