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Abstract
Background: Tetratricopeptide repeat domain 9A (TTC9A) protein is a recently identified
protein which contains three tetratricopeptide repeats (TPRs) on its C-terminus. In our previous
studies, we have shown that TTC9A was a hormonally-regulated gene in breast cancer cells. In this
study, we found that TTC9A was over-expressed in breast cancer tissues compared with the
adjacent controls (P < 0.00001), suggesting it might be involved in the breast cancer development
process. The aim of the current study was to further elucidate the function of TTC9A.

Methods: Breast samples from 25 patients including the malignant breast tissues and the adjacent
normal tissues were processed for Southern blot analysis. Yeast-two-hybrid assay, GST pull-down
assay and co-immunoprecipitation were used to identify and verify the interaction between TTC9A
and other proteins.

Results: Tropomyosin Tm5NM-1 was identified as one of the TTC9A partner proteins. The
interaction between TTC9A and Tm5NM-1 was further confirmed by GST pull-down assay and co-
immunoprecipitation in mammalian cells. TTC9A domains required for the interaction were also
characterized in this study. The results suggested that the first TPR domain and the linker fragment
between the first two TPR domains of TTC9A were important for the interaction with Tm5NM-
1 and the second and the third TPR might play an inhibitory role.

Conclusion: Since the primary function of tropomyosin is to stabilize actin filament, its interaction
with TTC9A may play a role in cell shape and motility. In our previous results, we have found that
progesterone-induced TTC9A expression was associated with increased cell motility and cell
spreading. We speculate that TTC9A acts as a chaperone protein to facilitate the function of
tropomyosins in stabilizing microfilament and it may play a role in cancer cell invasion and
metastasis.

Background
Human tetratricopeptide repeat domain 9 (TTC9) was
first reported as a hypothetical protein KIAA0227 by
Nagase et al, based on the sequence analysis of a cDNA

clone isolated from a brain cDNA library [1]. It was later
identified as a steroid hormone-regulated gene in various
breast cancer cells [2]. It seems that there is a family of
TTC9 protein. The MGC program at the National Insti-
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tutes also identified cDNA sequences named as TTC9B
and TTC9C, which share 46% and 35% homology with
TTC9A in amino acids sequence, respectively [3]. How-
ever, TTC9B and TTC9C have not been identified at the
protein level. Nonetheless, to keep up with the informa-
tion in the NCBI database, TTC9 is now referred to as
TTC9A in this article.

TTC9 family belongs to a large family of tetratricopeptide
repeat (TPR)- containing proteins. The TPR domain is a 34
amino acids (aa) consensus motif that is found in tandem
repeats of varying number in different proteins [4-6]. Cir-
cular dichroism (CD) studies indicate that TPR motifs are
approximately 50% α-helical structures with little or no β-
sheet formation [7]. Crystallographic structure analysis of
TPR-containing proteins revealed that TPR motif generally
forms an antiparallel α-helical hairpin [8,9]. Clustering of
these hairpins in tandem generates a domain with a
grooved surface and dimension that can conveniently
grasp another polypeptide. Generally, by generating a
flexible, mutable domain that can facilitate specific pro-
tein-protein interactions, the TPR motif presents an ele-
gant evolutionary solution contributing to the
fundamental biological importance of coordinating inter-
actions among gene products [6]. The functions of TPR
containing protein include cell cycle control [10], tran-
scription and splicing events [11], protein transport espe-
cially protein import [12], regulatory phosphate turnover
[13], and protein folding [14]. TTC9A contains three TPR
domains at its carboxyl-terminus, at amino acid positions
57–90, 128–161 and 164–197.

In previous studies, we have identified the open reading
frame of TTC9 gene and confirmed the protein size of
TTC9A to be 222 aa. Using mouse polyclonal antibody
generated against TTC9A protein, TTC9A was shown to be
ubiquitously expressed in human tissues. In breast cancer
cells, TTC9A was predominantly concentrated to the
endoplasmic reticulum and was regulated by a number of
factors, such as growth factors, serum factors and steroid
hormones [2]. Although existing results suggest that
TTC9A could be an important protein ubiquitously
expressed in all cell and tissue types, the exact role of
TTC9A remains unclear.

