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TNF-related apoptosis-inducing ligand (TRAIL) is known to selectively induce apoptosis in various tumour cells. However,
downstream-signalling of TRAIL-receptor is not well defined. A functional genetic screening was performed to isolate genes
interfering with TRAIL-induced apoptosis using cDNA retroviral library. Bcl-XL and FLIP were identified after DNA sequencing
analysis of cDNA rescued from TRAIL-resistant clones. We found that increased expression of Bcl-XL, but not Bcl-2, suppressed
TRAIL-induced apoptosis in tumour cells. Western blot and immunohistochemical analyses showed that expression of Bcl-XL, but
not Bcl-2, was highly increased in human breast cancer tissues. Exposure of MDA-MB-231 breast tumour cells to TRAIL induced
apoptosis accompanied by dissipation of mitochondrial membrane potential and enzymatic activation of caspase-3, -8, and -9.
However, SK-BR-3 breast tumour cells exhibiting increased expression level of Bcl-XL were resistant to TRAIL, though upon
exposure to TRAIL, caspase-8 and Bid were activated. Forced expression of Bcl-XL, but not Bcl-2, desensitised TRAIL-sensitive MDA-
MB-231 cells to TRAIL. Similar inhibitory effects were also observed in other tumour cells such as HeLa and Jurkat cells stably
expressing Bcl-XL, but not Bcl-2. These results are indicative of the crucial and distinct function of Bcl-XL and Bcl-2 in the modulation
of TRAIL-induced apoptosis.
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Tumour cells express several proteins that suppress apoptosis and
thereby become resistant to various forms of therapy. Gene
products controlling the balance between cell death and survival
arise from an expanding family of genes, of which Bcl- 2 family is
clearly associated with apoptosis inhibition (Chao and Korsmeyer,
1998). The antiapoptotic members of Bcl-2 gene family exert their
antiapoptotic functions by preventing the release of cytochrome c
from mitochondria to the cytosol and prevent the loss of
mitochondrial outer membrane integrity by blocking both
membrane hyperpolarisation and mitochondrial swelling (Van-
der-Heiden et al, 1997; Harris and Thompson, 2000).

Agents that induce apoptosis in cancer cells have recently
attracted great attention. The apoptotic process can be triggered by
pleiotropic ways, including activation of tumour necrosis factor
receptor (TNF-R) family, g-irradiation, and various chemother-
apeutic agents, etc. The known signalling pathways induced by
various apoptotic stimuli converge into a common death pathway
either at mitochondrial step or finally at a step at which caspases
are activated (Green and Reed, 1998; Thornberry and Lazebnik,
1998). TNF-related apoptosis-inducing ligand (TRAIL) is a
member of the TNF family that is capable of inducing apoptosis

in tumour cells examined (Wiley et al, 1995; Pitti et al, 1996). In
animal model, TRAIL efficiently suppressed tumours with no
detectable toxicity, suggesting that it could potentially serve as an
useful chemotherapeutic agent (Ashkenazi et al, 1999; Walczak
et al, 1999). While some studies raised questions of whether
normal cell types were truly protected from TRAIL (Jo et al, 2000;
Leverkus et al, 2000), the TRAIL currently being developed for
clinical trials does not evoke these cytotoxic effects on hepatocytes
(Lawrence et al, 2001; Qin et al, 2001).

TNF-related apoptosis-inducing ligand is highly homologous to
FasL and TNF ligand family. Unlike other members, TRAIL is
constitutively expressed in most tissues and cells (Wiley et al,
1995). TNF-related apoptosis-inducing ligand-R1 (DR4), TRAIL-
R2 (DR5), TRAIL-R3 (DcR1), and TRAIL-R4 (DcR2) have been
identified as TRAIL receptors (Pan et al, 1997a, b; Sheridan et al,
1997; Wu et al, 1997; Mongkolsapaya et al, 1998). While TRAIL-R1
and TRAIL-R2 contain a cytoplasmic death domain, TRAIL-R3
and TRAIL-R4 lack the death domain and bind to TRAIL without
activation of apoptotic machinery. Though caspase-8 was recently
reported to play a critical role in TRAIL-mediated apoptosis (Kim
et al, 2000), the sequence of events occurring downstream of the
receptors is not well understood. In the present study, we isolated
Bcl-XL as an inhibitory gene of TRAIL-induced apoptosis from
cDNA library by expression screening assay. We found differential
expression pattern of Bcl-2 and Bcl-XL in the human breast cancer
tissues and present evidences for the inhibitory effects of Bcl-XL,
but not Bcl-2, on the TRAIL-induced apoptosis of tumour cell
lines.
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MATERIALS AND METHODS

