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ABSTRACT: With the current COVID-19 outbreak, it has become essential to
develop efficient methods for the treatment and detection of this virus. Among the new
approaches that could be tested, that relying on nanotechnology finds one of its main
grounds in the similarity between nanoparticle (NP) and coronavirus (COV) sizes,
which promotes NP−COV interactions. Since COVID-19 is very recent, most studies
in this field have focused on other types of coronavirus than COVID-19, such as those
involved in MERS or SARS diseases. Although their number is limited, they have led to
promising results on various COV using a wide range of different types of nanosystems,
e.g., nanoparticles, quantum dos, or nanoassemblies of polymers/proteins. Additional
efforts deserve to be spent in this field to consolidate these findings. Here, I first
summarize the different nanotechnology-based methods used for COV detection, i.e.,
optical, electrical, or PCR ones, whose sensitivity was improved by the presence of
nanoparticles. Furthermore, I present vaccination methods, which comprise nano-
particles used either as adjuvants or as active principles. They often yield a better-
controlled immune response, possibly due to an improved antigen presentation/processing than in non-nanoformulated vaccines.
Certain antiviral approaches also took advantage of nanoparticle uses, leading to specific mechanisms such as the blocking of virus
replication at the cellular level or the reduction of a COV induced apoptotic cellular death.

■ INTRODUCTION

With the spread of the COVID-19 epidemic and the disorders
that it has caused, i.e., an increased mortality rate, a saturation of
the hospital infrastructures, and a sudden major slow-down of
the world economy, it appears essential to better understand the
behaviors of coronaviruses (COV) and to develop efficient
methods for their detection and destruction. To this end, an
enormous research effort has been implemented worldwide,
which mainly relies on drug repositioning, i.e., testing as COV
treatments drugs such as chloroquine and remdesivir or their
derivatives, which have shown their efficacy against other
diseases than COV, i.e., malaria and HIV.1 Such an effort could
be complemented by other approaches, e.g., in the field related
to nanotechnologies for COV treatment. Indeed, the sizes of
these viruses are similar to those of nanoparticles, hence
promoting NP-COV interactions and potentially resulting in
similar behaviors between NP and COV.2 Thus, it has been
suggested that certain drawbacks of standard attenuated/
inactivated vaccines, such as their pathogenic virulence or
weak immune responses, could be overcome by using
nanoformulations (NF). This is due to sizes, shapes,
functionalities, and antigen presentation/processing that could
be favorably adjusted in NF, potentially yielding a more efficient
and better-controlled immune system response for nano-
formulated than non-nanoformulated drugs.3,4 Here, methods
using various types of nanotechnologies that have been tested

for diagnosis and treatment of COV are reviewed. The different
fields in which nanotechnologies could help to bring a solution
linked to the COVID-19 crisis are (i) the development of a
cheap and rapid test for diagnosing COVID 19 that could be
deployed worldwide over the entire population,1 (ii) the
prevention of virus replication and viral RNA synthesis, for
example, by using nanoparticles that block the interaction
between COVID 19 and the cellular receptor ACE-2,5 (iii) the
development of new nanoparticle-based-vaccine,3 and (iv) the
restoration of innate immunity among infected patients.3

Nanomaterial safety is a prerequisite for their administration
to humans. To ensure this, regulatory agencies have set up
specific regulations with dedicated biocompatibility tests.6

Although it is difficult to consider nanomaterial safety in general
terms due to the huge diversity of these materials, certain
nanoparticles such as those composed of iron oxide have been
granted authorization for human injection,7 and could therefore
potentially be tested clinically against COVID 19. Due to the
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recent outbreak of COVID-19, the majority of studies relates to
other types of coronaviruses than COVID-19, i.e., human COV
such as those associated withMiddle East Respiratory Syndrome
(MERS) and Severe Acute Respiratory Syndrome (SARS)
diseases, and animal COV such as Feline Coronavirus (FCOV),
Porcine Epidemic Diarrhea Viruses (PEDV), and Infectious
Bronchitis Virus (IBV). The use of similar treatment strategies
for COVID-19 than for these other COV may be foreseen, but
even so, such therapies remain exploratory, and no effective
MERS/SARS vaccine has yet been put in place to the author’s
knowledge.