In this study, we found that TTC9A mRNA was signifi-
cantly over-expressed in breast cancer tissues compared
with the adjacent normal breast tissues, which suggested
TTC9A could be an important gene involved in hormone
signaling and breast cancer development. By yeast-two-
hybrid assay, we identified one of TTC9A interacting pro-
teins, TM5/TM30nm, which is also referred to as Tm5NM-
1 and is a non-muscle tropomyosin encoded by γ-tropo-
myosin gene. The tropomyosins are a group of actin-bind-
ing proteins found in skeletal muscle, smooth muscle and

non-muscle tissues. They are either hetero- or homo-
dimeric proteins with a rod-shaped, α-helical coiled-coil
structure. Usually the dimers form a head-to-tail polymer
running along the major groove in the actin filament
[15,16]. Mammalian and avian tropomyosins are
encoded by four genes, i.e. α, β, γ, δ [17]. Historically, the
tropomyosin proteins have been divided into two classes,
high-molecular-weight (HMW) and low-molecular-
weight (LMW), which are ~284 aa and 247 aa in length,
respectively. This size difference is generated by the use of
alternative promoters [17,18], alternative splicing of
mRNA [19], and different 3' UTR processing [20]. These
mechanisms give rise to over 40 tropomyosin isoforms.

Tropomyosins are believed to be involved in the stabiliza-
tion of actin filaments [21]. Actin filaments which lack
tropomyosins tend to be rapidly undergoing assembly
and disassembly process, such as those associated with
neuronal growth cone filopodia and the leading edge of
mammary adenocarcinoma cells [19,22-24]. In skeletal
muscle, tropomyosins serve to mediate the effect of Ca2+

on the actin-myosin interaction [25,26]. Instead of bind-
ing Ca2+ directly, they perform this function by acting as
bifunctional molecules, binding to actin on one hand,
and providing specific sites for the binding of the tro-
ponin complex of regulatory proteins on the other hand
[27-30]. Though the precise function of non-muscle tro-
pomyosin is less understood, some in vitro studies have
shown that non-muscle tropomyosins are able to differ-
entially protect actin from the severing action of gelsolin
[31] and can regulate the Mg-ATPase activity of myosins to
varying degrees [32]. Furthermore, it seems that non-mus-
cle tropomyosins play an important role in tumor devel-
opment. For example, down-regulation of tropomyosin 2
was essential in ras-mediated malignant transformation
of fibroblasts [33,34]. Tropomyosin 3 isoform 2 (also
termed as TM5/TM30nm or Tm5NM-1) was expressed at
a higher level in highly metastatic B16 mouse cell line
than in mouse cell line exhibiting a lower metastasis rate.
Similar result was also obtained in rat cells [35,36].

This study also identified specific domains in TTC9A that
is crucial in the interaction with Tm5NM-1. The signifi-
cance of the interaction between TTC9A and Tm5NM-1 is
yet to be elucidated. On the other hand, our previous
studies have shown that in breast cancer cells, the up-reg-
ulation of TTC9A expression by progesterone was associ-
ated with increased cell focal adhesion and motility. All
these findings suggest a possible role of TTC9A in cell-
matrix adhesion and in tropomyosin-mediated stabiliza-
tion of actin microfilament.
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Methods
Cell line and reagents
COS-7 cells were obtained from Dr. Koh Cheng Gee,
School of Biological Sciences, Nanyang Technological
University, Singapore.

COS-7 cells were routinely maintained in phenol red- and
high D-glucose- containing Dulbecco's Modified Eagle
Medium (DMEM) supplemented with 7.5% fetal calf
serum (FCS), 2 mM glutamine and 40 mg/L gentamicin.