Cell line and DNA transfection

MDA-MB-231, SK-BR-3, Jurkat, and Jurkat32H cells were grown in
RPMI 1640 containing 10% fetal bovine serum (FBS). HeLa cells
were incubated with Dulbecco’s modified Eagle’s Medium with
10% FBS. HeLa cells and Jurkat cells permanently expressing either
Bcl-2 (HeLa/Bcl-2) or Bcl-XL (HeLa/Bcl-XL) were established by
transfection of expression plasmids of human Bcl-2 and Bcl-XL.
Cells were transfected with Lipofect-AMINE PLUSt reagent
according to the recommended methods by the manufacturer
(Gibco BRL, Grand Island, NY, USA) or with standard CaCl2

methods. After 1 day, cells were grown in the presence of
700mg ml�1 G418 (Gibco BRL) or 1 mg ml�1 puromycin (Sigma, St
Louis, MO, USA) for 3 weeks. Each clone was examined for the
expression of exogenous gene with Western blot analysis.

Materials

Rhodamine 123, a cell-permeable mitotracker, was from Molecular
Probe Inc. (Eugene, OR, USA). The fluorogenic caspase substrates
DEVD-aminomethylcoumarine (AMC), IETD-AMC, and LEHD-
AMC were from Enzyme System Products (Livermore, CA, USA).
Anticaspase-3 (SC-7148) and anti-Bcl-XL (M-125, SC-7195) anti-
bodies were purchased from Santa Cruz (Santa Cruz, CA, USA);
anti-Bcl-2 antibody was from DAKO (Copenhagen, Denmark);
anti-caspase-8 and -9 antibodies were previously described (Kim
et al, 2000); anti-a-tubulin antibody was from Sigma; anti-rabbit
IgG-horseradish peroxidase (HRP), anti-mouse IgG-HRP, and
anti-goat IgG-HRP antibodies were from Santa Cruz. All other
molecular biology grade reagents were from Sigma or New
England Biolabs (Hertfordshire, England).

Collection of surgical samples

Tissues were obtained from seven patients who were operated
upon infiltrating ductal carcinoma of breast at Department of
Surgery, Seoul National University Hospital, Seoul, Korea. Fresh
specimens of cancer core tissues and adjacent normal breast
tissues from the same patient were immediately frozen in liquid
nitrogen and stored at �801C for Western blot analysis. For the
immunohistochemical analysis, samples were formalin-fixed and
paraffin-embedded. Parallel samples were processed for histologic
examination.

TNF-related apoptosis-inducing ligand preparation

TNF-related apoptosis-inducing ligand preparation was previously
described by Cha et al (1999). Briefly, truncated human TRAIL
(amino acid 114–281) in pET-3a plasmid was expressed in BL21
(DE3) by 1 mM isopropyl-beta-D-thiogalactoside. After sonication,
TRAIL were isolated as insoluble aggregates by centrifugation and
solubilised in a buffer containing 20 mM sodium phosphate (pH
7.6), 6 M guanidine-HCL, and 1 mM dithiothreitol (DTT). The
denatured proteins were refolded by a rapid 10-fold dilution with a
buffer solution containing 20 mM sodium phosphate (pH 7.6) and
1 mM DTT, followed by overnight dialysis in the same buffer at 41C.
After removing aggregates, the supernatant solution was loaded on a
SP Sepharose Fast Flow column (Amersham-Pharmacia, Piscataway,
NJ, USA). Fractions eluted at 0.8–1.0 M NaCl gradient contained
TRAIL almost exclusively as judged by SDS–PAGE.

