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Quantum search algorithm, which can search an unsorted database quadratically faster than any known classical algorithms, has
become one of the most impressive showcases of quantum computation. It has been implemented using various quantum
schemes. Here, we demonstrate both theoretically and experimentally that such a fast search algorithm can also be realized
using classical electric circuits. The classical circuit networks to perform such a fast search have been designed. It has been
shown that the evolution of electric signals in the circuit networks is analogies of quantum particles randomly walking on
graphs described by quantum theory. The searching efficiencies in our designed classical circuits are the same to the quantum
schemes. Because classical circuit networks possess good scalability and stability, the present scheme is expected to avoid some
problems faced by the quantum schemes. Thus, our findings are advantageous for information processing in the era of big data.

1. Introduction

Quantum computation has been the focus of numerous
studies and is expected to play an important role in future
information processing, since it outperforms classical com-
putation at many tasks. One such task is quantum searching,
introduced by Grover [1]. Given an oracle function f ðxÞ:
f1,⋯,Ng⟶ f0, 1g satisfying f ðxÞ = 1 if and only if x =w,
Grover’s search algorithm can find the value of w using of
order

ffiffiffiffi
N

p
queries. It shows quadratic speedup to the fastest

classical algorithm in searching unsorted databases. Such an
algorithm is extremely important, both from fundamental
and practical standpoints, because it is a basis of many other
quantum algorithms [2].

Recently, some investigations [3–7] have shown that the
continuous-time quantum walk (CTQW) search algorithm
on the graph can also display the quadratic speedup, which
is similar to that of Grover’s algorithm. Compared with the
realizations of Grover’s algorithm, CTQW search algorithms
are directly connected to the search in a physical database [4]
and discrete logic gate operations (e.g., laser pulses) are not

necessary. Moreover, spatial search by quantum walk is opti-
mal for almost all graphs [7], which helps to make a flexible
design for the search algorithm. An example of the CTQW
search algorithm on the complete graph (the “analog ana-
logue” of Grover’s algorithm [3, 4]) is shown in Figure 1(a).

We use theN vertices of the graph to label computational
basis states fja1i, ja2i,⋯,jaNig of an N-dimensional Hilbert
space. The initial state jsi is an equal superposition of all
these basis states as jsi = 1/

ffiffiffiffi
N

p
∑N

n=1jani. To find a particular
“marked” vertex, or basis state, jwi given by the oracle
Hamiltonian Hw = −jwihwj (here, we assume that this
Hamiltonian is given and we take the first vertex as the
marked one for convenience, that is jwi = ja1i = ð1, 0,⋯,0ÞT,
the superscript T denotes the transposition), the search can
be performed by evolving Schrödinger’s equation with Hamil-
tonian Hs = γL − jwihwj, where γ is the jumping rate (i.e.,
amplitude per unit time of the particle transitioning from
one vertex to another) and L =D − A is the graph Laplacian.
Here, D represents the degree matrix (Djj = deg ðjÞ and 0
otherwise), and A is the adjacency matrix (Ajk = 1 if j and k
are adjacent, and 0 otherwise). For the regular graphs, D is
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proportional to the unit matrix. We can discard D by energy
translation without affecting the dynamic behavior of the evo-
lution. Thus, the searchHamiltonian can also be written as [4]:

Hs = −γA − wj i wh j: ð1Þ

After time T, we can get the evolution state jψðTÞi =
e−iHsT jsi. Our objective is to choose the appropriate jumping
rate γ so that the success probability jhw ∣ ψðTÞij2 of finding
the target vertex is as close to 1 for as small a time T as possi-
ble. For the complete graph with N vertices, there is a critical
jump rate γc = 1/N, which maximizes the success probability.
In such a case, the maximum success probability of finding
the target vertex is 1, and the minimum evolution time is
π
ffiffiffiffi
N

p
/2 [4, 5].

Up to now, quantum search algorithm has been imple-
mented under many standard quantum circuit models, such
as optical experiments [8–13], NMR systems [14, 15],
trapped ion [16–18], NV centers [19–21], and superconduct-
ing systems [22]. However, these quantum schemes face two
bottlenecks: scalability and decoherence. Although there
have been some progresses in constructing the number of
qubits recently [23, 24], the wide applications within these
quantum schemes are still unforeseeable.

On the other hand, recent investigations have shown that
classical electric circuits can be used to simulate various topo-
logical physics [25–38] and the Schrödinger’s equation [39].
It is a conundrum whether the quantum search algorithm
can be realized using classical circuits. Since the classical
circuit technology is relatively mature, if the quantum search
can be realized using electric circuits, it is expected to avoid
some problems faced by the quantum schemes.

