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Abstract

Visualizations of biomolecular networks assist in systems-level data exploration in many cellular processes. Data generated
from high-throughput experiments increasingly inform these networks, yet current tools do not adequately scale with
concomitant increase in their size and complexity. We present an open source software platform, interactome-CAVE
(iCAVE), for visualizing large and complex biomolecular interaction networks in 3D. Users can explore networks (i) in 3D
using a desktop, (ii) in stereoscopic 3D using 3D-vision glasses and a desktop, or (iii) in immersive 3D within a CAVE
environment. iCAVE introduces 3D extensions of known 2D network layout, clustering, and edge-bundling algorithms, as
well as new 3D network layout algorithms. Furthermore, users can simultaneously query several built-in databases within
iCAVE for network generation or visualize their own networks (e.g., disease, drug, protein, metabolite). iCAVE has modular
structure that allows rapid development by addition of algorithms, datasets, or features without affecting other parts of the
code. Overall, iCAVE is the first freely available open source tool that enables 3D (optionally stereoscopic or immersive)
visualizations of complex, dense, or multi-layered biomolecular networks. While primarily designed for researchers
utilizing biomolecular networks, iCAVE can assist researchers in any field.
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Introduction

Interaction networks are one of the primary visual metaphors
for communicating and understanding -omics data at a sys-
tems level. From cellular organisms to human society, net-
works provide critical clues on systems-level behavior [1–3]. In

biomedicine, they are essential for understanding normal [4, 5]
and disease states [6–9], and they are instrumental for drug dis-
covery [10–12] and biomarker identification [13–15]. Changes in
networks have helped in prognosis for breast cancer patients [6],
analyzing systematic inflammation in humans [8] or studying
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emerging tumor markers [16]. Network visualizations are thus
important in basic and translational biomedical research, with
an abundance of tools for their exploration [17, 18]. Many tools
are also coupled with public databases, enabling visualizations
in the context of previous knowledge [17]. In fact, currentlymore
than 500 resources are listed at Pathguide, [19] with thousands
of networks and millions of biomolecular interactions [20].

Among currently available tools, Cytoscape [21] and Gephi
[22] are quite popular. There are also a number of JavaScript
network visualization libraries (e.g., sigma.js [23]), and software
packages (e.g., iGraph [24]) on the web. However, the layout al-
gorithms in these libraries and employed in Cytoscape [25], in
addition to other tools like Ingenuity [26], Osprey [27], VisANT
[28], and BINA [29], to name a few, are limited by the number
of molecules and interactions that can be displayed on a 2D
screen, and the associated layout and representation challenges.
Furthermore, recent technological developments have increased
the size and complexity of -omics experimental data, with si-
multaneous recordings from multiple cellular events leading to
unprecedented growth in interaction data [30]. New approaches
are necessary to address the visualization design challenges that
the concomitant large, complex, and multi-dimensional (multi-
layered) networks present to explore these systems.

Currently networks with 3D localizations (e.g., brain con-
nectivity networks or molecular complexes) are best explored
in 3D. For representing abstract data, taking advantage of the
third dimension can also allow for greater freedom; however, the
available 3D visualization options and tools are still somewhat
nascent in this domain. Stereoscopy, the projection of separate
images to each eye,which creates the illusion that virtual objects
have volumes in 3D space, has been shown to be particularly
beneficial for exploring large, complex networks, either alone or
combined with rotation or user motion cues [31–33]. Immersive
visualization environments, where users are virtually immersed
inside the image, have also led to better performance than 2D in
user studies for relatively difficult tasks and large networks [34].
For example, a CAVE environment, which includes projectors di-
rected to severalwalls of a room-sized cube to create the sense of
presence inside a virtual world, has been shown to help identify
a new network property that a 2D display failed [35]. The tech-
nology features that were particularly helpful were stereoscopy,
magnification, and wide field of view (the extent of the visual-
ized image observed by the user) [35]. However, a CAVE facility
is a substantial investment to build and maintain that only a
limited number of institutions have. Network visualizations in
stereoscopic and immersive 3D environments are still new, and
we currently do not have community tools to help us understand
how best to use them by conducting user studies on different
technology platforms and testing alternative layout algorithms
or to explore phenomena that involve large, complex networks.

Here, we introduce interactome-CAVE (iCAVE), an open
source tool for 3D, stereoscopic 3D, and immersive 3D visualiza-
tions of complex, large, and/or multi-layered networks. iCAVE
development is made possible by the continuous evolution of
data analysis tools in VR, stereoscopic visualization, and emerg-
ing 3D technologies. Use of VR technology in life sciences re-
search is still nascent [36–39], and so far does not include
free open source tools for biomolecular network visualizations,
mainly due to the limited portability of the technology to per-
sonal computers until recently. iCAVE is completely portable,
taking advantage of recent advances in computer graphics hard-
ware, software, and content creation that are leading to a pro-
liferation of stereoscopic visualization capabilities in personal
computing. Computers can now be upgraded to display high-

quality stereoscopic 3D visuals with low-cost stereoscopic 3D
glasses and software [40], which are much cheaper than re-
cent head-mounted displays (HMDs). As most scientific com-
puters are becoming stereo enabled and 3D glasses are going
mainstream, iCAVE is on the leading edge of this larger trend
in the evolution of visual computing technology. If a computer
is equipped with stereo capabilities, users can explore stereo-
scopic 3D visualizations. With large screens or curved walls,
users can additionally take advantage ofmagnification andwide
field of view. Users can also use iCAVE in immersive CAVE envi-
ronments. Without a CAVE or a stereo-equipped computer (or if
users choose to turn off stereo), iCAVE provides interactive 3D
visualizations that still offer most of its features.