Cell-based functional screening to isolate inhibitors of
TRAIL-induced apoptosis

(a) Retroviral infection of cDNA library and selection for TRAIL-
resistant clones A retroviral library containing 2� 107 indepen-
dent cDNA inserts was constructed from RNA of human lymph

node, thymus, spleen, and bone marrow by standard methods,
using a retrovirus vector pTRA. Amphotropic retroviral packaging
cells, f NX-ampho, were transfected with 10 mg of cDNA library
using CaCl2 method and produced up to 2� 106 infectious
units ml�1. Forty-eight hours after transfection, the supernatant
was collected and used to infect Jurkat32H cells. In total, 109 cells
were infected for 48 h and treated with 50 ng ml�1 TRAIL. The
resulting TRAIL-resistant clones were separated by single-cell
sorter (MolFlow, Fort Collins, CO, USA). After amplification, cells
were exposed to TRAIL for secondary screening and analysed with
FACScaliburt (Beckton Dickinson, Franklin lakes, NJ, USA).

(b) Rescue analysis of cDNA Total RNA was isolated from the
putative positive clones. Candidate cDNAs were then amplified with
SuperScriptt One-step RT–PCR system (Gibco BRL) using the
library-specific primers. The resulting PCR products were purified
from agarose gels and subjected to DNA sequencing analysis.

Apoptosis assay

Flow cytometry analysis was performed with fluorescence-acti-
vated cell sorter (FACS) after staining cells with 50mg ml�1 pro-
pidium iodide. Cell viability was also determined by 0.04% trypan
blue exclusion assay or MTT assay. Viability of the transfectant
was assessed as follows: cells grown on cover glasses were trans-
fected with both pEGFP and effector expression plasmid for 1 day
and then incubated with TRAIL for the indicated times. Cell viability
was then determined based on the morphology of GFP-positive cells
under a fluorescence microscope (Zeiss, Jena, Germany).

Western blot analysis

In total, 30–50 mg of cell extracts was subjected to SDS– PAGE in a
buffer containing 60 mM Tris-Cl (pH 6.8), 1% SDS, 10% glycerol,
and 0.5% b-mercaptoethanol, and then transferred to PVDF
membranes using Semi-Dry Transfer system (Bio-Rad). The
membranes were blocked with TBST buffer (20 mM Tris-Cl pH
7.5, 150 mM NaCl, 0.2% Tween-20) containing 5% nonfat dried
milk, incubated for 2 h with the primary antibodies, and for an
additional 2 h with HRP-conjugated secondary antibodies. Proteins
were then visualised using Enhanced Chemiluminescence (ECLt,
Amersham-Pharmacia).

Immunohistochemical analysis

Immunohistochemical staining was performed by the ABC method
using formalin-fixed, paraffin-embedded tissue sections. Five
micrometer thick tissue sections mounted on silanised slides were
deparaffinised in xylene followed by sequential washes in graded
ethanol to phosphate-buffered saline (PBS). The samples were
pretreated for 15 min in 10 mM sodium citrate, pH 7.0 and
endogenous peroxidase activity was blocked with 3% H2O2 for
15 min. The slides were incubated with the primary antibodies and
then with a biotinylated link antibody (DAKO) for 30 min followed
by incubation in an avidin/biotinylated HRP solution. The samples
were exposed to diaminobenzidine for 6 min, counterstained with
Mayer’s haematoxylin, and mounted in Permount (Fisher Scien-
tific, NJ, USA).

Caspase activity assays

Cells (1� 107) were resuspended in isolation buffer (20 mM

HEPES– KOH, pH 7.6, 100 mM KCl, 0.5 mM Na-EDTA, 2 mM

b-mercaptoethanol, 0.1 mM PMSF, 10mg ml�1 leupeptin, 25mg ml�1

ALLN). After incubation for 10 min at 41C, the cells were disrupted
by 20–30 strokes with a homogeniser and clarified by centrifugation
for 1 h at 100 000 g. Enzymatic reactions were carried out at 371C in
reaction buffer (0.1 M HEPES, 2 mM DTT, 0.1% Chaps, 1% sucrose)
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containing 20mg protein and either 50mM DEVD-AMC or IETD-
AMC. AMC fluorescence (480 nm emission excited by illumination at
360 nm) was measured using a fluorescence microplate reader (FL-
600) (Bio-TEK instrument Inc., Winooski, VT, USA).