In this work, we demonstrate that the CTQW search
algorithm can be realized by classical electric circuits. The
classical circuit networks are designed. As we will show, such
search circuit networks have quadratic speedup, which are
the same to the quantum schemes. The circuit networks with
different sizes are fabricated, and the corresponding search-
ing efficiency is demonstrated experimentally.

2. Circuit Theory for Quantum Search

We design a circuit to realize the CTQW search on the com-
plete graph with N vertices, as shown in Figure 1(b). The
circuit consists of 2N nodes denoted by labels j = 1, 2,⋯,N
and k =N + 1,N + 2,⋯, 2N . Each node is connected to an
external initial signal V jðkÞ0 by a relay K jðkÞ. Nodes j and k
for k − j ≠N as well as for j = 1 and k =N + 1 are connected
by negative impedance converters with current inversion
(INICs) [29], whose effective resistance is Rjk, as specified
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Figure 1: Electrical circuit exhibiting quantum search on a complete graph with nodes of the circuit indicated by green and blue dots. (a) The
structure of a complete graph with N vertices. Each vertex is connected to all other vertices. The target vertex is labeled by orange. (b) The
electrical circuit designed for the quantum search on the complete graph with N vertices. The 2N nodes are labeled in order and are
connected to others specifically by negative impedance converters with current inversion (INICs), which are indicated in open red arrows.
Each node is connected to an external initial signal V jðkÞ0 by a relay KjðkÞ. The two kinds of nodes (green and blue) are grounded in
different ways, indicated in green and blue dashed framed rectangles, respectively. (c) The structure of the INIC, consisting of three
resistors and an operational amplifier with supplying voltages V+ and V−. (d) and (e) Two different ways to ground the nodes, one by a
capacitor parallel with an INIC and the other by a capacitor parallel with a normal resistor.

2 Research



in Figure 1(c). The detailed description for the function of
INICs is given in S1 of Supplementary Materials. The node
j is grounded by a capacitor Cj parallel with a grounding
INIC with effective resistance Rj0, while the node k is
grounded by a capacitor Ck parallel with a normal resistor
Rk0, as shown in Figures 1(d) and 1(e), respectively. When
the relays are turned off, the relations of the currents at the
node jðkÞ are given by Kirchhoff’s current law, as

Cj

dV j

dt
−

V j

Rj0
=〠

k

Vk −V j

Rjk
, ð2Þ

Ck
dVk

dt
+

Vk

Rk0
=〠

j

V j −Vk

−Rjk
, ð3Þ

where V jðkÞ is the voltage at the node j ðkÞ. By combining
the voltages at all nodes, we can define the circuit state as
∣ϕðtÞÞ = ðV1ðtÞ, V2ðtÞ,⋯,V2NðtÞÞT . Here, the states in the
paper are described by a slightly modified version of the
familiar bra-ket notation of quantum mechanics. Then,
the set of Eq. (2) and Eq. (3) can be reformulated in the
form of a Schrödinger-like equation, as

i∂t∣ϕ tð ÞÞ =Hg∣ϕ tð ÞÞ, ð4Þ

withHg being the circuit Hamiltonian. Here, the off-diagonal
components of Hg contain the grounding capacitance of
node j ðkÞ and the resistance between nodes j and k, that is
Hg,jk = iC−1

j R−1
jk and Hg,kj = −iC−1

k R−1
jk . The diagonal compo-

nents are given by the total INICs connected to the node
j ðkÞ as well as the grounding capacitance and INIC
(resistance) of node j ðkÞ, as Hg,jj = iC−1

j ðR−1
j0 − ∑kR

−1
jk Þ

and Hg,kk = iC−1
k ð−R−1

k0 +∑jR
−1
jk Þ. As an example, the specific

representation of the circuit HamiltonianHg of search circuit
for the complete graph with 4 vertices is given in S2 of
Supplementary Materials.

To match the quantum search Hamiltonian, we now set
the parameters of the circuit appropriately. First, all the
grounding capacitances are set to C0 (see S2 of Supplemen-
tary Materials). Then, we set the effective resistance of the
connecting INIC between nodes j and k as Rjk = γ−1C−1

0
(k − j ≠N) and R1,N+1 = C−1

0 . Here, γ is the same to that in
Eq. (1). By choosing appropriate grounding INICs (resis-
tances) as RjðkÞ0 = ð∑kðjÞR

−1
jk Þ−1, the diagonal components of

theHg become zeroes. In such a case, the circuit Hamiltonian
can be written as

Hg = i
O −H

H O

 !
, ð5Þ

where H is a submatrix with a size of N ×N . With the N ver-
tices of the corresponding graph labeling the computational

basis states f∣a1 ′Þ, ja2 ′Þ,⋯, jaN ′Þg of the N-dimensional
graph space, the submatrix H can be expressed as

H = −γA′ − w′�� �
w′
� ��, ð6Þ

where A′ is the adjacency matrix of the corresponding graph,
and jw′Þ = ja1 ′Þ = ð1, 0,⋯,0ÞT represents the target vertex
(basis state). Thus, the submatrix H in Eq. (6) corresponds
to the quantum search Hamiltonian Hs in Eq. (1).