I. GENERALITIES ABOUT CORONAVIRUS
TREATED/DETECTED WITH NANOTECHNOLOGIES,
I.E., SARS, MERS, IBV, FCOV, TEGV, AND PEDV

Coronavirus (COV) comprises 50−150 nm viruses, which are
made of nucleocapsid (N) proteins attached to positive single-
stranded RNA covered by an envelope, which consists of a lipid
bilayer containing membrane (M), envelope (E), and spike (S)
proteins.8−10 Under simplified terms, coronavirus replication in
the organism is characterized by the following chain of events:
(i) attachment of viral spike (S) glycoprotein to its
complementary host cell receptor, (ii) virus endocytosis in
cells, (iii) virus uncoating, (iv) virus replication, and (v) virus
release.10 COV can infect humans (COVID-19, SARS, and
MERS), chickens (IBV), cats (FCov), or pigs (PEDV and
TGEV). It was suggested that some coronavirus could be
transferred from one species to another. For example, it was
reported that SARS and MERS could originate from bats or

camels, which seems to be based on viral ARN similitudes
observed between these different species.11,12 Following an
incubation period, coronaviruses affect specific parts of the
organism such as tract or gastrointestinal system, potentially
resulting in severe diseases such as pneumonia.13 Coronavirus
detection is usually carried out through ELISA, immunofluor-
escence, PCR, and/or chest X-rays.14 While coronavirus
infection can be avoided through vaccination for PEDV,15

vaccines have not yet been developed for SARS and MERS.16

II. NANOTECHNOLOGIES TO PREVENT COVID-19
INFECTION

Transmission of COVID 19 occurs through droplets containing
the virus that are emitted by an infected person through
coughing, sneezing, or talking. These droplets are either directly
transmitted to another person in proximity or are evaporated to
end up as dried nuclei located at the surface of an object such as a
knob, a button, a table, or a door. From a general standpoint,
virus transmission can be prevented by isolating the infected
person, by cleaning contaminated objects, by frequently washing
hands, or by wearing personal protection equipment.17,18 This
latter aspect, notably the necessity (or not) to wear masks, has
been the topic of contradictory recommendations from the
authorities. This is essentially due the lack of knowledge on the
efficacy of existing masks to filter COVID 19 virus. With the size
of COVID 19 being nanometric, nanotechnological tools can
help to clarify this issue. To this aim, a study has been led to
compare the filtering efficacy of common masks made of cotton,
silk, chiffon, flannel, and their combination.19 It concluded that a

Figure 1. Schematic diagrams showing different examples of nanomaterial-based COV detection methods. (a) Fluorescent Zr QDs and magnetic
nanoparticles are conjugated with antibodies that specifically bind to COV. In the presence of COV, amagnetic fluorescent complex is formed, which is
isolated magnetically and detected by fluorescence measurements. (b) Nanotraps are used to concentrate COV and improve their stability, hence
facilitating their detection. (c) Reverse transcription PCR is carried out in the presence nanoparticles, improving the efficacy of the polymerase chain
reaction, and resulting in a better detection sensitivity of this method. (d) COV detection method, which is based on the interactions between
complementary DNA originating from COV and acpnPNA probe at the surface of Ag NP, which results in a separation between Ag NPs, and a yellow
color associated with the luminescence of well dispersed Ag NPs, further revealing COV presence.
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mask made of a single fabric or containing holes was not optimal
for filtering COVID 19, while that comprising a combination of
cotton and silk, cotton and chiffon, or cotton and flannel could
filter 80−90% of the virus, where such enhanced efficacy was
attributed to a mechanism relying on a combination of
mechanical and electrostatic interactions between the virus
and the fabrics that could only be reached by combining
materials. Another group used electrostatically charged PVDF
nanofiber filters to capture the deadly airborne coronavirus.20,21

A third approach consisted of depositing nanostructured
graphene at the surface of surgical masks. Such masks became
superhydrophobic with a temperature that could reach 80 °C
under sunlight illumination, making them sterilizable and
reusable, an important aspect given the necessity to be able to
easily decontaminate masks to avoid virus spreading through
mask misuses.22