Reverse transcription – polymerase chain reaction
(RT) –PCR

Total RNA was extracted from the cells using MRC Trizol reagent
(Cincinnati, OH, USA). cDNA was prepared from 1 mg of total RNA
using oligo(dT) primer and Moloney murine leukaemia virus
reverse transcriptase (Gibco BRL), and amplified by PCR with Taq
DNA polymerase. Primers used were: DR4, 50-ctgcaggtcgtacctagct-
cagctgcaaccatc-30 and 50-cgtgaggtccagctgcctcatgagctggtcc-30; DR5,
50-caggactatagcactcactggaatgacctcc-30 and 50-cctcaatcttctgcttggcaag
tctctctcc-30; TRAIL, 50-agcctgggacagacctgcgtgctgatcgtg-30 and 50-aa
ctggcttcatggtccatgtctatcaagt-30; b-actin, 50-gagggaaatcgtgcgtgacat-30

and 50-acatctgctggaaggtggaca-30.

RESULTS

Isolation of Bcl-XL as an inhibitor of TRAIL-induced
apoptosis by functional screening

To isolate genes conferring resistance to TRAIL-induced apopto-
sis, we have screened cDNA libraries by functional genomics.
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Figure 1 Doxycycline-dependent sensitivity of Jurkat32H cells harbouring
Bcl-XL to TRAIL-triggered apoptosis. (A) By cell-based functional screening of
cDNA library, Jurkat32H ‘clone 2-42’ harbouring Bcl-XL and ‘clone 2-51’
harbouring FLIP were selected and isolated as showing resistance to TRAIL. Each
clone was left untreated (control) or exposed to TRAIL (50ngml�1) in the
presence or absence of doxycycline (Dox, 50ng ml�1) for 48h. Cells were then
incubated with 50mgml�1 propidium iodide and analysed by FACS. (B)
Jurkat32H ‘clone 2-42’ was incubated for 48h with increasing concentrations of
TRAIL in the presence or absence of doxycycline and cell death was then
evaluated by trypan blue exclusion. (C) Western blot (Bcl-XL) and RT–PCR
(rescued cDNA) analyses of Jurkat32H ‘clone 2-42’ after incubation with
doxycycline for 48h.
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Figure 2 Upregulation of Bcl-XL in human breast cancers. (A) Western
blot analysis showing expression levels of Bcl-XL and Bcl-2 in the extracts of
normal (N) and breast cancer tissues (C). Numbers indicate individual
human breast cancer patient from which tissues were derived. Relative
level of Bcl-2 (open box) and Bcl-XL (closed box) proteins were
determined with densitometry using BIO-RAD ‘Quantity One’ image
software. (B) Immunohistochemical analysis showing the expression
pattern of Bcl-2 and Bcl-XL in the tissue sections prepared from human
breast cancer patients. Arrowheads indicate densely stained area with anti-
Bcl-XL antibody.
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Jurkat32H cells, which were modified for tetracycline off-inducible
expression system, were infected with a retroviral human cDNA
library and exposed to TRAIL. We used 50 ng ml�1 of TRAIL to
induce 100% of cell death after 48 h (Figure 1B). We achieved 30–
40% infection as determined by doping of the library with marker
retroviruses pTRA-GFP. TNF-related apoptosis-inducing ligand-
resistant clones were selected out of 109 cells by exposing to TRAIL
for 48 h and isolated by FACS. DNA sequencing analysis of the
cDNAs rescued from 11 TRAIL-resistant clones revealed that two
of the TRAIL-resistant clones expressed Bcl-XL and eight clones
expressed FLICE-inhibitory protein (FLIP). Two of such clones,
Jurkat32H ‘clone 2-42’ (Jurkat32H-Bcl-XL) and Jurkat32H ‘clone 2-
51’ (Jurkat32H-FLIP), were analysed by flow cytometry for the
resistance to TRAIL (Figure 1A). Expression of the exogenous gene
in the inducible expression plasmid significantly protected Jurkat
cells from apoptosis, showing comparable propidium iodide
uptake to the control, while treatment with doxycycline sensitised
the cells to TRAIL. Quantitative determination of apoptosis
showed that expression of exogenous Bcl-XL suppressed various
concentrations of TRAIL-induced apoptosis up to 200 ng ml�1

(Figure 1B). Doxycycline-dependent expression pattern of Bcl-XL

in Jurkat32H-Bcl-XL cells was confirmed by Western blotting and

RT–PCR analysis (Figure 1C). These results indicate that the
increased expression of Bcl-XL confers resistance to TRAIL.