Starting from the initial circuit state ∣ϕð0ÞÞ with V jð0Þ =
V j0 = 1/

ffiffiffiffi
N

p
and Vkð0Þ =Vk0 = 0, the evolution circuit state

at time T can be gotten from Eq. (4) as

ϕ Tð ÞÞj = e−iHgT ϕ 0ð ÞÞj : ð7Þ

If the jumping rate is set to the critical value γc = 1/N , we
can find the target vertex in a time of T = π

ffiffiffiffi
N

p
/2 with a

probability of 1 by projecting the evolution circuit state
∣ϕðTÞÞ to the graph space using ð1 − iÞ ⊗ IN , where IN is the
identity matrix in the graph space. The detailed demonstra-
tion is provided in Methods. The results are consistent with
the quantum schemes. However, they are obtained when
Rjk and R1,N+1 are fixed as described above. In fact, Rjk and
R1,N+1 can take arbitrary values, for example, Rjk = R0 and
R1,N+1 = γcR0, here R0 represents arbitrary resistance. In this
case, H changes to H/ðγC0R0Þ. If we define an effective time
Te = T/ðγC0R0Þ instead of the evolution time T , the circuit
search process is also identical with the standard quantum
scheme [3, 4].

To demonstrate the above theoretical analysis, we per-
form numerical simulation (with the software LTspice) of
the success probabilities of the search on circuits with differ-
ent sizes. Figures 2(a)–2(c) show the simulated results of
success probabilities as a function of effective time Te for
complete graphs with 4, 6, and 8 vertices, respectively. Here,
the jumping rate γ takes its critical value γc = 1/N of each
model. In the INIC, the operational amplifier LT1363 and
two surface-mounted device (SMD) auxiliary resistors with
the same value Ra = 100Ω are used. Other parameters of
the circuit components are set as CjðkÞ = 10μF, Rjk = 1 kΩ
(except R1,N+1) and R1,N+1 = γ kΩ. The initial voltages are
set as V j0 = 1V and V j0 = 1V for convenience. In each figure,
the red dashed line represents the evolution of the success
probability, where the abscissa is the effective evolution time.
As we can see, the shortest effective time we need to complete
the search with a success probability close to 1 is approxi-
mately 3.1, 3.8, and 4.4 for the three circuits, respectively,
which matches the corresponding quantum processes of
π
ffiffiffiffi
N

p
/2 for N = 4, 6, and 8.

3. Experimental Demonstrations

The above theoretical design is easy to realize experimentally.
As a proof, we realized the search circuits simulated above on
printed circuit boards (PCBs). Figure 2(d) shows the PCB for
the complete graph with 4 vertices in detail, while the
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corresponding PCBs for complete graphs with 6 and 8 verti-
ces are shown in Figures 2(e) and 2(f). We use the opera-
tional amplifier LT1363 and two surface-mounted device
(SMD) auxiliary resistors with the same value Ra = 100Ω in
the INIC. Other parameters of the circuit components are
set as CjðkÞ = 10μF and Rjk = 1 kΩ (except R1,N+1) in SMD
capacitors and resistors. Potentiometers are used instead of
normal resistors for grounding resistors RjðkÞ0 and R1,N+1,
which are adjusted to the appropriate value. More specific

settings of the circuit boards and details of the experiments
are given in Methods.