All cell culture reagents were bought from Invitrogen
(Carlsbad, California). Fetal calf sera were from Hyclone
(Logan, UT) or PromoCell GmbH (Heidelberg, Ger-
many). All cell culture plastic wares were purchased from
Falcon (Becton Dickinson, San Jose, CA), NUNC (Nalge
Nunc International, Rochester, NY), or Corning (Corning,
NY).

TTC9A expression in breast cancer tissues
Human tissue samples were obtained from the Tissue
Repository at the National Cancer Centre (NCC), Singa-
pore. Tissue samples were harvested at the time of mastec-
tomy or breast conserving surgery with prior signed
informed consent from the patients. Matched pairs of
malignant tissue and the adjacent normal breast tissue
were harvested and confirmed histologically by a pathol-
ogist and were snap frozen in liquid nitrogen. The cases
utilized in this study were collected between January 2002
and December 2003. Clinicopathological data such as
tumor size, nuclear grade and hormone receptor status
were obtained from a prospective database. This study was
approved by the ethics committee at NCC.

25 matched pairs of breast tissues were mashed using a
mortar and pestle. Total RNA was extracted using TRIzol
reagent (Life Technologies Inc.) according to the manufac-
turer's instructions. 5 μg of total RNA from each sample
was reverse transcribed using Superscript II reverse tran-
scriptase (Invitrogen). 1 μl cDNA produced from each RT
reaction was amplified by PCR. The primers used here
were 5'-CACAT GTCTATAACGATTTCC-3' (forward) and
5'-TGCAGGAAACAGGGG ACTCTC-3' (reverse). 10 μl
PCR products corresponding to individual breast tissue
sample were separated on 1% agarose gel and transferred
to nylon Hybond-N membrane (Amersham Biosciences).
32P-labeled TTC9A were generated by random priming
reaction (Amersham Biosciences) using the same PCR
product of TTC9A. The band intensities were analyzed
using Bio-Rad Molecular Image Analyzer. As internal con-
trols, 36B4 and GAPDH genes were also included for nor-
malization. The primers used to amplify 36B4 gene were
5'-GATTGGCTACCCAACTGTTGCA-3' (forward) and 5'-
CAGGGGCAG CAGCCACAAAGGC-3' (reverse). The
primers for GAPDH were 5'-TGCACCACCA ACTGCT-

TAG-3' (forward) and 5'-GAGGCAGGGATGATG TTC-3'
(reverse).

Yeast-two-hybrid assay screen
Yeast-two-hybrid assay screen was carried out using
MATCHMAKER LexA Two-Hybrid System from Clontech
Laboratories Inc (Mountain View, CA) according to the
manufacturer's instructions. Yeast Saccharomyces cerevisiae
MATα strain EGY48 was transformed with lacZ reporter
gene, bait plasmid containing TTC9A coding sequence
(TTC9A-pLexA) and cDNA libraries of human breast can-
cer cell line MCF-7 (OriGene Technologies, Inc., Rock-
ville, MD) using the lithium acetate method [37].
Transformed EGY48 was plated onto SD/Gal/Raf/-His/-
Trp/-Ura/-Leu+X-Gal plates. An interaction was consid-
ered positive when two reporter genes, LEU2 and lacZ,
were activated. The interactions were further verified by
co-immunoprecipitation or GST pull-down assay.

Transfection of COS-7 cells
COS-7 cells were seeded the day before transfection. The
confluence of cells at the time of transfection was 40%–
50%. Transfection was carried out with FuGENE 6 Trans-
fection Reagent (Roche Diagnostics, Basel, Switzerland)
according to the manufacturer's instructions. Cells were
harvested at 48 hours post-transfection. The expression of
protein was examined by Western blotting.

Cell lysates preparation and protein concentration 
quantification
Cells were lysed on ice with cold lysis buffer containing
100 mM NaF, 50 mM HEPES (pH7.5), 150 mM NaCl, 1%
Triton X-100, 1 mM PMSF and the cocktail of proteinase
inhibitors (5 μg/ml pepstatin A, 5 μg/ml leupeptin, 2 μg/
ml aprotinin and 1 mM Na3VO4). The cell debris was dis-
carded by centrifuging at 14,000 rpm for 12 min at 4°C.
The supernatants were immediately frozen down in liquid
nitrogen and were stored at -80°C for future use. Protein
concentrations were determined by BCA protein assay kit
(Pierce, Rockford, IL).