Increased expression of Bcl-XL in human breast cancer
tissues

Based on the screening results, we examined the expression levels
of Bcl-XL and Bcl-2 in tissue extracts prepared from the human
breast cancer patients (Figure 2). Western blot analysis showed
that in contrast to Bcl-2, expression of Bcl-XL was markedly
increased in breast cancer tissues compared to normal; six out of
seven patients showed upregulated expression pattern of Bcl-XL

(Figure 2A). Densitometric analysis indicated that Bcl-XL was
increased 4–5-fold in cancer tissues. Similarly, a significant
difference in the expression patterns of Bcl-XL and Bcl-2 was
observed by immunostaining of the tumour samples using anti-
Bcl-XL and anti-Bcl-2 antibodies (Figure 2B). Tumour samples
from patients with locally advanced breast cancer were more
specifically stained by anti-Bcl-XL antibody than anti-Bcl-2 anti-
body, consistent with the result of Western blot analysis. Note the
low basal immunoreactive signal of Bcl-2 compared to consider-
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relative ratio of the signals detected by Western blot in (B) and RT–PCR analysis in (C) was determined using a-tubulin (left panel) and b-actin (right panel)
as controls, respectively.
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able level of Bcl-XL in the tumour tissues. These results indicate
that Bcl-XL is highly upregulated in the breast cancer tissues.

Different sensitivity of MDA-MB-231 and SK-BR-3,
human breast tumour cell lines, to TRAIL

To explore the effects of increased expression of Bcl-XL on TRAIL-
induced responses, several human breast tumour cell lines were
examined for the expression levels of Bcl-2 and Bcl-XL, and their
sensitivities to TRAIL (data not shown). Among them, MDA-MB-
231 and SK-BR-3 cell lines were selected by their different
expression levels of Bcl-XL and sensitivities to TRAIL. The death
rates of MDA-MB-231 cells exposed to TRAIL were 24 and 55% at
9 and 18 h, respectively (Figure 3A). On the contrary, SK-BR-3 cells
were resistant to TRAIL. Examination of expression level with
Western blotting and RT–PCR followed by densitometric analysis
showed that Bcl-XL was upregulated 3.8-fold in SK-BR-3 cells
compared with MDA-MB-231 cells, while Bcl-2, Bax, FADD,
caspase-3, caspase-8, DR4, and DR5 were not significantly different
(Figure 3B–D). TRAIL was expressed in those cell lines without any
detectable differences (Figure 3D, right panel).

We have then examined activation of caspase in TRAIL-resistant
SK-BR-3 cells and compared it to that of TRAIL-sensitive MDA-
MB-231 cells. Western blot analysis revealed that proforms of
caspase-3 and -8 disappeared within 9 h of exposure to TRAIL in
MDA-MB-231 cells, indicating that those caspases were proteoly-
tically activated in the TRAIL-sensitive cells (Figure 4A). Caspase-9
appeared to be activated but less effectively. Indeed, processed and
active forms of caspases, including large subunit (p20) and small
subunit (p18) were detected at every time point following exposure
to TRAIL (data not shown). Interestingly, procaspase-8, but not
caspase-3 and -9, in the TRAIL-resistant SK-BR-3 cells was
apparently reduced like MDA-MB-231 cells. Bid, a substrate of
caspase-8, also decreased in both cell lines exposed to TRAIL.
Determination of enzymatic activation using fluorogenic substrate
showed that TRAIL treatment induced activation of caspase-8
about 3 –4-fold in both cell lines (Figure 4B). Caspase-3 was
effectively activated in MDA-MB-231 cells with 5.5-fold, consistent
with the result of Western blot analysis (Figure 4A), while only
marginal activation of caspase-3 was observed in SK-BR-3 cells.
These results led us to propose that caspase-8 was equally activated
in both cell lines, whereas caspase-3 activation was suppressed in
TRAIL-resistant SK-BR-3 cells.

Since Bcl-XL is known to suppress mitochondria-mediated cell
death, mitochondrial membrane potential was examined with
mitotracker Rhodamine 123 after exposure to TRAIL (Figure 4C).
Dissipation of mitochondrial membrane potential was observed in
TRAIL-sensitive MDA-MB-231 cells, but not in TRAIL-resistant
SK-BR-3 cells, indicating that mitochondria-mediated death event
is defective in SK-BR-3 cells expressing high level of Bcl-XL.