The green square dots in Figures 2(a)–2(c) show the aver-
age values of the success probabilities with error bars being
the variances. The abscissa represents the effective time. For
each circuit, the results are obtained by averaging 20 sets of
measurements under the same experimental condition. The
average maximum searching success probability for all of
the three circuits reaches 0.99 at effective time 3.0, 3.6, and
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Figure 2: Experimental realization of the search circuits designed for complete graphs. (a) Simulation and experimental results of the circuit
search for the complete graph with 4 vertices. The red dashed line represents the theoretical simulation result, while the green square dots
represent the experimental data averaged by 20 measurements, with error bars being the variances. (b) and (c) The results of the circuit
search for complete graph with 6 and 8 vertices, respectively. (d) A photograph of the printed circuit board (PCB) for the search on
complete graph with 4 vertices, with a size of 12 ∗ 13 cm2. The numbers label some important components. (1) An INIC made of an
operational amplifier LT1363 and three surface-mounted device resistors: two Ra = 100Ω and one Rjk = 1 kΩ. (2) and (3) Grounding parts
for nodes j and k, respectively. The grounding SMD capacitors are CjðkÞ = 10 μF. The grounding resistors are replaced by potentiometers.
(4) Relays connecting the external initial signals to the nodes. (5) The switch controlling all the relays to initialize the voltages and start
the search. (6) Connectors to detect the voltages at all nodes by connecting to an oscilloscope with coaxial cables. (e) PCB for 6 vertices
complete graph with a size of 15 ∗ 17 cm2, (f) PCB for 8 vertices complete graph with a size of 18 ∗ 20 cm2.
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4.1, respectively. It is seen clearly that the experimental
results match with the theoretical simulations well, and they
together prove the effectiveness of our design.

The above discussions only focus on the complete graphs.
In fact, such a design is scalable. We can design circuits for
quantum search algorithms on various graphs, such as the
hypercube [4, 5] and the joined complete graph [6], on which
the search algorithms are also optimal [7]. Figures 3(a) and
3(b) show the structures for a 4-dimensional hypercube with
16 vertices and a joined complete graph with 8 vertices,
respectively. The corresponding search circuits are designed
theoretically and realized experimentally, with the same
component models used in the complete graphs. The theo-
retical simulations and experimental results are given in
Figures 3(c) and 3(d), and the PCBs are shown in
Figures 3(e) and 3(f). The red dashed lines correspond to
the theoretical results, and the green square dots with error
bars correspond to the experimental results. Here, the critical
jump rate is taken for each structure. The maximum search-
ing success probabilities for the two circuits reach 0.82 and
0.57 at effective time 6.3 and 3.6 (the theoretical results are
0.77 at 7.8 and 0.49 at 3.4, respectively), respectively. As we
can see, the experimental results are also in agreement with
the theoretical simulations. We have discussed the experi-
mental error in S3 of Supplementary Materials. All the phe-

nomena of our experiments are reproducible. Notice that
although more time points (2000 points per turn) were col-
lected by the oscilloscope during the experiments, we have
chosen an appropriate density of the points to plot (about
40 points for each circuit), which can not only keep the con-
tinuity of the results but also make the results visible and
accurate.

4. Discussion and Conclusion

In this work, we have implemented the CTQW search algo-
rithm on a classical circuit. The key part of this algorithm is
the quantum Schrödinger evolution with Hamiltonian Hs,
which has been realized in our classical circuit scheme. A full
searching process including the “oracle” can be realized by
only making some changes to the current scheme. For exam-
ple, the INIC in the diagonal and the grounding parts should
be separate from the main circuit. The position of the INIC in
the diagonal determines the search target, which is provided
by the “oracle”. The remaining parts form the “driving”
circuit corresponding to the “driving” Hamiltonian the
quantum scheme has [3]. A more meticulous design and
experiment will be implemented in future works.

The number of circuit elements we need in the classical
search circuit depends on the connection of the graph
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Figure 3: Experimental realization of the search circuits for graphs with other structures. (a) The structure of the 4-dimensional hypercube
with 16 vertices. (b) The structure of the joined complete graph with 8 vertices, which is a combination of two 4-vertex complete graphs
connected by one edge. (c) Theoretical simulation and experimental data of the circuit search for quantum search on the 4-dimensional
hypercube. The jumping rate is taken as 1/4 as an approximation to the critical jumping rate in theory. (d) Theoretical simulation and
experimental data of the circuit search for quantum search on the joined complete graph with 8 vertices. The jumping rate is taken as 1/4.
(e) PCB for 4-dimensional hypercube with a size of 32 ∗ 35 cm2. (f) PCB for 8 vertices joined complete graph with a size of 18 ∗ 20 cm2.
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structure, i.e., it is proportional to the number of the edges of
the graph, which is no more than OðN2Þ (for complete
graph) and can be much smaller in some special cases (e.g.,
OðN log NÞ for hypercube). That means, to realize the
CTQW algorithm, the resources we need in our classical cir-
cuit scheme have the same complexity to that of those quan-
tum schemes as described in Refs. [13, 40].

We would like to point out that although we have chosen
the appropriate parameters to make the circuits realizable in
our experiments, more variables and their interactions
should be considered. For this reason, a multivariate study
[41–46] will be down in future works to perform the optimi-
zation of the parameters and make the results more stable
and more accurate.