Purification of GST-TTC9A
The 669 bp TTC9A coding sequence was cloned into
pGEX-5X-3 (Amersham Biosciences) for the expression of
GST-TTC9A protein. GST or GST-TTC9A protein was puri-
fied with Glutathione Sepharose 4B (Amersham Bio-
sciences) according to the manufacturer's instructions.
Eluted protein was pooled and dialyzed in PBS for future
experiment.

GST pull-down assay
COS-7 cells were transfected with Tm5NM-1-(His)6
expression vector or control vector (pcDNA3.1/myc-His(-
) B) respectively and total cell lysates were collected at 48
h post-transfection. 60 μg GST-TTC9A protein was immo-
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bilized onto 12 μl Glutathione Sepharose 4B gel (Amer-
sham Biosciences) by gentle rotation at 4°C for 2 h. 300
μg total cell lysates collected were then added and the
total reaction volume was brought up to 1 ml by PBS. The
reactions were incubated overnight at 4°C with gentle
rotation. Nonspecific binding proteins were removed by
washing in cold washing buffer containing 100 mM NaF,
50 mM HEPES (pH 7.5) and 150 mM NaCl for four times
followed by one more wash in PBS. Proteins bound to the
beads were eluted with 2 × SDS-PAGE sample buffer and
were separated on an SDS-PAGE gel. Tm5NM-1-(His)6
protein was detected using anti-His antibody (Amersham
Biosciences). GST protein expressed by empty pGEX-5X-3
vector was included as a negative control.

Co-immunoprecipitation with anti-flag M2 Affinity Gel
Anti-flag M2 Affinity Gel was bought from Sigma-Aldrich
(St. Louis, MO). Co-immunoprecipitation was carried out
according to the manufacturer's instructions. Briefly,
COS-7 cells were transfected with flag-TTC9A or flag-
TTC9A fragments and Tm5NM-1-(His)6 expression vec-
tors using FuGENE 6 Transfection Reagent. The amount of
Tm5NM-1-(His)6 vector was two times more than those of
flag-TTC9A or flag-TTC9A fragments vectors. 400 μg of
total protein lysates collected were mixed with 15 μl anti-
flag M2 Affinity Gel and the total reaction volume was
brought up to 1 ml by lysis buffer. After incubating with
the cell lysates overnight at 4°C with gentle rotation, the
affinity gel was washed three times with 0.5 ml TBS. Pro-
teins bound were eluted with 2 × SDS-PAGE sample buffer
and were loaded onto an SDS-PAGE gel. Tm5NM-1-(His)6
protein was detected using anti-His antibody (Amersham
Biosciences). COS-7 cells transfected with empty pXL-flag
vector and Tm5NM-1-(His)6 expression vector were
included as a negative control.

Co-immunoprecipitation of endogenous Tm5NM-1 and 
TTC9A-flag
COS-7 cells were transfected with TTC9A-flag expression
vector using FuGENE 6 Transfection Reagent according to
the manufacturer's instructions. Cell lysates were collected
at 48 h post-transfection. 500 μg of total protein lysates
collected were mixed with 5 μl anti-Tm5NM-1 antibody
(Chemicon International Inc., Temecula, CA) or goat pre-
immune serum for 4 h at 4°C with gentle rotation. 40 μl
protein A/G plus-agarose beads were then added and the
mixture was incubated overnight with gentle rotation at
4°C. The agarose beads were washed four times with
washing buffer containing 100 mM NaF, 50 mM HEPES
(pH 7.5), 150 mM NaCl, 0.01% Triton X-100. Proteins
bound were eluted with 2 × SDS-PAGE sample buffer and
were loaded onto an SDS-PAGE gel. TTC9A-flag protein
was detected using anti-flag antibody (Sigma-Aldrich).