Note that while few network visualization tools incorporate
3D layouts [41–43], they are not immersive 3D, i.e., they do not
have interoperation capability with virtual reality (VR) technolo-
gies, and have 2D displays. For example, Arena 3D [41] mixes 3D
and 2D properties by arranging data in multilayered graphs in
2D, with each layer representing a different data type. While the
tool includes several layout and clustering algorithms for each
layer and has zoom and rotation features, it does not offer global
layout and clustering algorithms to make full use of the third
dimension, and each layer is in 2D [41]. 3DScapeCS [42] is a Cy-
toscape PlugIn written in Java, with built-in extensions of the
classic 2D force-directed layouts. Users cannot add new layouts
or functionalities, and it does not utilize 3D effects to improve
comprehension (e.g., transparency or advanced shadow effects).
BioLayoutExpress (now Miru) [43] is a standalone 3D application
specifically designed for gene expression networks that offers
three network layouts, a clustering method, no edge bundling,
and limited network topology statistics. Importantly, it is not
freely available. In summary, 3D biomolecular network visual-
ization is a nascent field. We need free open source tools for bi-
ologists to visualize their networks and for algorithm developers
to add and test newmethods that take advantage of the third di-
mension. Such a tool will also enable visualization designers to
perform user studies to better understand the relative advan-
tages of various 3D features. This is necessary as how best to
utilize features specific to 3D or to take advantage of new 3D
technologies is currently an open research question.

To the best of our knowledge, iCAVE is the first 3D, stereo-
scopic 3D, and immersive 3D biomolecular network visualiza-
tion tool that is open source, freely available, and utilizable with
commercial hardware/software. iCAVE introduces new built-in
3D algorithms for laying out nodes and their connections in
3D space and has built-in topology-based graph clustering al-
gorithms. For example, it enables visual integration of multiple
clusters or data types within the same graph as a multi-layered
network (e.g., metabolomic, proteomic, genomic, genome-wide
association studies (GWAS) disease, protein-drug interactions).
Users can also add their own layout or clustering algorithms.
While not extensive, it includes a few built-in databases to as-
sist in preliminary mapping of high-throughput (HT) experi-
mental data in the early discovery phase of network building.
Customizable color, texture, size, and layout options assist in
displaying maximum information in a graph in an optimized
manner. Users can easily select edge colors, weights, and di-
rections or bundle edges for simplified views. Data are input in
a tab-delimited text file while visual outputs can be saved in
2D snapshots or movies configured with user-defined rotation,
zoom, and speeds. Additional reports on network statistics are
provided in 2D. Overall, iCAVE enables network explorations in
hypothesis-driven contexts that are flexible, collaborative, and
user friendly.
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Figure 1: Comparison of displays. (a) User interacting with a flat 2D display of manually curated pathways affected by genomic alterations in glioblastoma [44]. (b) User
experiencing full 3D depth perception of the same network with iCAVE using stereoscopic glasses on his desktop. iCAVE display is generated with a force-directed

layout algorithm. The visual clutter problem due to edge crossings that create a hairball effect in 2D is eliminated as the user can navigate to multiple viewpoints.
(c) A screenshot from the 3D display generated with the force-directed layout. This network is generated without a priori knowledge of the underlying biology; rotating
the layout helps readily identify hubs, connectors, and modules, such as the connectors between 2 dense regions of the network (highlighted with an asterisk in

both (a and c). (d) Immersive visualization in a CAVE environment, with user inside data space at Weill Cornell 3D CAVETM facility in New York. While the photos
only capture images reflected on the interaction walls of the CAVE, the user experiences a virtual 3D image. In both (b and d), zoom and rotation options help users
focus on a particular hub or module. While the addition of the third dimension gives a richer, more intuitive, and ultimately more meaningful understanding of the
network-represented data, the 3D layout brings a new modality into network visualization design, with clear layouts.

In the following section, we first discuss our main contribu-
tions and findings on visualizing networks that are large, with or
without known 3D physical coordinates, and with multiple data
types using iCAVE. We then introduce the algorithms we imple-
mented in iCAVE for network layout and clustering and discuss
input and output formats, as well as performance and scalabil-
ity aspects. Then, we summarize the features of iCAVE in the
Discussion section. Finally, in the Methods section, we provide
details on software libraries, user interface, network topology
statistics, and layout algorithms.

Results
Optional stereoscopy

iCAVE users can turn 3D stereoscopy on or off during explo-
ration. For example, consider rendering the 2D biomolecular
network in Fig. 1A that represents a pathway affected by ge-
nomic alterations in glioblastoma [44]. Instead of the static 2D
network in Fig. 1A, users can experience full 3D depth perception
at the comfort of their own stereo-equipped computer (Fig. 1B),

or inside a CAVE (Fig. 1D) using a simple 3D extension of a classi-
cal force-directed layout algorithm (Fig. 1) [45]. Even users with-
out a stereo-equipped computer can interact with the 3D net-
work: they can use their mouse (in lieu of hand-held controls)
to zoom in/out or rotate the network to a view without occlu-
sions. Rotation and zoom enables viewing the network from
different view angles, such as the screenshot in Fig. 1C. User
studies have shown that even simple 3D features like rotation
help better identification of properties unique to complex net-
works [33]. Visualizations using stereoscopic 3D or immersive
environments that enable inspection of a system from multi-
ple perspectives have also been shown to make different prop-
erties of a system clearer [46]. Our case study supports this
as we observed a network feature that was not intuitive from
the original 2D layout in Fig. 1A: nodes CBL and SPRY2 (with ∗)
are “connectors” between 2 dense network regions (modules)
(Fig. 1A–C). A targeted attack to these genes can splits the net-
work into two. We could not identify this in 2D. Such discover-
ies of network topological features, among others, give a richer,
more intuitive, and ultimately more insightful understanding of
networks.
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Figure 2: (a) iCAVE visualization of bacterial leucine transporter, LeuT residue correlation network, side-view. Nodes represent 3D coordinates of alpha-carbon of a
residue; edges represent top 3,000 (Pearson) correlations between residue pairs, where the input is 3D coordinates and correlation scores. Surprisingly, 3D visualization
with edge bundling enables representation of highest-density correlations (“correlation highways”) that travel through the substrate permeation pore in the protein

center, connecting extracellular and intracellular domains. Correlation highways at the pore are visually fascinating and biophysically intuitive; some residues outside
the pore reveal unexpected structural importance (data courtesy of Michael LeVine and Harel Weinstein). (b) Living human brain connectivity. iCAVE visualization of
brain regions as nodes, labeled by anatomical region name. Edges show connectivity, and bundling shows “connectivity highways.” Datasets from diffusion tensor
imaging of the left hemisphere scanned ith Siemens 1.5Tesla and generated by fiber assignment by continuous tracking tractography using the University of California,