In conclusion, we have shown how the CTQW search
algorithm can be implemented by using classical electric cir-
cuits. The different classical circuit networks to perform the
fast search have been designed. The searching efficiencies in
the designed classical circuits have been proved to be equiva-
lent to the quantum schemes. Because of the characteristics
of the classical circuit, compared with the quantum scheme,
the present scheme can show many advantages. For example,
it can run in a normal environment without special quantum
environments and has good scalability and stability, etc.
Moreover, the general design principle in the present work
can also be applied, in principle, to other quantum algo-
rithms, even other quantum processes. Thus, the present
work is expected to have an important impact on the future
information process.

5. Methods

5.1. The Demonstration of Circuit Search. For the circuit
designed for the complete graph with N vertices, the search
starts from an initial circuit state ∣ϕð0ÞÞ = ðV1ð0Þ, V2ð0Þ,⋯,
V2Nð0ÞÞT, whose components are given by V jð0Þ = 1/

ffiffiffiffi
N

p
(j = 1, 2,⋯,N) and Vkð0Þ = 0 (k =N + 1,N + 2,⋯, 2N),
and evolves by the circuit Schrödinger-like Eq. (4). ∣ϕð0ÞÞ
can also be expressed as

ϕ 0ð ÞÞj =
1

0

 !
⊗ s′
�� �, ð8Þ

where js′Þ = 1/
ffiffiffiffi
N

p
∑N

n=1jan ′Þ is an equal superposition of
basis states of the graph space, corresponding to the quantum
initial state jsi. Thus, from Eq. (7), the circuit state jϕðTÞÞ at
time T can be calculated as

ϕ Tð ÞÞj = e−iHgT ϕ 0ð Þj Þ

=
cos HTð Þ ‐sin HTð Þ
sin HTð Þ cos HTð Þ

 !
s′
�� �
O

0
@

1
A

=
cos HTð Þ s′�� �

sin HTð Þ s′�� �
0
BB@

1
CCA,

ð9Þ

We then define the circuit search state jψ′ðTÞÞ by pro-
jecting the circuit state to the graph space using 1 −ið Þ ⊗
IN as

ψ′ Tð Þ�� �
= 1 −ið Þ ⊗ IN ϕ Tð Þj Þ
= cos HTð Þ − i sin HTð Þð Þ s′�� � = e−iHT s′

�� �: ð10Þ

Now we discuss the success probability of finding the
target vertex from the circuit search state. Adding −γIN to
the submatrix H, which does not affect the observation of
the search process, then, we have

H = −γN s′
�� � s′

� �� − w′�� �
w′
� ��: ð11Þ

If γ takes its critical value of γc = 1/N , then H = −js′Þ
ðs′j − jw′Þðw′j, and its two orthogonal eigenstates are propor-
tional to jφ0Þ = js′Þ + jw′Þ and jφ1Þ = js′Þ − jw′Þ with corre-
sponding eigenvalues E0 = −1 − 1/

ffiffiffiffi
N

p
and E1 = −1 + 1/

ffiffiffiffi
N

p
,

respectively.
Since ðs′jw′Þ = 1/

ffiffiffiffi
N

p
, there are relations ðφ0 ∣ φ0Þ = 2 +

2/
ffiffiffiffi
N

p
, ðφ1 ∣ φ1Þ = 2 − 2/

ffiffiffiffi
N

p
and ðφ0 ∣ φ1Þ = 0. The inner

product of the target state and the circuit search state can
be easily calculated as

w′ ∣ ψ′ Tð Þ
� �

= φ0∣− φ1 ∣ð Þ 14 e−iE0T ∣ φ0
� �

+ e−iE1T ∣ φ1

� 	� 	

=
1
2

e−iE0T − e−iE1T
� �

+
1

2
ffiffiffiffi
N

p e−iE0T + e−iE1T
� �

= eiT i sin
Tffiffiffiffi
N

p
� 	

+
1ffiffiffiffi
N

p cos
Tffiffiffiffi
N

p
� 	� 	

:

ð12Þ

Thus, the success probability of finding the target state is

P Tð Þ = w′
�

ψ′ Tð ÞÞ����� ���2 = sin2
Tffiffiffiffi
N

p
� 	

+
1
N

cos2
Tffiffiffiffi
N

p
� 	

,

ð13Þ

which also corresponds to the quantum case [3, 4]. It is obvi-
ous that the probability reaches 1 at time T = π

ffiffiffiffi
N

p
/2, which

is in an order of Oð ffiffiffiffi
N

p Þ as the Grover’s quantum search
algorithm.