Attenuation of TRAIL-induced apoptosis by
overexpression of Bcl-XL in TRAIL-sensitive
MDA-MB-231 cells

We have then addressed whether increased expression of Bcl-XL in
TRAIL-sensitive MDA-MB-231 cells suppressed TRAIL-induced
apoptosis. MDA-MB-231 cells were transiently transfected with
Bcl-2 or Bcl-XL expression vectors and subsequently exposed to
TRAIL (Figure 5). Determination of cell viability showed that
MDA-MB-231 cells expressing Bcl-XL became resistant to TRAIL;
death rates decreased from 58 to 29%. Interestingly, Bcl-2 was less
potent to suppress TRAIL-induced apoptosis of MDA-MB-231 cells
(death rates, 58 to 49%) compared with Bcl-XL. Similar inhibitory
effects of Bcl-XL and Bcl-2 were further observed in HeLa, human
cervical tumour cells, and Jurkat, human lymphoma cells,
permanently overexpressing Bcl-XL or Bcl-2 (Figure 6). Expression
levels of Bcl-2 or Bcl-XL in these stable cell lines were 3– 4-fold

higher than control cells, similar ratio with the increased
expression of Bcl-XL in the breast cancer tissues as shown in
Figure 2. HeLa and Jurkat cells were sensitive to TRAIL, exhibiting
60–70% of death rates when exposed to TRAIL. Forced expression
of Bcl-2 in those stable cells did not suppress the death rates. On
the contrary, expression of Bcl-XL in HeLa or Jurkat cells
substantially reduced TRAIL-induced apoptosis, indicating differ-
ential inhibitory activities of Bcl-XL and Bcl-2 in TRAIL-mediated
cell death.
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Figure 4 Caspase activation and dissipation of mitochondrial membrane
potential in MDA-MB-231 and SK-BR-3 cells. (A) Western blot analysis
showing proteolytic activation of caspases and cleavage of Bid. Cell lysates
were prepared from cells exposed to TRAIL for the indicated times,
separated by SDS–PAGE, and analysed by immunoblotting using the
indicated antibodies including caspase (Casp). (B) Caspase activity assay.
Cells (1� 107 cells) were left untreated or treated for 18 h with 80 ng ml�1

TRAIL. Cell extracts were prepared as described in Materials and Methods
and assayed for caspase activity using the fluorogenic substrates DEVD-
AMC (caspase-3-like protease) and IETD-AMC (caspase-8-like protease).
Caspase activities of control cells were adjusted to arbitrary unit 1.0 and
relative caspase activities (fold induction) were represented at left. (C) Lack
of mitochondrial membrane potential dissipation in SK-BR-3 cells exposed
to TRAIL. MDA-MB-231 and SK-BR-3 cells were left untreated or exposed
to TRAIL for 18 h and mitochondrial membrane potentials were then
measured using Rhodamine 123.
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DISCUSSION

In the present study, we have screened and characterised genes
inhibiting TRAIL-induced apoptosis and isolated several genes
including FLIP and antiapoptotic Bcl-2 family proteins, including
Bcl-XL and Mcl-1, but not Bcl-2. Unlike Bcl-2, Bcl-XL is highly
upregulated in human breast cancer tissues and effective to
suppress TRAIL-triggered apoptosis in several tumour cell lines.
Thus, the increased expression of Bcl-XL in the breast tumours and
cell lines may desensitise the cells to TRAIL.

Others and we have previously shown that caspase-8 and FADD
played a critical role in TRAIL-induced apoptosis (Bodmer et al,
2000; Kim et al, 2000; Kischkel et al, 2000). Also FLIP, a caspase-8
interacting inhibitory protein, was recently reported to suppress
TRAIL-induced apoptosis (Harper et al, 2001), consistent with our
screening results. However, there were no detectable differences in
the expression levels of caspase-8 and FADD between SK-BR-3 and

MDA-MB-231 breast tumour cells showing different sensitivities to
TRAIL. In addition, TRAIL-mediated activation of caspase-8 and
Bid cleavage in TRAIL-resistant SK-BR-3 cells indicates that
TRAIL receptor and its associated adaptor molecules such as FLIP
linking to caspase-8 appeared to be functionally normal. Instead,
Bcl-XL in SK-BR-3 cells is likely to be one of the components in the
signalling complexes contributing to the resistance to TRAIL,
probably by interfering with mitochondria-mediated apoptotic
pathway, though we could not examine the sensitivity of the
primary culture cells directly derived from the breast cancer
tissues to TRAIL.