Los Angeles, Multimodal Connectivity Package, connectivity matrix module. The database is powered by the Human Connectome Project, which compiles neural data
to achieve never before realized conclusions on the living human brain.

Addressing large networks

Important characteristics may be missed if users cannot inter-
act with the complete network. In the simplest case, the nodes
may form (i) dense sub-networks that are interconnected by
a small number of “connector” nodes that render them crit-
ical or (ii) multiple networks (often 1 giant and few smaller
networks) where the smaller sub-networks may represent
functional groups of importance, such as a critical enzyme com-
plexes. Hence, visualizing the complete network can be advan-
tageous even if it is very large to identify local patterns [47].
However, while the human brain has a remarkable capacity to
visually identify patterns, enabling interpretation of data, visu-
alizations of large networks may exhibit problems with display
clutter, molecular positioning, or perceptual tension, leading the
user tomisinterpret closely positionedmolecules as related [48].
Such misinterpretations are inherent in the limitations of hu-
man visual perception and have been well-studied in (Gestalt)
psychology: people tend to organize visual elements into groups
[49].

Three-dimensional elements that appear to form a pattern
because of their visual positioning in one viewpoint can be in-
terpreted correctly by rotating the image to a different viewpoint
(e.g., Fig. 1). Furthermore, in networks that are denser or larger
than that of Fig. 1, the potential 2D “hairball” effect can obscure
important interactions. iCAVE users can simply navigate to a
view without occlusions by moving their head, rotating the im-
age, and zooming in or out, eliminating “edge-crossings.” To fur-
ther address cluttering, iCAVE provides an “edge-bundled dis-
play” [50] option for visually bundling adjacent edges together,
analogous to bundling electrical wires or cables. Bundling is

extremely useful in identifying global patterns in very large net-
works and can suggest vulnerabilities as targets. Several lay-
out algorithms built-in within iCAVE address the molecular po-
sitioning problem; depending on the topology of a network,
one may work better than another. We suggest testing each
to see which works best. We provide examples of how these
features can help with exploring a network in the following
sections.

New biological insights from networks with known
3D physical coordinates

Users can visualize physically constrained networks at multi-
ple scales, from proteins (Fig. 2A) to the whole brain (Fig. 2B).
Coupled with edge bundling, these can provide insights in hy-
pothesis generation. For example, Fig. 2A represents a snapshot
of bacterial leucine transporter (LeuT) residue correlation net-
work, where nodes represent 3D coordinates of alpha-carbon
of a residue and edges represent top 3,000 (Pearson) correla-
tions between residue pairs from a Molecular Dynamics simu-
lation (Michael LeVine, personal communication). Remarkably,
bundling the edges of this network enables the representation
of highest-density “correlation highways” that travel through
the substrate permeation core in the protein center, connecting
extracellular and intracellular domains. These highways enable
users to identify specific residues that have dense correlations
with the permeation core even if they are away from it, which
is unexpected. These residues may have previously unidentified
importance in protein structure and function and are therefore
potential candidates for follow-up studies.
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Utilizing the third dimension for automated 3D layout
positioning in abstract networks

Biomolecular networks tend to follow basic and reproducible or-
ganizing principles, and navigating the entire network provides
a good initial understanding. The layout algorithmmust address
the complex problem of arranging the nodes to clearly dissem-
inate the network topology, and at the same time be visually
pleasant and user friendly. iCAVE offers several network layout
options to achieve these aims:

Due to user familiarity, we extended variations of the force-
directed layout to 3D: (i) the classical “force-directed algorithm”
[45] treats the network as a physical system with edges anal-
ogous to “springs” and nodes to “electrically charged parti-
cles” that repel each other, where the final layout is established
when the repulsive and attractive forces balance each other
[51]; (ii) “hybrid force-directed layout” [52] partitions the graph
into smaller units prior to applying the force-directed algorithm;
(iii) “lin-log layout” [53] is better suited for larger networks as
it keeps highly connected nodes in close proximity with min-
imal number of edge crossings. Alternatively, for larger net-
works, (iv) “coarsened force-directed layout” combines a force-
directed algorithm with an efficient, high-quality force-directed
graph drawing graph coarsening technique [54]; and (v) “simu-
lated annealing force-directed layout” uses simulated annealing
to rapidly scale to very large networks (see the Methods section)
[55].

We further implemented 2 novel layout algorithms to take
full advantage of immersive 3D features:

The “semantic levels layout algorithm” segregates the net-
work into separate layers (default 7) in the third dimension. The
layout of each layer is calculated with a 3D extension of the
force-directed approach. Semantic layers layout can be espe-
cially useful for user-defined networks where the number of lay-
ers and node assignments to layers can correspond to different
data types (e.g., a 2D projection in Fig. 4 and 3D video in Sup-
plementary Video 3, with layer1: genes; layer2: diseases; layer3:
drugs).

“Hemispherical layout” is a novel layout algorithm we have
developed that positions the network on the surface of a 3D
hemisphere. The most connected node is positioned at the top
center of the hemisphere. Then, the whole hemisphere surface
is populated based on a decreasing rank order of connectivity.
The node positions are fixed, and the edges are drawn on the
hemisphere surface (e.g., see a 2D projection in Fig. 5C and 3D
video in Supplementary Video 4).