5.2. Details for Experimental Implementation. We design the
PCBs by the software PADS Layout and print it in a local
foundry. For the realization of the INIC, we use the high
speed, high slew rate operational amplifier (OpAmp) model
LT1363 (Linear Technology), whose performance is good
enough for our experiments. The OpAmps are supplied by
voltages ± 15V. We use two surface mounted device (SMD)
resistors as the auxiliary resistors in the positive and negative
feedback loops of the OpAmp. In principle, the values of the
two auxiliary resistors can be chosen arbitrarily, provided
that they are equal. However, the value should be chosen in
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a suitable range for the effectiveness of the INIC and the
stabilization of the circuit, as the realistic OpAmp has its
limited stability conditions. Generally, the auxiliary resis-
tance we take as Ra = 100Ω is appropriate. The values of
effective resistors depend on specific situations as we will
discuss below.

SMD resistors of 1 kΩ are used for the effective resistors
of connecting INICs Rjk except R1,N+1. As for the grounding
parts, we choose 10μF SMD capacitors for C0. We use poten-
tiometers instead of normal resistors for grounding resistors
RjðkÞ0 and R1,N+1, due to their unusual required values and
some stability requirements (see S3 of Supplementary
Materials). The capacitors are produced by Murata company
with the 0603 package and are precharacterized to a tolerance
of 1% manually. All the resistors are produced by Walsin
company with the 0603 package and a tolerance of 1%. The
potentiometers are in model 3314J-1 (Bourns) with a range
of 0-500Ω.

To initialize the circuit, each node is connected to an
external voltage signal V jðkÞ0. We use relay model G6K
(Omron) to connect the nodes and the external signals. The
relays are controlled by a signal of 12V through a mechanical
switch. With this setting, the external signals can be removed
at the same time.

The measured quantities of our circuit are the evolving
voltages at all nodes. Thus, we connect the nodes to an oscil-
loscope by coaxial cables and measure the voltages at all time.
We use a 4-channel oscilloscope DSO7104B (Agilent Tech-
nologies) in our experiment to collect voltage data. For each
circuit, we made three rounds of measurements and at least
20 times per round to verify the reproducibility of the
obtained results.

Data Availability

Any related experimental background information not men-
tioned in the text and other findings of this study are avail-
able from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

Authors’ Contributions

N.-Q. P. provided the theoretical analysis cooperated with
T. C., N.-Q. P. performed the experiments and analyzed
the data with the help of H.-J. S., and X.-D. Z. initiated
and designed this research project. Naiqiao Pan and Tian
Chen contributed equally to this work.

Acknowledgments

This work was supported by the National Key R & D Pro-
gram of China under Grant no. 2017YFA0303800 and the
National Natural Science Foundation of China (91850205).

Supplementary Materials

Figure S1: the structure of an INIC, with one operational
amplifier and three resistors. Figure S2: the search circuit
for the 4 vertices complete graph, with the detail for the
currents at the nodes. Figure S3: simulation results for
disordered circuits. (Supplementary Materials)

References

[1] L. K. Grover, “Quantum mechanics helps in searching for a
needle in a haystack,” Physical Review Letters, vol. 79, no. 2,
pp. 325–328, 1997.

[2] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani,
“Strengths and weaknesses of quantum computing,” SIAM
Journal on Computing, vol. 26, no. 5, pp. 1510–1523, 1997.

[3] E. Farhi and S. Gutmann, “Analog analogue of a digital quan-
tum computation,” Physical Review A, vol. 57, no. 4, pp. 2403–
2406, 1998.

[4] A. M. Childs and J. Goldstone, “Spatial search by quantum
walk,” Physical Review A, vol. 70, no. 2, article 022314, 2004.

[5] J. Janmark, D. A. Meyer, and T. G. Wong, “Global symmetry is
unnecessary for fast quantum search,” Physical Review Letters,
vol. 112, no. 21, article 210502, 2014.

[6] D. A. Meyer and T. G. Wong, “Connectivity is a poor indicator
of fast quantum search,” Physical Review Letters, vol. 114,
no. 11, article 110503, 2015.

[7] S. Chakraborty, L. Novo, A. Ambainis, and Y. Omar, “Spatial
search by quantum walk is optimal for almost all graphs,”
Physical Review Letters, vol. 116, no. 10, article 100501, 2016.

[8] P. G. Kwiat, J. R. Mitchell, P. D. D. Schwindt, and A. G. White,
“Grover’s search algorithm: an optical approach,” Journal of
Modern Optics, vol. 47, no. 2-3, pp. 257–266, 2000.

