OPEN
BIOLOGY

royalsocietypublishing.org/journal/rsob

L)

ReView Check for

updates

Cite this article: Aliabadi F, Sohrabi B,
Mostafavi E, Pazoki-Toroudi H, Webster TJ.
2021 Ubiquitin—proteasome system and the
role of its inhibitors in cancer therapy. Open
Biol. 11: 200390.
https://doi.org/10.1098/rsob.200390

Received: 1 December 2020
Accepted: 18 February 2021

Subject Area:
biochemistry/cellular biology/developmental
biology/molecular biology

Keywords:

cancer, targeted therapy, ubiquitin—
proteasome system, ubiquitination inhibitors,
protein degradation inhibitors

Authors for correspondence:
Beheshteh Sohrabi

e-mail: sohrabi_b@iust.ac.ir;
sohrabi_b@yahoo.com
Hamidreza Pazoki-Toroudi
e-mail: pazoki.h@iums.ac.ir;
pazoki49@gmail.com

Electronic supplementary material is available
online at https://doi.org/10.6084/m9.figshare.
€.5368990.

THE ROYAL SOCIETY

PUBLISHING

Ubiquitin—proteasome system and the
role of its inhibitors in cancer therapy

Fatemeh Aliabadi', Beheshteh Sohrabi, Ebrahim Mostafavi3*?,
Hamidreza Pazoki-Toroudi'® and Thomas J. Webster?

1Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
Department of Chemistry, Surface Chemistry Research Laboratory, Iran University of Science and Technology,
PO Box 16846-13114, Tehran, Iran

3Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA

“Stanford Cardiovascular Institute, Stanford, CA, USA

5Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA

6Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran

EM, 0000-0003-3958-5002; HP-T, 0000-0001-7868-456X

Despite all the other cells that have the potential to prevent cancer develop-
ment and metastasis through tumour suppressor proteins, cancer cells can
upregulate the ubiquitin—proteasome system (UPS) by which they can
degrade tumour suppressor proteins and avoid apoptosis. This system
plays an extensive role in cell regulation organized in two steps. Each step
has an important role in controlling cancer. This demonstrates the impor-
tance of understanding UPS inhibitors and improving these inhibitors to
foster a new hope in cancer therapy. UPS inhibitors, as less invasive che-
motherapy drugs, are increasingly used to alleviate symptoms of various
cancers in malignant states. Despite their success in reducing the develop-
ment of cancer with the lowest side effects, thus far, an appropriate
inhibitor that can effectively inactivate this system with the least drug resist-
ance has not yet been fully investigated. A fundamental understanding of
the system is necessary to fully elucidate its role in causing/controlling
cancer. In this review, we first comprehensively investigate this system,
and then each step containing ubiquitination and protein degradation as
well as their inhibitors are discussed. Ultimately, its advantages and disad-
vantages and some perspectives for improving the efficiency of these
inhibitors are discussed.

1. Introduction

Cells can destroy old organelles and also misfolded proteins in two ways:
autophagy and the ubiquitin—proteasome system (UPS). In the 1980s, for the
first time, ubiquitin and regulated destroying of proteins were investigated
by Hershko and Varshavsky [1-4]. Lately, to understand ubiquitin and its
related proteolysis, Hershko et al. discussed the E;, E, and E; enzymes more.
These developments were followed by other discoveries in Hershko’s labora-
tory. These discoveries explained the UPS biology and revealed its necessity
for protein destruction, its special physiological function (in cell cycles, DNA
repair, protein synthesis, transcription and stress response), its selected source
(short-term signals in the special destruction of proteins) and its key mechanical
features such as polyubiquitinated chain and subunit selectivity for protein
destruction. Indeed, these findings resulted in a major expansion in the ubiqui-
tin field during the 1990s. Additionally, following the discovery of proteolysis
through the UPS by Hershko et al. [3], the biological discoveries of Varshavsky
[1] in 1980 led to a basic understanding of circuits inside cells. These studies led
to Hershko, Rose and Ciechanover receiving the Noble Prize in Chemistry
in 2004.

© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.


http://crossmark.crossref.org/dialog/?doi=10.1098/rsob.200390&domain=pdf&date_stamp=2021-04-28
mailto:sohrabi_b@iust.ac.ir
mailto:sohrabi_b@yahoo.com
mailto:pazoki.h@iums.ac.ir
mailto:pazoki49@gmail.com
https://doi.org/10.6084/m9.figshare.c.5368990
https://doi.org/10.6084/m9.figshare.c.5368990
http://orcid.org/
http://orcid.org/0000-0003-3958-5002
http://orcid.org/0000-0001-7868-456X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

20S core

o subunit

B subunits

o subunit

o subunit

[ subunit

Figure 1. The 20S CP structure and its subunits. 205 complexes have four heptameric rings with two separate subunits: o and B subunits. o subunits are located in
two ends of the proteasome core. Two inner rings are formed from seven [3 subunits in which 31, B2 and B3 act as caspase, trypsin and chymotrypsin, respectively.