III. NANOTECHNOLOGIES USED FOR CORONAVIRUS
DIAGNOSIS

To avoid false positive/negative that can occur in standard
detection methods of COV such as PCR, ultrasensitive
nanodetection methods have been developed. Nanotechnol-
ogy-based COV detection methods are summarized in Figure 1.
They first rely on highly sensitive optical mechanisms. The latter
can be a measurement of fluorescence at 412 nm of a complex
made of Zr QDs bound to anti-COV antibodies linked to COV,
following magnetic isolation.23 It can also be fluorescence
detection of green fluorescent protein (GFP) comprising a
complex formed by SARS virus proteins attached to Au NP
whose fluorescence is different from that of free GFP.24 It can be

based on several calorimetric assays enabling COV detection by
using Au associated with various entities such as double-
strandedDNA that specifically bind to COV,25 antibodies acting
against IBV spike proteins,26 or monoclonal antibodies (mAbs)
activated against PEDV,27 or by using Ag NP attached to
acpcPNA, which remain dispersed in the presence of
complementary COV derived DNA, giving rise to a detectable
color change.28 Au nanoislands were also functionalized with
specific DNA strands that bind to SARS-COV-2 nucleic acids
under heating produced by laser illumination followed by AuNP
plasmon absorption, enabling COVID-19 detection at virus
concentration as low as 0.22 pM.29 Another type of COV
detection method relies on the use of nanotraps that capture
COV, improving their stability and enabling their detection over
a long period of time.30 It was also reported that COV could be
detected with a biosensor made of carbon electrodes that
comprise Au NP associated with viral spike proteins, whose
response, i.e., peak current position/intensity, depends on the
presence (or not) of MERS-COV.31 In another approach, a
field-effect transistor (FET) coated with graphene sheets
attached to antibodies that specifically recognize COVID 19
spike proteins enabled the detection of these proteins in
different media (phosphate-buffered saline, culture medium,
clinical samples) down to COVID 19 concentrations of 1 fg/
mL.32 Finally, the efficacy of PCR, which is the most widespread
method of COV detection, can be improved by using
nanoparticles, either through the simultaneous (duplex)
detection of two virus types such as DNA and RNA viruses,
e.g., using nanoparticles conjugated to specific probes of these
viruses,33,34 or by making the polymerase chain reaction more
efficient in the presence than absence of nanoparticles.35,36 In

Figure 2. Schematic diagram presenting various types of nanotherapies used against COV, which are categorized as vaccines or antiviral drugs, and
comprise various types of Ag nanomaterials, i.e., free NP/NW or NP attached to graphene nanosheets, diphyllin inserted within PEG−PLGA vesicles,
various nanomaterials, i.e., Au NP, polymers such as PEI, PLGA, or chitosan, bound to COV antigens, nanoassemblies comprising COV antigens, as
well as an interesting nanocage used as vaccine despite its lack of COV antigen.
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general, compared to standard PCR, nano-PCR presents the
advantages of requiring a simplified operating mode, i.e., DNA/
RNA extraction, RNA purification, and reverse transcription
may not be needed, of resulting in a better sensitivity, and of
avoiding cross-contamination with other viruses.

IV. VACCINES CONTAINING NANOMATERIALS
TESTED AGAINST COV INFECTION

A series of nanoformulated anticoronavirus vaccines, which are
presented in Figure 2, were developed. They often resulted in a
better efficacy than their non-nanoformulated counterparts.
Such vaccines contain a backbone made of gold nanoparticles,
polymers such as PLGA, chitosan, and PEI, or protein
assemblies. This backbone is conjugated or associated with an
active principle consisting of COV antigen, inactivated or
destroyed COV, DNA expressing certain COV proteins, or
specific COV proteins such as spike ones (Table 1). Although a
nanoparticulate formulation usually refers to a material whose
size is between 1 and 100 nm,6 the sizes of these vaccines could
exceed this upper limit, ranging from 12 to 600 nm (Table 1).
Other specific properties of these vaccines include their charge,
which is positive when it is measured apparently corresponding
to the charge of their coating material, and their shape, which is
most often reported as spherical (Table 1). When animals such
as mice and chicken were immunized with vaccines, it led to a
production of cytokines, i.e., essentially γ-IFN, IL-1β, IL-2, and
IL-6, as well as an activity of certain immune cells such as
macrophages, lymphocytes, and B cells, which were more
important using formulated than non-nanoformulated vaccines.
To the author’sknowledge, it was not reported whether the
immune reaction was dominated by a humoral or cell mediated
response. In fact, both types of responses seem to occur,
resulting in some cases in the restoration of respiratory body
activity and protection of specific body parts such as the trachea.
Whereas in most cases, a specific antigen originating from COV
was inserted in the nanoformulation to trigger a reaction against
the virus, an interesting study presented a nanoformulated
system, i.e., a protein cage nanoparticle (PCN), which was
devoid of such antigens. Following its injection to mice, it
resulted in the production of antiviral antibodies, and led to an
increase in mouse survival. Beyond the explanation provided,
i.e., the development of inducible bronchus-associated lymphoid
tissue (iBALT) in the lung that triggered T and B cell responses,
the most interesting aspect of this study seems to lie in the fact
that a specific antigen may not be absolutely necessary for a
nanoformulated COV vaccine to be efficient.37 Very recently, a
clinical trial was launched to study the efficacy of a vaccine
against COVID 19 containing m-RNA lipid nanoparticles.38 Its
outcome is pending.

