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Polyploidy in Lung Regeneration: Double Trouble or Dynamic Duo?

The alveolar epithelium consists of type 1 and type 2 alveolar
epithelial cells (AECs), which form a tight barrier. During lung
injury, AECs die, compromising barrier integrity. Barrier
integrity can be restored via physiologic regeneration, yielding
normal cell numbers, tissue architecture, and function, or by
fibrotic repair, characterized by altered cellular makeup and
scarring (1). During physiologic regeneration, surviving AEC2s
proliferate and differentiate into AEC1s, restoring normal
numbers of AEC2s/AEC1s. We and others recently identified a
transitional cell state assumed by proliferating AEC2s as they exit
the cell cycle (2–6); these cells enlarge and spread and express
genes involved in protein synthesis, response to DNA damage,
and cell cycle arrest. During physiologic regeneration,
transitional AECs differentiate into AEC1s (5, 6). However,
persistence of the transitional state is associated with pulmonary
fibrosis (2–8). The mechanisms by which physiologic
regeneration is diverted toward fibrotic repair are incompletely
understood.

Polyploid cells contain more than two copies of the genome.
They arise from endoreplication, in which cells replicate their DNA
but do not divide (failed cytokinesis), or from cell–cell fusion (9).
Polyploid cells are typically hypertrophic and can be binuclear or
mononuclear, depending on whether the nucleus divides
(karyokinesis) (Figure 1). Polyploidy is induced by cellular stress,
such as DNA damage induced by exogenous insults or rapid clonal
expansion. Therefore, polyploidy often arises as rapidly proliferating
cells exit the cell cycle and enter a state of terminal differentiation or
senescence (10). Polyploidy has been described in the liver, placenta,
kidney, skin, brain, breast, and heart. We and others have described
AEC2 hypertrophy in response to lung injury (11, 12). However, with
rare exceptions (13), polyploidy has not been described in the alveolar
epithelium.

In this issue of the Journal, Weng and colleagues (pp. 564–576)
identify polyploid AEC2s during repair after lung injury (14). This
novel and important finding was demonstrated in the bleomycin
mouse model of fibrosis and in cultured AECs and by both
immunostaining and flow cytometry. Elegant live imaging studies
revealed failed cytokinesis as the mechanism. Polyploid AECs are
hypertrophic, although not all hypertrophic AECs are polyploid.
Although some polyploid AECs exist in the transitional AEC state,
mature AEC2s and (at least in vitro) AEC1-like cells can also be
polyploid. Sophisticated lineage-tracing studies using Confetti mice
revealed mononuclear as well as binuclear polyploid AECs. Inhibition
of the integrated stress response (ISR) prevented or attenuated AEC
hypertrophy and polyploidy in vivo and in vitro. Taken together with
prior work by these investigators demonstrating the pathogenic role
of the ISR in fibrosis (15), these data suggest that ISR activation in

proliferating AEC2s leads to cytokinesis failure, resulting in cell
hypertrophy and polyploidy, which may lead to fibrosis. Thus,
whereas physiologic alveolar regeneration restores normal cell
numbers and tissue architecture via cell proliferation and
differentiation,Weng and colleagues propose polyploidy, yielding
altered cellular makeup, as a driver of fibrotic repair (14).

As with any study, minor technical limitations exist. Polyploidy
was quantitated by planimetry, counting binucleated cells on two-
dimensional sections. Because larger cells are more likely to be
captured on two-dimensional sections (11, 16), the reported
polyploidy rate may be an overestimate. In vitro data suggest but do
not prove that the ISR drives polyploidy in a cell-autonomous fashion
in vivo. However, that polyploid AECs arise during fibrotic repair
after lung injury in an ISR-dependent manner is a novel and
important finding that significantly advances our understanding of
the mechanisms by which physiologic regeneration is diverted toward
fibrosis, adds the lung to the list of mammalian tissues in which
polyploidy arises after injury, proposes a novel mechanism by which
the ISR drives fibrosis, and reaffirms the promise of ISR inhibition as
a therapeutic strategy.