Each layout algorithm has unique strengths, and we recom-
mend that the user test different options. Semantic layout is
often ideal for hierarchical networks. Force-directed layout of-
ten captures the essence of large networks. Hemispherical lay-
out leads to clean images with optional edge bundling (Fig. 5C;
Supplementary Video 4).

Illustrative examples on network layouts

Example 1
Visualizing the complete global network, even if it is very large,
can enable visual identification of a pattern. For example, con-
sider a large probabilistic causal network constructed from hu-
man omental adipose tissue in a morbidly obese patient cohort
in Fig. 3A. The network consists of 7,601 nodes, 13,979 edges
[56]. Nodes are the genes expressed in tissue; edges are derived
from a Bayesian network reconstruction algorithm that lever-
ages DNA variation for causality. Here, we highlight nodes that

represent a signature of genes causally associated with inflam-
matory bowel disease (IBD) single nucleotide polymorphisms
or disease pathways. Notice that within this global view of the
massive network, there is a pattern of the IBD genes clustering
together, which visually supports the hypothesis of functional
relatedness.

Example 2
While force-directed layout algorithms can help identify global
patterns, if the interaction network has a hierarchy, semantic
layers layout can help visualize the hierarchical nature of the in-
teractions easily. For example, Fig. 3B displays the global view of
a network generated from The Encyclopedia of DNA Elements
(ENCODE) [57] study data. The ENCODE Consortium is gener-
ating a comprehensive parts list of the human genome func-
tional elements, including those that control active genes, such
as transcription factors (TFs). Utilizing these unprecedented vol-
umes of data, Gerstein and co-workers have generated the mas-
sive network in Fig. 3B that includes 119 TFs that target 9,057
genes (nodes) via 26 037 interactions (edges) [58]. Using force-
directed layouts, users can capture the general network struc-
ture and differentiate a TF from its neighbors by zooming in/out,
adding labels to that specific TF, etc., and users obtain statistics
on network centrality and other global topological properties as
they pertain to the network. However, the semantic layers layout
is useful in visualizing the hierarchical nature of this network,
integrating TF, non-coding RNA (ncRNA), miRNA, and protein–
protein interaction data (Fig. 3D; Supplementary Video 2). Here,
network connectivity and hierarchy reflect genomic properties:
top-level TF binding correlates with target expression, and mid-
level contains “information flow bottlenecks” and connections
withmiRNAanddistal regions, revealing ideal drug targets. Such
multi-layered heterogeneous information integration assists in
differentiating intra-level interconnections as well as inter-level
edge types and node labels. Note that nodes in each layer are
also arranged in 3D using 3D force-directed layout.

Example 3
Visualizing the global network of interactions while scaling or
coloring a subset of the nodes based on their specific proper-
ties can enable hypothesis support. In this example, the visual-
ization helps support the principle that functionally significant
and highly conserved genes tend to be more central in physi-
cal protein–protein and regulatory networks [59]. Based on this
hypothesis, Fig. 3C visualizes a network of tolerance to loss-of-
function (LoF) mutations and evolutionary conservation, with
nodes for (LoF) tolerant (blue) and essential genes (red) easily
distinguishable [59]. Node size is based on degree of centrality
of a gene. While essential genes tend to be bigger and central,
LoF-tolerant genes are smaller and located in the periphery. Both
the 2D snapshot (Fig. 3C) and 3D Supplementary Video 1 provide
clear visualizations of this complex data that lead to easy in-
terpretation. Note that we have published an iCAVE-generated
visualization of a network with similar properties that helped to
support this hypothesis [60].

Multiple data types

COMBO database for simultaneous query of multiple data types
Publicly available biomolecular interaction data are often con-
tained in massive databases [19]. While not comprehensive,
iCAVE combines data from multiple resources into a sin-
gle COMBO repository to enable quick queries. These include the
protein–protein interaction databases Human Protein Reference
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Figure 3: iCAVE print-ready images of networks in 2D with a white background. (a) A large probabilistic causal network constructed from human omental adipose

tissue in a morbidly obese patient cohort (7,601 nodes, 13,979 edges) [56]. Nodes are gene expression traits in tissue; edges are derived from a Bayesian network
reconstruction algorithm that leverages DNA variation for causality. Highlighted nodes represent the gene signature causally associated with disease variants or
pathways. Signature genes cluster together, suggesting functional relatedness. (b) Network of 119 TFs, their 26,037 target interactions (edges) with 9,057 genes (nodes)
[58] from the ENCODE study. (c) Massive unified “multinet” of protein–protein interaction, phosphorylation, metabolic, signaling, genetic, and regulatory networks

(14 558 nodes, 109,597 edges). Multinet correlates tolerance to LoF mutations and evolutionary conservation, with nodes for (LoF) tolerant (blue) and essential genes
(red) easily distinguishable. Node size is based on the degree of centrality of a gene. Essential genes tend to be bigger and central, and LoF-tolerant genes are smaller
in the periphery. (d) Hierarchical network integrates TF, ncRNA, miRNA, and protein–protein interaction data. Hierarchy levels are based on the mutual relationships

between TFs. Connectivity and hierarchy reflects genomic properties (top-level TF-binding correlates with target expression; mid-level contains information flow
bottlenecks and connections with miRNA and distal regions, revealing ideal drug targets) (Mark Gerstein, personal communication). While a 2D figure cannot display
the interconnections between elements within the same hierarchical level, it is straightforward with iCAVE semantic levels layout.

Database [61] and Intact [62], the disease and associated gene
variants GWAS database [63], and drug-target databases STITCH
[64] and DRUGBANK [65]. Pathways database SuperPathway is
stored separately (Josh Stuart, personal communication). Users
can add their own databases without affecting other parts of the
code. Details on the COMBO database are given in Supplemen-
tary Table S1.