Statistical analysis
The experiment for TTC9A expression in human breast
cancer tissues and adjacent normal tissues were analyzed
by the Mann-Whitney nonparametric test using the SPSS
program for Windows, version 11.5. Difference between
the expression of TTC9A in normal and cancer tissues was
considered as significant when the P value is less than
0.05.

Results and Discussion
TTC9A is over-expressed in breast cancer tissues compared 
with the adjacent normal tissues
Previous results have shown that TTC9A is a hormonally
regulated gene in vitro [2]. As breast cancer is well-known
to be a hormone-dependent malignancy, it is noteworthy
to know whether TTC9A is over-expressed in breast cancer
tissues and if its expression is correlated with hormone
receptor status. 25 matched pairs of human breast cancer
tissue and the adjacent normal tissue were analyzed for
TTC9A mRNA expression. The results presented in Fig. 1
were obtained by RT-PCR as illustrated in the "materials
and methods" and the PCR products were quantitated by
Southern blotting analysis. 36B4, which codes for human
acidic ribosomal phosphoprotein P0, was used as a con-
trol for cDNA input (Fig. 1A). Since the expression of
36B4 varied among samples, GAPDH was also included
as a normalization standard for cDNA input. It turned out
that the expression levels of these housekeeping genes
were always higher in tumor tissues compared with the
corresponding normal tissues. This variation has been
reported before. For example, GAPDH expression was 3.3-
fold higher in seminoma compared with normal testis
[38]. Similarly, GAPDH transcription was significantly
greater in both colonic adenomas and cancers than in nor-
mal mucosa [39]. Nonetheless, the results revealed that
the relative expression of TTC9A mRNA, when normal-
ized to either 36B4 or GAPDH, was significantly higher in
breast cancer tissue compared with its adjacent normal tis-
sue (Fig. 1) (P < 0.00001). It is also notable that nearly all
the tumor tissues expressed higher level of TTC9A mRNA
compared with its adjacent controls. However, we found
no correlation of TTC9A expression with other clinic path-
ological data such as tumor size, nuclear grade, axillary's
lymph node status or hormone receptor expression.

Yeast-two-hybrid assay identified Tm5NM-1 as one of 
TTC9A interacting proteins
The observation that TTC9A was over-expressed in breast
cancer tissues suggests potential relevance of the protein
in breast cancer biology. In an initial attempt to investi-
gate the relationship between TTC9A function and cancer
development, we searched for binding partners of the pro-
tein. To accomplish this, we performed a yeast-two-hybrid
screening of a cDNA library from breast cancer cell line
MCF-7, using full-length TTC9A as the bait. The coding
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The expression level of TTC9A mRNA was significantly higher in breast cancer tissues than that in the adjacent normal breast tissuesFigure 1
The expression level of TTC9A mRNA was significantly higher in breast cancer tissues than that in the adja-
cent normal breast tissues. Total RNA was extracted from human breast cancer tissues and the matched adjacent normal 
breast tissues. Equal amount of RNA from each sample was subjected to reverse transcription and cDNA produced was ampli-
fied by PCR using TTC9A, 36B4 or GAPDH primers. 10 μl PCR products were separated on an agarose gel and analyzed by 
Southern blotting. Band intensity was analyzed by Bio-Rad Molecular Image Analyzer. The figure shows the expression levels of 
TTC9A in 25 pairs of normal and tumor tissue samples after normalizing to those of 36B4 (A) or GAPDH (B). Each pair of bars 
represents samples from one patient. The primers used for TTC9A were 5'-CACATGTCTATAACGATTT CC-3' (forward) 
and 5'-TGCAGGAAACAGGGG ACTCTC-3' (reverse). The primers used to amplify 36B4 gene were 5'-GATTGGCTAC-
CCAACTGTTGCA-3' (forward) and 5'-CAGGGGCAGCAGCCACAAAGGC-3' (reverse). The primers for GAPDH were 5'-
TGCACCACCAACTGCTTAG-3' (forward) and 5'-GAGGCAGGGATGATG TTC-3' (reverse).
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region of the 222 aa TTC9A protein was cloned into the
'bait' vector, pLex A, which contains the DNA-binding
domain. MCF-7 cDNA libraries were fused to the activa-
tion domain in the 'pray' vector p42AD. The bait vector
and the cDNA libraries were transformed into yeast strain
EGY48 together with a lacZ reporter gene. 30 positive
clones, in which the coding regions of the library plasmids
were in frame with the activation domain according to the
sequencing results, were obtained after two rounds of spe-
cificity test. Among them, 5 clones contained genes cod-
ing for human tropomyosin Tm5NM-1, which is encoded
by γ-tropomyosin gene of the tropomyosin family.