Though the biochemical mechanisms by which members of the
Bcl-2 family of proteins inhibit apoptosis remain enigmatic, the
following properties have been proposed to play a role in the
modulation of apoptosis (Reed, 1997; Hengartner, 2000). First, the
ability of some members to form pore or channel, through which
cytochrome c and other intermembrane proteins escape with low
selective permeability, similar to some pore-forming bacterial
toxins (Minn et al, 1997). Second, the ability of the different
members of this family to function as docking proteins able to
bind each other to form homo- or heterodimers as well as bind to
other proteins (Sato et al, 1994; Sedlak et al, 1995). Thus, the ratio
between proapoptotic and antiapoptotic molecules in a particular
cell may then determine the response to an apoptotic stimulus.
However, there was no detectable difference in the expression level
of Bax, a proapoptotic molecule interacting with Bcl-2 and Bcl-XL,
between cell lines used in this study.

Interestingly, Bcl-2 did not show comparable antiapoptotic
activity on TRAIL-mediated apoptosis, indicating that the death
signalling activated by TRAIL was not susceptible to the inhibition
mediated by Bcl-2 in the tumour cells we have examined. However,
the ability of Bcl-2 to suppress apoptosis triggered by TRAIL is
controversial. Human glioma and prostate cancer cells lost their
sensitivity to TRAIL by overexpressing Bcl-2 (Rieger et al, 1998;
Munshi et al, 2001; Rokhlin et al, 2001). In contrast, other groups
have shown that Bcl-2-transfected 8226 and ARP-1 myeloma cells
still remained sensitive to TRAIL (Gazitt, 1999a, b) and that Bcl-2
failed to block cytochrome c release after exposure to TRAIL
(Keogh et al, 2000; Walczak et al, 2000). Although the discrepancy
between those observations is not clearly resolved, it might be
arisen from difference in cell types or in the relative expression
level of Bcl-2 family proteins including Bcl-2 itself.

Although function of Bcl-2 family proteins looks similar,
increasing numbers of evidences have suggested that prosurvival
activities of Bcl-2 and Bcl-XL are differently regulated. Bcl-2 and
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Figure 5 Ectopic expression of Bcl-XL, but not Bcl-2, rescued MDA-MB-
231 cells from TRAIL-induced apoptosis. MDA-MB-231 cells were
transiently transfected with pEGFP and either pcDNA3 (control), pBcl-2,
or pBcl-XL. pEGFP was included in every transfection reactions with a ratio
of 1 : 3. After 24 h, cells were incubated with TRAIL for 18 h and death rates
were determined based on the morphology of GFP-positive cells under a
fluorescence microscope. Cell extracts prepared from each transfectant
were subjected to Western blot analysis.

Con
tro

l

Con
tro

l

Bcl-
2 

lin
e

Bcl-
X L

 lin
e

Con
tro

l

Con
tro

l

Bcl-
2 

lin
e

Bcl-
X L

 lin
e

100

75

50

25

0 6 12 18

Time (h)

0 6 12 18

Time (h)

C
el

l d
ea

th
 (

%
)

100

75

50

25

C
el

l d
ea

th
 (

%
)

HeLa
HeLa/Bcl-2
HeLa/Bcl-XL

Jurkat
Jurkat/Bcl-2
Jurkat/Bcl-XL
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Bcl-XL may function at distinct sites (Chinnaiyan et al, 1997; El-
Assaad et al, 1998). It is believed that death receptor-induced
apoptotic pathway generally bypasses the Bcl-2-inhibitable steps,
whereas Bcl-2 protects against diverse cytotoxic insults, for
example, g- and ultraviolet-irradiation, cytokine withdrawal,
dexamethasone, and cytotoxic drugs (Cory, 1995; Strasser et al,
1995; Yang and Korsmeyer, 1996; Chao and Korsmeyer, 1998). In
contrast, Bcl-XL is thought to be more potent to suppress death
receptor-induced cell death pathway (Fernandez et al, 2000). Thus,
cancer cells may increase expression of Bcl-XL rather than Bcl-2 to
be resistant to ligand-mediated cytotoxic stimuli including TRAIL.

Taken together, we propose here that the increased expression of
Bcl-XL observed in the human breast tumours desensitises
tumourigenic cells to apoptosis triggered by TRAIL.
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