Visualizing multiple layers of data
Effective use of genomic information can depend on finding
systems-level connections between multiple types of informa-
tion, such as that between genomic variation, disease, and drugs
[66–69]. Visualizing such data with semantic layout can assist
in exploration in higher-level organization, all in 1 graph. The
user can pick a gene (e.g., the Aryl Hydrocarbon Receptor (AHR)
gene, dark blue) (Fig. 4A), query the COMBO database for dis-
eases associated with its variants (purple), and identify drugs
that target it (green) and drug candidates thatmay target it (light

blue) due to guilt by association for having common targets with
AHR-targeting drugs. These can serve as initial candidates for
subsequent binding site characterization. Querying the COMBO
database further generates a hierarchical network of proteins
that interact with AHR (Fig. 4B, middle layer), diseases associ-
ated with gene variants of AHR-interacting proteins (purple),
and AHR-targeting drugs (green).

Graph clustering algorithms to identify network motifs

Clustering is critical in network exploration as biomolecules that
cluster together tend be functionally related. iCAVE offers the
following graph clustering algorithms:

“Edge-betweenness clustering” (EBC) is the number of short-
est paths going through a particular edge. An edgewith a high EB
value connects multiple communities. At each step, the EBC al-
gorithm removes the edge with the highest EB value until it has
optimized a modularity metric on how unlikely the in-cluster
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Figure 4: Visualizing multiple layers of information. (a) Using the iCAVE interface, we can pick a gene of interest (e.g., AHR, dark blue) and query the COMBO database

for diseases that have been associated with AHR variants from GWAS studies (purple), drugs that are known to directly target AHR (green), and drug candidates that
may directly interact with AHR (light blue). These drugs serve as an initial screening list of candidates for subsequent AHR binding site characterization. Semantics
levels layout segregates the layers. (b) We can further query the COMBO database to generate a protein–protein interaction map of AHR (dark blue nodes, middle layer)
and visualize the diseases associated with known single nucleotide polymorphisms in genes that code for AHR-interacting proteins (purple) and drugs that directly

target them (green). We provide a more detailed movie of this 3-level semantics network with legible disease, gene, and drug names in Supplementary Video 3. For
both panels, users can click on any edge or node for further information (e.g., exact disease variant location from GWAS studies).

degree of a node is in comparison to a random edge. EBC [70]
is an attractive algorithm since it does not require an estimate
of the number of clusters a priori, unlike a majority of existing
graph clustering algorithms.

“Markov clustering” (MCL) [71] is a scalable and unsuper-
vised algorithm that assumes that the number of intra-cluster
connections is large and inter-cluster connections is small. It
is based on a bootstrapping procedure that simulates random
walks (flow) through the network, which expands or contracts
in parallel with regional connectivity.

“Modularity clustering” (MC) uses the first eigenvector of the
modularity matrix to assign nodes to clusters [72]. While ideal
for weighted networks, MC delivers intuitive layouts for net-
works that do not have weights as well.

Cluster visualization layout algorithms
iCAVE can easily visualize clusters generated by iCAVE or an-
other tool. By default, each cluster is positioned in space with
“force-directed layout” [45], analogous to node positioning. Ev-
ery cluster is embedded inside a transparent bubble, with mem-
bers and their connections organized using the hemispheri-
cal layout. This arrangement provides a visual aesthetic, and
(optional) edge bundling further clarifies the global topology
(i.e., thicker bundles for high intra-cluster connectivity). Users
can choose alternative layouts for cluster bubble positioning.
“Lin-log cluster layout” is a variation of the force-directedmodel
[45] where highly connected clusters are arranged in closer
proximity.

“Circos cluster layout” is an innovative algorithm we devel-
oped as a 3D adaptation of the popular 2D Circos layout [73]. In
this algorithm, we arrange the nodes in 3D space as in hemi-
spherical layout, where the most connected node is located at
the center of the hemisphere. We then slice the hemisphere
with (pie-like) panels that correspond to separate clusters. Clus-
ter representations can be optimized by variations in node/slice
colorings or edge bundling. Fig. 5 illustrates different cluster lay-
out options using a metabolite network.

Within iCAVE’s user interface, investigators can easily tog-
gle between alternative layouts of a single graph to emphasize
different network aspects. Users without stereo equipment can
rotate, zoom, or scale the visual to investigate special structures,
print 2D snapshots, and save movies of a rotating network. Ro-
tation allowsmultiple views for users without 3D. Exporting and
exchanging such movies is very convenient in the YouTube era,
enabling easy publication and sharing with collaborators with-
out iCAVE or stereo. Those with a stereo-enabled computer (or a
CAVE facility) wear stereoscopic LCD shutter glasses that convey
3D image and allow immersive interaction. In a CAVE, sensors
track the user’s eye position and adjust perspective according
to user movements. The mouse (or wand) gestures are mapped
to logical events that the network layout application handles.
Zoom and rotate options activated with a simple mouse (or
wand) click help focus on a particular node or edge.

Network topology statistics

Most real-world networks exhibit substantial and non-trivial
features, where connections are neither purely regular nor ran-
dom. iCAVE automatically generates and reports network topol-
ogy statistics and centrality measures both graphically and in
tabular form. These include the number of nodes, the number
of edges, network diameter, node-betweenness centrality, close-
ness centrality, neighborhood connectivity, shortest path, topo-
logical coefficient, and node degree distribution properties of the
network.