TTC9A protein can interact with cellular expressed 
Tm5NM-1
The binding of TTC9A to Tm5NM-1 was further examined
by GST-pull down assay. In Fig. 2A, Tm5NM-1-(His)6
expression vector was transfected into COS-7 cells and
GST-TTC9A was used as a "bait" to pull down the cellular
expressed Tm5NM-1 protein. As shown in the figure,
Tm5NM-1 was pulled down by GST-TTC9A, but not by
the GST-tag, suggesting that GST-TTC9A did interact with
cellular expressed Tm5NM-1. The specificity of the inter-
action was further confirmed by GST pull-down assay
with different amount of bait protein. Fig. 2B showed that
the protein amount of Tm5NM-1 pulled down by GST-
TTC9A increased proportionally to the amount of bait
protein used in the assay. However, bands other than the
expected Tm5NM-1 were also observed in Fig. 2B and
these non-specific bands were not observed in sample
with GST protein. These unexpected bands could be due
to non-specific pull-down or degraded GST-TTC9A.

TTC9A interacts with Tm5NM-1 in mammalian cells
The interaction between Tm5NM-1 and TTC9A was fur-
ther verified by co-immunoprecipitation in mammalian
cells. As shown in Fig. 2C, cellular expressed TTC9A-flag
pulled down prominent amount of Tm5NM-1-(His)6 pro-
tein in COS-7 cells. To further confirm the interaction,
TTC9A-flag expression vector was transfected into COS-7
cells and the interaction between endogenous Tm5NM-1
and cellular expressed TTC9A was examined by co-immu-
noprecipitation with anti-Tm5NM-1 antibody. Fig. 2D
revealed that cellular expressed flag-TTC9A could also
bind to endogenous Tm5NM-1.

Identification of the regions/domains in TTC9A which are 
important in the interaction with Tm5NM-1
To specify the domains that interact with Tm5NM-1, dif-
ferent truncations of TTC9A protein shown in Fig. 3 were
constructed and tested in COS-7 cells. As is shown in Fig.
4A, all truncations were expressed at the expected protein
sizes. It is to be noted that the whitish streak in the centre
of the bands for TTC9A (1–161), TTC9A (1–197), full
length TTC9A and TTC9A (51–222) were due to the over-

saturation of the signal. This means that the amounts of
protein expressed by these constructs were not necessarily
less than those by other smaller truncations which
showed broader bands. The reason may be that in 12%
gel, the smaller proteins tend to be more diffuse resulting
in a broader band, whereas higher molecular weight pro-
teins tend to be more compact in migration.

Fig. 4B showed that TTC9A (1–50) and TTC9A (1–70) did
not pull-down Tm5NM-1 visibly as compared with vec-
tor-transfected control, regardless of the very high expres-
sion level of TTC9A (1–70). TTC9A (1–100), which
contains the first TPR domain, interacted with Tm5NM-1
to some extent but the interaction was weaker than TTC9A
(1–115). Since the first TPR domain lies in residues 57–
90, it is plausible that the first TPR domain is required for
the interaction. To confirm this postulation, more trunca-
tions of TTC9A protein were tested. Fig. 4C revealed that
TTC9A (1–95), TTC9A (1–105) and TTC9A (1–110),
which include the first TPR domain, showed obvious
interaction with Tm5NM-1. In addition, the linker pep-
tide (aa 91–127) between the first and the second TPR
may facilitate the binding between these two proteins, as
TTC9A (1–128) pulled down more Tm5NM-1 than
TTC9A (1–95), TTC9A (1–105) and TTC9A (1–110) did
(Fig. 4C).