V. ANTIVIRAL NANOMATERIAL DRUGS STUDIED TO
FIGHT CORONAVIRUS

Even so, nanoformulated vaccines aimed at triggering an
immune response against COV, while antiviral nanoformula-
tions should prevent certain interactions between virus and cells
or their consequences, these two types of mechanisms, whose
details are provided in Figure 3, can coexist together. The study
of the response of the immune system was carried out in vivo to
be able to monitor the production of specific antibodies acting
against COV, whereas antiviral behaviors were examined in vitro
to decipher the mechanisms of virus interactions with cells. As
presented in Figure 2 and Table 2, antiviral nanoformulationsT
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were reported to be of essentially four types: (i) the antiviral
agent diphyllin encapsulated in PEG−PLGA copolymers of 40
nm,39,40 (ii) Ag nanoparticles of 7.5 nm bound to graphene
nanosheets,41 (iii) Ag2S nanoclusters of 3.2 nm,42 and (iv)
several Ag based nanomaterials including Ag nanoparticles of 20
nm and Ag nanowires of 60 and 400 nm diameters.43 The
antiviral activity of these nanoformulations against COV was
first achieved by blocking cellular endosomal acidification,
which seems to be an essential step in COV replication, using an
ATPase blocker, diphyllin, which is nanoformulated to yield a

good solubility and be released in a sustainable manner. It
resulted in efficient COV replication blockage in fcwf-4 cells.39,40

Second, inhibition of the synthesis of viral RNA was reached by
using the various types of Ag nanomaterials mentioned
above.41−43 Third, antiviral activity could be associated with a
certain level of cellular immune response, as highlighted by the
expression of pro-inflammation cytokines following cellular
exposure to Ag NP.42 Fourth, it could correspond to a reduction
of COV-induced apoptotic cellular death in the presence of Ag
nanomaterials.43 Finally, for the treatment of COVID 19, it has

Figure 3. Schematic diagram presenting the proposedmechanisms of action of the various nanomaterials, which are mainly based on the stimulation of
various parts of the immune system against COV for vaccines and on the inhibition of COV replication at cellular level or the prevention of COV-
induced apoptotic cellular death for antiviral drugs.

Table 2. Antiviral Drugs against COV Relying on Various Nanotechnologies

Nanomaterial
backbone Size (nm) shape ZPa

Active
substance

COV
type

Admin
routeb In vitro/in vivo data refs

PEG−PLGA 40 nm diphyllin FCoV NA In fcwf-4 cells, PEG−PLGA-diphyllin reduces endosomal
acidification:

39, 40

→ Inhibits V-ATPase and virus replication
Graphene-Ag 7.5 nm Ag NP Ag NP FCoV NA In fcwf-4 cells, GO-Ag inhibits virus infection of FCoV 41

→ Mechanism warrants further studies
Ag2S Nanoclusters 3.2 nm Sphere Ag2S

nanoclusters
PEDV NA In Vero cells, Ag2S NC reduce PEDV infection 42

→ inhibits production of viral RNA and viral budding
→ Activates IFN-stimulating genes pro-inflammation
cytokines

Ag NP and NW 60−400 diam (NW) <20 nm
(NP)

Ag NP/NW TGEV NA In ST cells, Ag NP/NW reduce TGEV infection 43

↓ number of apoptotic cells induced by TGEV
→ Regulation of p38/mitochondria-caspase-3 signaling
pathway

aZeta potential. bRoute of administration of nanomaterials.
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been suggested to use certain nanomaterials with a structure
similar to that of ACE-2 receptor, which plays a central role in
COVID 19 cellular internalization and replication. Such
materials consisted of peptid inhibitors derived from the
protease domain of ACE-2, which specifically bind to COVID-
19 receptor binding domains, hence potentially preventing
COVID 19 multiplication in cells.5