Input/output

iCAVE input is provided as a tab-delimited text file of identifiers
and optional information on magnitude of change, edge direc-
tionality, edge weights, node/edge colors, and patterns. Supple-
mentary Table S2 includes the complete options list. Interaction
data are read from an SQLite database. The user can modify the
network in real time and store it in DB Browser (which is a light
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Figure 5: Pathway reconstructed high-throughput metabolomics data with Gaussian Graphical Modeling [88]; each sphere color represents a single metabolite class.
(a) The force-directed layout of the weighted network captures the local cluster structures (snapshot). (b) Snapshot of user-definedmetabolite clusters: cluster layout is

force-directed while inside each cluster, and nodes are ordered in hemispherical layout. Edge bundling represents inter-cluster connectivity strength. (c) User-defined
clusters of the same network in a Circos layout. We provide a movie to better investigate the network in Supplementary Video 4. (d) Markov Chain Clustering of the
same network based on its connectivity, available as 1 of the clustering options in iCAVE. Each cluster is represented inside a spherical bubble. While topology suggests

that most similar metabolites cluster together, this is not always the case, as shown. In all panels, the addition of metabolite labels is user-optional.

GUI editor for SQLite databases) as a .db file, so that it can be
saved for later access. Output is the layout of the network drawn
in the Virtual Reality User Interface (VRUI) environment, which
can be saved as high-resolution 2D image snapshots (.png for-
mat) or movies (.gif format).

In iCAVE visualizations, 3D spherical glyphs represent nodes.
Node color, size, and texture optionally encode further statistics
(e.g., color for gene induction or repression, size for the magni-
tude of change in expression, texture to differentiate classes).
Edges can be colored, patterned, or directed.

Performance and scalability

Visualization and analysis of large networks in 3D may end up
using a significant amount of computational resources, which in
turn can affect the user experience. Size and topology of the net-
work play an important role both in (i) rendering visual elements
on the screen and (ii) calculating the results of a requested op-
eration (e.g., layout, edge bundling, etc.). To help ease the com-
putational burden of such factors while displaying networks in
iCAVE, we implemented rendering and other compute-intensive

operations to be adaptable to the size of the network. For exam-
ple, as the network size increases, 3D objects are rendered in
lower render quality. Similarly, for those compute-intensive op-
erations, the tunable parameters (e.g., the number of iterations
used for accuracy) are adjusted based on the network size.

Discussion

iCAVE is a freely available open source biomolecular network
visualization tool that leverages advanced 3D and immersive
3D display technologies and offers several display options inte-
grated with an effective user interface. It incorporates a number
of new and existing built-in network layout and graph cluster-
ing algorithms to enable automatic generation of 3D visualiza-
tions. Based on prior knowledge, input can additionally include
(i) 3D node positions, (ii) cluster memberships, or (iii) multi-level
hierarchies, or (iv) edge directionality. Utilizing iCAVE, investi-
gators from diverse fields can gain insights from large, hetero-
geneous datasets and optimize the quality of their visualiza-
tions using different node color, size, and transparency options,
as well as various edge weight, thickness, transparency, and
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directionality options. Network topological properties and cen-
trality are also reported. While not extensive, the COMBO
database enables disease researchers to conduct a quick query of
their interactions among genes, drugs, and disease phenotypes.

We designed iCAVEwith amodular software structure to cre-
ate a general and flexible community resource. Users with inter-
mediate programming experience can add algorithms for net-
work layout, cluster layout, or graph clusteringwithout affecting
the core functionality of the code. They can also add datasets to
COMBO. iCAVE is at the leading edge of immersive 3D network
visualization. More user and case studies are needed to under-
stand how best we canmake use of immersion, stereoscopy, and
3D. Other layouts could possibly work well within 3D or immer-
sive 3D, which wewill explore further in future studies.We hope
that iCAVE will encourage both programmers and biologists to
enter the world of 3D human–computer interfaces, in response
to the growing demands in exploring large complex data, and to
facilitate further developments.

Methods
Input/output formats

iCAVE supports tabular input formats (.txt, .csv, or .tsv). Interac-
tions are either user-defined, or are queries of the iCAVE COMBO
database. Optional weights are represented with edge color fre-
quency, directed edges with arrows, and node types with node
glyph patterns. Input file options are listed in the User’s Man-
ual. Users can convert iCAVE input files to Cytoscape (Cytoscape,
RRID:SCR 003032) or Gephi (Gephi, RRID:SCR 004293) input file
formats or convert commonly used network input file formats
(.sif, .csv) to those of iCAVE by utilizing scripts we provide in
the iCAVE package. Networks are saved as static high-resolution
(.png) images or movies of the rotating 3D image (.gif).

Implementation

iCAVE uses VRUI, a development toolkit for interactive high-
performance VR applications [47], which enables quick and scal-
able production of completely platform-independent software.
iCAVE is thus portable between Linux and Mac system com-
puters (optionally equipped with stereo capabilities) and CAVE
facilities.

Programming libraries

Several programming libraries provide intuitive and user-
friendly rendering solutions. The VRUI library uses a C++ based
OpenGL API platform that simplifies handling navigation trans-
formations, light sources, menu creation, and rendering differ-
ent objects. The SQLite3 software library handles large-scale
database parsing. igraph library functions solve some of the pro-
gramming challenges in generating regular and random graphs,
manipulating graphs, and assigning attributes to nodes and
edges. The ANSI C programming language library Argtable en-
ables parsing user-defined 3D graphics options.

Adding new algorithms

Node and edge data are stored in 2 separate “structure” arrays.
“Node structure” stores its id, name, number of neighbors, color,
texture, cluster, size, and coordinates. “Edge structure” includes
start node id, end node id, weight, and color. Storage with struc-
ture arrays simplifies the addition of new layout algorithms be-
cause the arrays can be used as inputs. After layout coordi-

nates are calculated, iCAVE utilizes OpenGL API for visualiza-
tion. New algorithms are added as separate .cpp files, and the
corresponding header files are imported to the main program
(vrnetview.cpp).

Label creation

Since VRUI offers limited label creation options that render low-
quality and unreadable text, we developed texture mapping for
high-quality rendering. Supplementary Fig. S1 illustrates VRUI
versus iCAVE labels.