The observation that full-length TTC9A showed weaker
interaction to Tm5NM-1 than TTC9A (1–115) and TTC9A
(1–128) (Fig. 4B and 4C) suggested that the C-terminal
part of TTC9A protein could have some inhibitory effect
on the interaction between these two proteins (Fig. 4B
and 4C). This notion is further supported by the observa-
tion that TTC9A (1–161) and TTC9A (1–197) pulled-
down less Tm5NM-1 than TTC9A (1–128) did (Fig. 4C).

To further verify the importance of TTC9A (1–50), the
linker region and the second and the third TPR domains
in the interaction with Tm5NM-1, an experiment was per-
formed to take account of the amount of TTC9A and the
truncated proteins pulled-down (Fig. 4D). It shows that
TTC9A (1–50) did not interact with Tm5NM-1 but TTC9A
(51–115) did, even though similar amount of TTC9A (1–
50) and TTC9A (51–115) were pulled-down. This sug-
gests that the first TPR played some role in the interaction
with Tm5NM-1. Secondly, although more TTC9A (51–
222) (the saturated whitish band pointed by arrow) were
pulled-down than TTC9A (51–115), it did not interact
with Tm5NM-1 but TTC9A (51–115) did. We speculate
that either aa.1–50 is required for the full length TTC9A to
interact with Tm5NM-1 or that the second and the third
TPR domain adversely affected the interaction. Although
there appeared to be more TTC9A (1–115) pulled-down
than TTC9A, the relative amount of Tm5NM-1 pulled-
down by TTC9A (1–115) appears to be more than that by
Page 6 of 11
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TTC9A, and this lends support to the speculation that the
second and the third TPR domains are inhibitory to the
interaction with Tm5NM-1. This takes account of the fact
that the signal for the TTC9A band is saturated (Fig. 4D,
lane two in the lower panel), so the amount of TTC9A
pulled-down is more than it appears to be.

It is very important to verify the interaction between
endogenous TTC9A and Tm5NM-1. We have tried several
times for the endogenous pull-down using either TTC9A
or Tm5NM-1 polyclonal antibodies. Unfortunately, we
obtained very weak pull-down of high background. We
suspect that the binding of polyclonal antibodies to mul-
tiple epitopes of the endogenous TTC9A or Tm5NM-1

TTC9A binds to Tm5NM-1Figure 2
TTC9A binds to Tm5NM-1. (A) GST-TTC9A binds to Tm5NM-1-(His)6. COS-7 cells were transfected with Tm5NM-1-
(His)6 expression vector or control vector and total cell lysates were collected at 48 h post-transfection. 60 μg GST-TTC9A 
protein was immobilized onto Glutathione Sepharose 4B gel (Amersham Biosciences) and 300 μg total cell lysates were used 
for Tm5NM-1-(His)6 pull-down. The proteins bound to the beads were eluted with 2 × SDS-PAGE sample buffer and were 
separated on an SDS-PAGE gel. Tm5NM-1-(His)6 was detected using anti-His antibody (Amersham Biosciences). GST protein 
expressed by empty pGEX-5X-3 vector was included as a negative control. 15 μg total cell lysates (5% of input) were loaded in 
the first lane to indicate the position of Tm5NM-1-(His)6 band. (B) Tm5NM-1-(His)6 pull-down by GST-TTC9A is concentra-
tion-dependent. GST-pull down assay was carried out with 2 μg or 20 μg GST-TTC9A as bait protein. The amount of 
Tm5NM-1-(His)6 pulled down was proportional to the amount of bait protein used. (C) TTC9A-flag interacted with Tm5NM-
1-(His)6. Expression vectors for TTC9A-flag and Tm5NM-1-(His)6 were co-transfected into COS-7 cells. Co-immunoprecipita-
tion was carried out with anti-flag agarose beads (Sigma-Aldrich) and Tm5NM-1 was detected by anti-His antibody (Amersham 
Biosciences). Upper panel: Tm5NM-1-(His)6 was expressed at similar level in control vector and TTC9A-flag transfected COS-
7 cells; lower panel: Tm5NM-1-(His)6 was pulled down by TTC9A-flag. (D) TTC9A-flag interacted with endogenous Tm5NM-
1-(His)6. Expression vector for TTC9A-flag was transfected into COS-7 cells. Co-immunoprecipitation was carried out with 
anti-Tm5NM-1/2 (Chemicon) antibody and TTC9A was detected by anti-flag antibody (Sigma-Aldrich). Co-immunoprecipita-
tion with goat pre-immune serum was included as a negative control.
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interfered with their interaction with the target protein.
Regrettably, monoclonal antibodies to TTC9A or to
Tm5NM-1 are not available at this point in time.