This pivotal study establishes a foundation for further
investigation. First, the mechanism by which the ISR induces
endoreplication should be studied. Mechanical tension and
YAP/TAZ signaling have been implicated in failed cytokinesis (9)
and in pulmonary fibrosis (7, 17); how cross-talk between YAP/TAZ,
mechanical tension, and the ISR impairs cytokinesis should be
investigated. Second, the mechanism by which AEC polyploidy might
drive fibrogenesis remains to be determined. The authors reason that
by generating fewer progenitor AEC2s than mitosis, endoreplication
limits the future regenerative potential of the lung (14). However,
endoreplication of cells at the leading edge of wounds can be
synchronized with proliferation of cells distal to the wounds (10).
Likewise, endoreplication of some AEC2s may be integrated with
enhanced proliferation of other AEC2s or Scgb1a11 progenitors (18).
In addition, under certain circumstances, polyploid cells can divide,
restoring normal numbers of diploid cells (9). That ploidy reversal
drives fibrosis resolution in the bleomycin model is an intriguing
possibility. Finally, even if polyploid AECs have diminished
regenerative capacity, exactly how a paucity of epithelial progenitors
activates fibroblasts is unknown. Polyploid AECs in the transitional
state likely activate fibroblasts via integrin avb6-mediated
transforming growth factor-b activation (2, 3, 17).

More fundamental is the question of whether and under
what circumstances polyploidy is pathologic versus adaptive.
The ISR drives polyploidy (14) and drives fibrosis (15). However,
whether the ISR drives fibrosis by driving polyploidy is not
entirely clear. In other words, in the setting of lung injury and
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repair, is polyploidy pathologic or an adaptive response to
cellular stress? Polyploidy offers several advantages over
proliferation as a means to restore tissue mass after injury
(Figure 1). Cell hypertrophy restores barrier integrity and tissue
mass in a faster and more energy-efficient manner and avoids the
cell–cell and cell–matrix adhesion disassembly that is required
for cell division but compromises the barrier (10). Moreover,
polyploidy arises in the setting of DNA damage, which can
prevent cell proliferation. Moreover, polyploidy protects against
cell death, the propagation of deleterious mutations after DNA
damage, and loss of heterozygosity of tumor suppressor genes (9,
10). Finally, with an increased number of genomes, polyploid
cells are capable of enhanced gene transcription and protein
synthesis and are therefore inclined toward hypermetabolic states
and cell growth (1, 9). An adaptive role for polyploidy in the
context of regeneration has been demonstrated in the liver,
kidney, and skin (1, 9, 10). However, polyploidy can also be
maladaptive. When they do divide, polyploid cells are
predisposed to chromosome missegregation (aneuploidy),
driving oncogenesis (9, 10). Still, cellular heterogeneity due to
aneuploidy may enhance organ-level fitness (9). Polyploidy
impedes regeneration in some cell types, such as cardiomyocytes
(1), although further polyploidization compensates modestly for
cell death after injury (9).

The AEC transitional state is likely adaptive when transient but
pathologic when persistent (2–7). The ISR evolved as an adaptive
response to cellular stress, inhibiting global protein translation and
promoting expression of molecular chaperones during impaired
proteostasis. After lung injury, polyploidy likely initially arises as an
adaptive response to cellular stress, promoting physiologic
regeneration, but when persistently activated becomes pathologic,
promoting fibrogenesis. Future studies aimed at dissecting the
mechanisms by which adaptive processes such as the ISR, polyploidy,
and the transitional state persist, are interdependent, and are hijacked
to become pathologic may ultimately lead to the identification of
novel therapies to promote physiologic regeneration and attenuate
fibrosis.�
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Figure 1. After duplication of the DNA during the S phase of the cell cycle, diploid cells can undergo cytokinesis, yielding two diploid cells
(mitosis). During endoreplication, failed cytokinesis yields polyploid cells, which can be mononucleate or binucleate, depending on whether
nuclear division (karyokinesis) is preserved. Polyploidy has advantages and disadvantages. In this study (14), the authors demonstrate that
activation of the integrated stress response results in failed cytokinesis, leading to polyploidy. ISR= integrated stress response.
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