User interface

Multiple functionalities demonstrate natural modes of interac-
tion for effective analysis. These include activities such as se-
lecting objects and interactingwith the image in 3D space.While
learning that a new user interface motif has been a traditional
weakness of VR environments, more mature and practical tech-
nologies are becoming pervasive in consumermarkets (e.g., mo-
tion sensors in Wii game consoles). These developments inform
our user interface design and provide new users with familiar
gestures and interaction motifs.

Network exploration interface

Several features enable exploring, interacting, and modulating
the networks in real time and saving the result. Interactivemenu
options are listed in Supplementary Table S2.

User interface in CAVE environments

Investigators enter a CAVE environment wearing stereoscopic
LCD shutter glasses that convey 3D image. When the user walks
around, sensors trackmovements, and the video adjusts accord-
ingly. Multiple users can exist simultaneously in the network
and view the visualizations from multiple perspectives by mov-
ing in the space or directly interact with specific biomolecules
by clicking on the handheld device to display all its interactions
in that network or stored in the database. The user can alterna-
tively investigate the network on his own computer.

Output image generation

iCAVE assembles image snapshots from several viewpoints into
one high resolution (.png) image (see Supplementary Fig. S2).
The desired resolution is user-adjustable via a zoom factor.

Network topology statistics

iCAVE automatically calculates the following network proper-
ties, rank-orders nodes based on these, and represents their dis-
tribution both graphically and in tabular form:

“Node degree property” yields hubs. Generally, only a few
biomolecules (hubs) have many network interactions [74, 75].
Hubs are often central in mediating interactions among the less
connected biomolecules [76, 77].

“Neighborhood connectivity metric” assists in identifying
modularity, where small interconnected subgraphs may po-
tentially represent specific enzymes, structures, or processes
[78, 79] and provide significant insights into perturbed disease
mechanisms. For example, the degree of gene co-expression cor-
relates strongly with the complexity of an embedded motif [80].

“Network average and local clustering coefficients” quantify
the connectivity of the whole network or a single node. The

https://scicrunch.org/resolver/RRID:SCR_003032
https://scicrunch.org/resolver/RRID:SCR_004293
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local clustering coefficient is the ratio between the numbers of
edges that connect the neighbors of a node versus themaximum
possible number of edges. The network average clustering co-
efficient is the average of the local clustering coefficients of all
nodes [81]. Only nodes that belong to networks with >3 nodes
are considered. The range of coefficient values varies from 0 (no
interconnection) to 1 (perfect interconnection).

“Network closeness centrality and node closeness centrality”
quantifies the velocity of information flowwithin a network (the
reciprocal sum of the shortest paths from a selected node to all
other nodes) [82]. Only nodes in subnetworks with >3 nodes are
evaluated. When the shortest paths are calculated, each edge is
scaledwith correspondingweight, which can be a floating value.
The average of all node closeness centrality values is the net-
work closeness centrality value.

“Network diameter” is the length of shortest path between
the 2 farthest nodes. Unconnected nodes are not considered.
Irregular networks usually have small diameters, while regular
networks have large diameters.

“Betweenness centrality” is a global metric on the impor-
tance of a node, which is equal to the number of shortest paths
from all vertices to all others that pass through that node, calcu-
lating the “load” on a node [83]. Real-world, scale-free networks
usually involve short path lengths across the network, and a few
nodes have high betweenness centrality. “Connector” or “high-
traffic” biomolecules that are vulnerable to targeted attacks usu-
ally suggest potential non-hub drug targets [84–86].

“Shared nearest neighbors” is a similarity metric based on
the sharing of nearest neighbors between any 2 nodes, partic-
ularly useful in network topology-based motif, sub-graph, or
cluster identification.

“Shortest paths” quantifies the importance of a node within
the network, calculated by the number of shortest paths going
through the node. Purely random graphs exhibit a small average
shortest path length (∼the logarithm of the number of nodes)
along with a small clustering coefficient.

Layout algorithms

A graph G(V = {1, . . . , n}, E) represents a binary relation E over
node set V. iCAVE both extends classical layouts to 3D and offers
novel algorithms. Based on the underlying topology, a user can
choose the best layout that helps with data interpretation. We
provide below the details of algorithms we have implemented
in iCAVE. Algorithms 1–5 are 3D extensions of 2D network layout
algorithms that are based on the classical force-directed layout.
In addition, we introduce two new layout algorithms, semantic
layers and hemispherical, that we have developed to take ad-
vantage of the third dimension:

1. “Force-based layout.” The forces acting on each node in clas-
sical Fruchterman-Rheingold (FR) algorithm [45] are:

fa(i j) = d2
i j

k
fr (i j) = − k2

di j
k = 3

√
volume

number of nodes
,

where fa(ij) and fr(ij) are attractive and repulsive forces, dij is
the distance between nodes i and j, and k is a constant cor-
responding to the equilibrium edge length.

2. “Lin-log layouts.” We used the r-PloyLog [53] energy model
to implement the node-repulsion and edge-repulsion LinLog
models. For all r ∈ R with r > 0, the node-repulsion energy of

a layout p is

Ur−NodePolyLog(p) =
∑

{u,v}∈E

1
r

‖p(u) − p(v)‖r

−
∑

{u,v}∈V2

ln ‖p(u) − p(v)‖,

where p(u) is the position of node u. Edge-repulsion energy
is

Ur−EdgePolyLog(p) =
∑

{u,v}∈E

1
r

‖p(u) − p(v)‖r

−, s
∑

{u,v}∈V2

deg(u) deg(v)ln‖p(u) − p(v)‖,

where deg(u) is the number of edges incident to node u. At
r = 3, the 3-PolyLog reduces to FR and at r = 1 to the Lin-
Log model. The LinLog models group nodes according to cut
density and the normalized cut; therefore the layout leads to
graph clustering.