[9] M. O. Scully and M. S. Zubairy, “Quantum optical implemen-
tation of Grover's algorithm,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 98,
no. 17, pp. 9490–9493, 2001.

[10] J. L. Dodd, T. C. Ralph, and G. J. Milburn, “Experimental
requirements for Grover’s algorithm in optical quantum com-
putation,” Physical Review A, vol. 68, no. 4, article 042328,
2003.

[11] N. Bhattacharya, H. B. van Linden van den Heuvell, and R. J.
C. Spreeuw, “Implementation of quantum search algorithm
using classical Fourier optics,” Physical Review Letters,
vol. 88, no. 13, article 137901, 2002.

[12] W. X. Zhang, K. Y. Cheng, C. Wu, Y. Wang, H. Li, and
X. Zhang, “Implementing quantum search algorithm with
metamaterials,” Advanced Materials, vol. 30, no. 1, article
1703986, 2018.

[13] X. Qiang, Y. Wang, S. Xue et al., “Implementing graph-
theoretic quantum algorithms on a silicon photonic quantum
walk processor,” Science Advances, vol. 7, no. 9, article
eabb8375, 2021.

[14] I. L. Chuang, N. Gershenfeld, and M. Kubinec, “Experimental
implementation of fast quantum searching,” Physical Review
Letters, vol. 80, no. 15, pp. 3408–3411, 1998.

[15] J. A. Jones, M. Mosca, and R. H. Hansen, “Implementation of a
quantum search algorithm on a quantum computer,” Nature,
vol. 393, no. 6683, pp. 344–346, 1998.

[16] K.-A. Brickman, P. C. Haljan, P. J. Lee, M. Acton,
L. Deslauriers, and C. Monroe, “Implementation of Grover’s

7Research

https://downloads.spj.sciencemag.org/research/2021/9793071.f1.docx


quantum search algorithm in a scalable system,” Physical
Review A, vol. 72, no. 5, 2005.

[17] J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini, D. Leibfried,
and D. J. Wineland, “Complete methods set for scalable ion
trap quantum information processing,” Science, vol. 325,
no. 5945, pp. 1227–1230, 2009.

[18] C. Figgatt, D. Maslov, K. A. Landsman, N. M. Linke,
S. Debnath, and C. Monroe, “Complete 3-qubit Grover search
on a programmable quantum computer,”Nature Communica-
tion, vol. 8, no. 1, article 1918, 2017.

[19] T. van der Sar, Z. H. Wang, M. S. Blok et al., “Decoherence-
protected quantum gates for a hybrid solid-state spin register,”
Nature, vol. 484, no. 7392, pp. 82–86, 2012.

[20] Y. Wu, Y. Wang, X. Qin, X. Rong, and J. du, “A programmable
two-qubit solid-state quantum processor under ambient con-
ditions,” npj Quantum Information, vol. 5, no. 1, article 9,
2019.

[21] J. Zhang, S. S. Hegde, and D. Suter, “Efficient implementation
of a quantum algorithm in a single nitrogen-vacancy center of
diamond,” Physical Review Letters, vol. 125, no. 3, article
030501, 2020.

[22] L. DiCarlo, J. M. Chow, J. M. Gambetta et al., “Demonstration
of two-qubit algorithms with a superconducting quantum pro-
cessor,” Nature, vol. 460, no. 7252, pp. 240–244, 2009.

[23] F. Arute, K. Arya, R. Babbush et al., “Quantum supremacy
using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505–510, 2019.

[24] H. S. Zhong, H. Wang, Y. H. Deng et al., “Quantum computa-
tional advantage using photons,” Science, vol. 370, no. 6523,
pp. 1460–1463, 2020.

[25] J. Ningyuan, C. Owens, A. Sommer, D. Schuster, and J. Simon,
“Time- and Site-Resolved dynamics in a topological circuit,”
Physical Review X, vol. 5, no. 2, article 021031, 2015.

[26] V. V. Albert, L. I. Glazman, and L. Jiang, “Topological proper-
ties of linear circuit lattices,” Physical Review Letters, vol. 114,
no. 17, article 173902, 2015.

[27] S. Imhof, C. Berger, F. Bayer et al., “Topolectrical-circuit real-
ization of topological corner modes,” Nature Physics, vol. 14,
no. 9, pp. 925–929, 2018.

[28] K. Luo, R. Yu, and H.Weng, “Topological nodal states in circuit
lattice,” Research, vol. 2018, article 6793752, pp. 1–10, 2018.