VI. INDIRECT TREATMENT/DETECTION METHODS OF
COVID-19

In addition to methods of direct virus destruction presented
above, the bases of other therapeutic approaches have been
introduced, whose mechanisms of action rely on the correction
of certain dysfunctions of the organism due to the virus. For
example, the modification of the microbiote induced by COVID
19, which is suspected through several signs among infected
patients such as diarrhea, a relatively long incubation time of 2−
5 days of the virus, the transmission of the virus through fecal
route, but is not formally demonstrated, could be examined. On
one hand, nanomaterials could be used for the detection of
compounds or inflammatory proteins originating from a
disturbed microbiota, which could indirectly reveal the presence
of COVID 19. On the other hand, nanomaterials could serve to
improve the local delivery of drugs in the gut, which would fight

against COVID 19 by restoring healthy activity of the
microbiome.44

■ CONCLUSION

In this topical review, I have highlighted the potential of certain
nanotechnologies for improving the detection and destruction
of coronavirus. Concerning COV detection using nanomateri-
als, it either allows specific COV binding at NP surface or
improves PCR efficacy, generally leading to better sensitivity
compared with other detection methods. Compared with their
non-nanoformulated counterparts, nanodrugs display a series of
advantages in the fight against COVID 19 such as an improved
drug safety and solubility,45 better virus inhibition,5 and more
efficient immune response and organ targeting,3,4 as summar-
ized in Figure 4. In addition, when they are included in vaccines,
they can replace standard adjuvants. The appealing properties of
these nanomaterials have been highlighted not only through
their use in new vaccination methods but also in the context of
specific antiviral treatments, where nanoformulated antiviral
drugs could block virus replication, trigger an anti-COV immune
response, or prevent COV-induced apoptotic cellular death.
In order to develop nanotechnology based treatments for

COVID 19, certain additional aspects that have not been
mentioned in the literature should be examined. They notably
concern the interactions between nanomaterials and cells or cell

Figure 4. Summary of the various advantages of COV nanotherapies, which could be deduced from literature analysis.

Bioconjugate Chemistry pubs.acs.org/bc Review

https://dx.doi.org/10.1021/acs.bioconjchem.0c00287
Bioconjugate Chem. XXXX, XXX, XXX−XXX

G

https://pubs.acs.org/doi/10.1021/acs.bioconjchem.0c00287?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.bioconjchem.0c00287?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.bioconjchem.0c00287?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.bioconjchem.0c00287?fig=fig4&ref=pdf
pubs.acs.org/bc?ref=pdf
https://dx.doi.org/10.1021/acs.bioconjchem.0c00287?ref=pdf


receptors that should not only prevent virus replication but also
yield minimal cellular toxicity. These two aspects should
probably be studied in parallel to evaluate the benefit/risk
ratio of nanomaterial-based treatment against COVID 19.
Furthermore, the efficacy of nanotechnology-based vaccines or
antiviral drugs against COVID 19 should be tested on suitable
animal models such as hACE2 transgenic mice,46 a task that has
not been undertaken to the author’s knowledge. The fact that we
urgently need a treatment against COVID 19 should not make
us skip some essential steps in drug development. It appears
insufficient to start a human clinical trial based only on the
observation of cellular drug efficacy. Drug assessment on animals
is essential to examine the conditions under which a drug is
efficient, notably to determine preclinically the dose or
administration route of anti-COV 19 nanoformulated drugs
that could potentially result in treatment efficacy on humans.
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IMPMC, 75005 Paris, France; Nanobacterie SARL, 75116
Paris, France; Institute of Anatomy, UZH University of Zurich,
CH-8057 Zurich, Switzerland; orcid.org/0000-0002-2952-
2270; Phone: 0033632697020; Email: edouardalphandery@
hotmail.com

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.bioconjchem.0c00287

Notes
The author declares the following competing financial
interest(s): The author has been working in the start-up
Nanobacterie (http://www.nanobacterie.fr).

■ ACKNOWLEDGMENTS

We would like to thank the BPI (“banque publique d’investisse-
ment, France”), the region of Paris (“Paris Reǵion Entreprise,
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