Non-muscle tropomyosins generally help to stabilize
actin filament. Over- expression of tropomyosin-1 in
breast cancer cells MDA-MB-231 was found to promote
the assembly of stress fibers [40]. The interaction of
TTC9A with Tm5NM-1, together with the observation that
in breast cancer cell line ABC28, TTC9A was up-regulated
by progesterone, accompanied with a drastic increase in
focal adhesion and in F-actin formation [41], led us to
hypothesize that TTC9A may be involved in cell cytoskel-
eton organization and cell adhesion. However, knock-

down of TTC9A expression by 70 – 80% did not abolish
progesterone-induced increase of F-actin (data not
shown). This suggested that either TTC9A was not essen-
tial in the formation of focal adhesion and stress fibers, or
that other TTC9 family proteins were able to compensate
for the lost function of TTC9A.

Tm5NM-1 and other tropomyosin family members are
well-known for their association with the cytoskeleton
system. An elevated level of Tm5NM-1 has been found in
high-metastatic mouse melanoma cells and transformed
rat fibroblastic cells, which suggested a function of
Tm5NM-1 in inhibiting the polymerization and/or the
formation of the bundles of actin microfilaments [35,36].

Truncation constructs of TTC9A protein and their relative binding to Tm5NM-1 based on co-immunoprecipitation experimentFigure 3
Truncation constructs of TTC9A protein and their relative binding to Tm5NM-1 based on co-immunoprecipi-
tation experiment.
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Studies have also revealed that the multiple isoforms of
non-muscle tropomyosin might play a role in modulating
the organization of microfilaments in cells by regulating
the interaction between actin and other actin-binding
proteins, such as filamin, spectrin, caldesmon, gelsolin
and DNase I [42-44]. Thus, it is possible that TTC9A par-
ticipates in the complex cytoskeleton regulation through
its interaction with Tm5NM-1, or with other tropomy-
osins.

Conclusion
In summary, this study revealed that TTC9A was over-
expressed in breast cancer tissues compared with the adja-
cent normal tissues, suggesting that TTC9A might be an
important gene involved in the breast cancer develop-
ment process. We have identified Tm5NM-1, a tropomy-
osin family protein, as one of the TTC9A-interacting
proteins. The results also suggest that the first 50 aa of
TTC9A was required for the interaction with Tm5NM-1,
although the segment alone did not bind to Tm5NM-1.
Furthermore, the first TPR domain and the linker segment
between the first two TPR domains may play an important
role for the binding of TTC9A to Tm5NM-1, while the last
two TPR motifs may be inhibitory on the interaction. The
exact function of TTC9A remains unknown at current
stage. The interaction with Tm5NM-1 suggests that TTC9A
might act as a chaperone protein in the organization of
cell cytoskeleton. Currently, TTC9A gene knockout study
in mice is underway to define the physiological role of the
gene in vivo.
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