3. “Hybrid force-directed layout” [52]. The original version of
this algorithm is extremely computationally intensive, so we
implemented a simplified version, reducing the run time at
the expense of visualization quality. Our version has 3 steps:
(i) position nodes randomly; (ii) partition the resulting graph;
(iii) apply FR [45] algorithm separately on each subgraph.
The partitioning step splits the graph into 2 sub-graphs (A
and B) of equal sizes. This requires minimizing the cut size
by calculating the second Eigenvector (Fiedler vector) λ of
the following:
L (G)

⇀

q = λ
⇀

q, where

⇀

q =

⎛
⎜⎜⎜⎜⎝
q1
q2
...
qn

⎞
⎟⎟⎟⎟⎠ ; qi =

{
1 ∀i ∈ A

−1 ∀i ∈ B
and n ≡ # of nodes

and L(G) is the Laplacian of graph G. The power-iteration al-
gorithm solves for λ.

4. “Coarsened force-directed layout” [54] is suitable for large
graphs as it combines FR with graph coarsening to speed up
the calculations. In the first phase, the graph is coarsened
until it reaches a minimum size (default = 3) or it does not
coarsenmore than a specific coarsening rate (default = 0.75).
In the next phase, the layout of the coarsened graph is calcu-
lated using FR. Then, the layouts within the coarser graphs
are recursively refined.

5. “Simulated annealing force-directed layout” [55] is ideal for
large graphs with an aim to better distinguish clusters in the
graph. It is originally based on FR with a fixed number of it-
erations. The algorithm follows a simulated annealing type
schedulewith liquid, expansion, cool down, crunch, and sim-
mer phases. Long edges are cut based on a specified edge-cut
value between 0 (no cut, resulting in standard FR) and 1 (ag-
gressive cutting). The default edge-cut value used in iCAVE is
0.8, which allows clusters to separate from each other.

6. “Semantic levels layout” is ideal for integrative analysis of
multiple data resources (e.g., genotype, phenotype, drugs,
proteins, metabolites). Initially, the FR algorithm is per-
formed in 2D. Then, multiple equidistant levels (default = 7)
are created in the z-dimension. Based on network topology,
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we consecutively assign the nodes to one of the layers. The
iCAVE user interface allows the manual manipulation of the
number of layers and the distance between them. If layers
are not predefined, we suggest experimenting with different
options.

7. “Hemispherical layout.” We place n nodes of a graph G(V =
{1, . . . , n}, E) equally spaced on a single 3D hemisphere sur-
face, reducing the problem to finding a “hemispherical node
ordering.” Coordinates for a node i ε V are (xi, yi, zi) ε R, at
fixed hemisphere radius R:

xi = R ∗ cos(latitudei ) ∗ cos(longitudei ) 0
◦ ≤ longitude ≤ 360◦;

yi = R ∗ sin(longitudei) ∗ cos(latitudei ) 0◦ ≤ latitude ≤ 90◦;

zi = R ∗ sin(latitudei) 0 ≤ i ≤ # of nodes.

Nodes are sorted and placed based on their degree, with the
highest degree node at the hemisphere surface center. Algo-
rithm inputs are the number of nodes, the graph center position,
and hemisphere radius. Hemisphere radius, node sizes, colors,
and textures are adjustable.

Network clustering and bundling algorithms

The “edge-betweenness clustering algorithm” is an edge with a
high EB value that potentially connects two or more “commu-
nities.” The edge with the highest EB value is removed at each
step. The number of edges to be removed is user-defined (with
a default of 0.2 times the number of edges). Any edge that leads
to a single-node cluster is not removed.

The “edge bundling algorithm” is based on application of
forces (electrostatic and spring) on an edge subdivided into
multiple points. Edge compatibility metrics edge angle, scale
(length), position, and visual compatibility are multiplied for to-
tal compatibility. If two edges are compatible above a threshold,
forces are calculated and added to each subdivision, and those
subdivisions are bundled together.

Project name: iCAVE
Project home page: http://research.mssm.edu/gumuslab/
software.html
Download version of record: http://dx.doi.org/10.5524/100288
Operating systems: Unix, Linux, macOS
Programming language: C++
Other requirements: For macOS: XCode, X11/XQuartz, libjpeg,
libz, libpng
License: GNU Lesser General Public License

Supporting data and documents

Latest versions of the software, user manual, and tuto-
rial are available for download at http://research.mssm.edu/
gumuslab/software.html, released under the GNU Lesser Gen-
eral Public License. Snapshots of the software, input files, and
videos used in this paper are also openly hosted in the Giga-
Science repository, GigaDB [87].

Additional files

Supplementary Figure 1. Labels created with VRUI versus iCAVE.
Left: VRUI intern method; Right: texture mapping.

Supplementary Figure 2. High-resolution image creation
steps. Upper left image is a low-resolution snapshot created

with common tools (800∗600). This picture was projected into
2D screen plane (upper-right) and upper-left corner location was
recorded as shown in upper right. 170 sub-images were taken to
create a 18490∗17560 resolution image (only 8 are shown in the
bottom panels).

Supplementary Table 1. iCAVE currently provides a limited
database within the COMBO repository for quick queries. Be-
cause of iCAVE’s modular structure, users (who have some pro-
gramming experience) can populate COMBO with additional
databases.

Supplementary Table 2. iCAVE user-interactive menu op-
tions.
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AHR: Aryl hydrocarbon receptor; CAVE: Cave automatic virtual
environment; CBL: Cbl proto-oncogene; EBC: Edge-betweenness
clustering; ENCODE: Encyclopedia of DNA elements; FR
Fruchterman-Rheingold; GUI: Graphical user interface; GWAS:
Genome wide association study; IBD: Inflammatory bowel
disease; iCAVE: interactome-CAVE; LCD: Liquid crystal display;
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Markov clustering; LoF: Loss of function; miRNA: microRNA;
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