[29] C. H. Lee, S. Imhof, C. Berger et al., “Topolectrical circuits,”
Communications Physics, vol. 1, no. 1, article 39, 2018.

[30] S. Liu, W. Gao, Q. Zhang et al., “Topologically protected
edge state in two-dimensional Su–Schrieffer–Heeger circuit,”
Research, vol. 2019, article 8609875, pp. 1–8, 2019.

[31] M. Serra-Garcia, R. Süsstrunk, and S. D. Huber, “Observation
of quadrupole transitions and edge mode topology in an LC
circuit network,” Physical Review B, vol. 99, no. 2, article
020304, 2019.

[32] J. Bao, D. Zou, W. Zhang, W. He, H. Sun, and X. Zhang,
“Topoelectrical circuit octupole insulator with topologically
protected corner states,” Physical Review B, vol. 100, no. 20,
article 201406, 2019.

[33] T. Hofmann, T. Helbig, C. H. Lee, M. Greiter, and R. Thomale,
“Chiral voltage propagation and calibration in a topolectrical
Chern circuit,” Physical Review Letters, vol. 122, no. 24, article
247702, 2019.

[34] Y. Wang, H. M. Price, B. Zhang, and Y. D. Chong, “Circuit
implementation of a four-dimensional topological insulator,”
Nature Communication, vol. 11, no. 1, article 2356, 2020.

[35] W. Zhang, D. Zou, J. Bao et al., “Topolectrical-circuit realiza-
tion of a four-dimensional hexadecapole insulator,” Physical
Review B, vol. 102, article 100102(R), 2020.

[36] T. Helbig, T. Hofmann, S. Imhof et al., “Generalized bulk-
boundary correspondence in non-Hermitian topolectrical
circuits,” Nature Physics, vol. 16, no. 7, pp. 747–750, 2020.

[37] N. A. Olekhno, E. I. Kretov, A. A. Stepanenko et al., “Topolog-
ical edge states of interacting photon pairs emulated in a topo-
lectrical circuit,” Nature Communication, vol. 11, no. 1, article
1436, 2020.

[38] S. Liu, R. Shao, S. Ma et al., “Non-Hermitian skin effect in a
non-Hermitian electrical circuit,” Research, vol. 2021, article
5608038, pp. 1–9, 2021.

[39] M. Ezawa, “Electric-circuit simulation of the Schrödinger
equation and non-Hermitian quantum walks,” Physical
Review B, vol. 100, article 165419, 2019.

[40] T. Wu, J. A. Izaac, Z. Li et al., “Experimental parity-time sym-
metric quantum walks for centrality ranking on directed
graphs,” Physical Review Letters, vol. 125, no. 24, article
240501, 2020.

[41] F. Bella, M. Imperiyka, and A. Ahmad, “Photochemically pro-
duced quasi-linear copolymers for stable and efficient electro-
lytes in dye-sensitized solar cells,” Journal of Photochemistry
and Photobiology A: Chemistry, vol. 289, pp. 73–80, 2014.

[42] B. Miccoli, V. Cauda, A. Bonanno et al., “One-dimensional
ZnO/gold junction for simultaneous and versatile multisen-
sing measurements,” Scientific Reports, vol. 6, no. 1, article
29763, 2016.

[43] G. Ouaidat, A. Cherouat, R. Kouta, and D. Chamoret, “Sensi-
tivity analysis of the uncertainties of the mechanical design
parameters: stochastic study performed via a numerical design
of experiment,” International Journal of Hydrogen Energy,
vol. 46, no. 27, pp. 14659–14673, 2021.

[44] S. Galliano, F. Bella, M. Bonomo et al., “Hydrogel electrolytes
based on xanthan gum: green route towards stable dye-
sensitized solar cells,” Nanomaterials, vol. 10, no. 8, article
1585, 2020.

[45] R. Bontempo, R. Carandente, and M. Manna, “A design of
experiment approach as applied to the analysis of diffuser-
augmented wind turbines,” Energy Conversion and Manage-
ment, vol. 235, article 113924, 2021.

[46] S. Galliano, F. Bella, M. Bonomo et al., “Xanthan-based hydro-
gel for stable and efficient quasi-solid truly aqueous dye-
sensitized solar cell with cobalt mediator,” Solar RRL, vol. 7,
article 200823, 2021.

8 Research


	Electric-Circuit Realization of Fast Quantum Search
	1. Introduction
	2. Circuit Theory for Quantum Search
	3. Experimental Demonstrations
	4. Discussion and Conclusion
	5. Methods
	5.1. The Demonstration of Circuit Search
	5.2. Details for Experimental Implementation

	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