Proteasomes are in all eukaryotes, bacteria, and archaea;
in eukaryotes they are in either the nucleus or cytoplasm.
Generally, their function is to destroy misfolded and oxidized
proteins. Misproduced proteins are often found in mitochon-
dria. The mitochondrion is an unusual organ surrounded by
two membranes that protect a cell’s genome. The mitochon-
drial genome is so small but has many varieties, which
result in divergent evolutionism. The mitochondrion, as a
metabolic organ, has its own DNA (mtDNA), which is
maternally inherited [5]. There is some research showing
that mtDNA could be independent of the nuclear DNA [6].
Mitochondrial defects have an important role in cancer devel-
opment. In most research, it is noted that mtDNA mutations
occur mainly on the D loop, which is a control site for
expression in the mitochondrial genome. Furthermore,
mutations in the control region of the D loop cause decreased
expression of NADH (nicotinamide adenine dinucleotide
(NAD) + hydrogen (H)) and ND6 (NADH-ubiquinone oxido-
reductase chain 6 protein) [7]. Interestingly, the combination
of mtDNA proteins forms a nucleoid complex with less resist-
ance against mutations [8]. Therefore, mutations in mtDNA
are greater in number than those in nuclear DNA [9]. These
mutations are due to the production of reactive oxygen
species (ROS) by the phosphorylation process. The high sen-
sitivity of mtDNA to mutations is caused by ROS and the
lack of protecting histones, which are the Achilles’ heels of
this organ, resulting in an inefficient repairing system. Fortu-
nately, the mitochondrial network is too active to be exactly
regulated in stressful conditions. These mutations play a criti-
cal role in the ageing of the tissues and cells such as the brain,
muscles and fibroblasts and lots of pathological conditions
like neural, metabolical and age-dependent disorders [9-11],
and proteasomes are so important to protect the body against
these events [12].

It has been several decades since the discovery of UPS by
Ciechanover, Hershko and Rose. Nowadays, of course, new

inhibitors such as new classes of anti-cancer drugs that target
UPS present efficient therapeutic tools [13]. In this review, we
have gathered together all inhibitors of this system to produce
a universal source for new research, which is in process. Finally,
a future perspective about improving these inhibitors is
presented.

2. Proteasome structure

Proteasomes are small complexes of proteins, which are similar
in size to ribosomes. Components of proteasomes are usually
named by the Svedberg coefficient (S marker). The cytosolic
26S proteasome is a proteasome with a 2000 kDa weight and
is found only in mammals. Furthermore, it has one 20S core
subunit and two 19S regulatory caps (RP) complexes in mol-
ecular weight. Its core is empty and is therefore suitable for
destroying proteins. Moreover, its openings, which are at the
end of the core, allow them to come to the core. These openings
are in contact with 19S caps, which are regulatory subunits
having several ATPase active sites. These caps deubiquitinate
proteins and admit them to the core particle (CP) [14]. There
is another subunit that acts like the 19S cap called the 11S com-
plex, which is in relation to the CP and expressed in immune
responses. The 11S complex usually plays a role in destroying
proteins produced in viral infections.

2.1. 20S subunit

The variety and the number of 20S subunits are related to
the organism. The multi-cellular living cells contain more pro-
fessional subunits than mono-cellular ones. All 205 complexes
have four heptameric rings that each have two separate o.and
subunits. o subunits are structural subunits, while B subunits
are catalytic (figure 1). Remarkably, these subunits are
pseudo-enzymes and also are homologous with each other.
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Figure 2. Structure of the 195 regulatory cap. The 195 regulatory cap is
divided into two subunits: a base with nine proteins (Rpt1—6, Rpn1, 2,
13) in which six of them are ATPase and directly connected to the o subunit,
and a lid with 10 proteins (Rpn3, 5-12, 15).

These subunits are adjacent by their N-terminal domains [15].
Generally, o subunits are located in two ends of the CP whose
N-terminal domains (Pfam PF 10 584) form a gate not allowing
unwanted proteins to come to the CP [16]. Two inner rings are
formed from seven B subunits having protease activity, which
proteolyse the proteins. Notably, B;, B, and B act as caspase,
trypsin and chymotrypsin, respectively [17]. The alternative
forms of these subunits are By;, B; and Ps;, which are produced
in response to the invasive signals such as cytokines, especially
yv-interferon (IFN-y). The proteasomes having these subunits
are called immunoproteasomes [18].

2.2. 195 regulatory cap

In eukaryotes, the RP has 19 proteins and also is divided into
two subunits: a base with nine proteins (Rpt1-6, Rpn1, 2, 13),
six of which are adenosine triphosphate hydrolyse (ATPase)
directly connected to the o subunit and a lid with 10 proteins
(Rpn3,5-12,15) (figure 2) [19].

Among these proteins, Rpn2 is a great target for protea-
some inhibition because mutation in this protein can block
the proteasome (electronic supplementary material, S1). As to
the vital role of Rpt2 ATPase in regulating the CF, a mutation
can cause a failure in CP channel opening. Notably, this
mutation can lead to three events: (i) it can modify the active
sites of CPF, (ii) it can close an assumptive channel within the
centre of the RP base, and (iii) any obstacle interrupts the
substrate passage, but the CP channel itself is closed.

Interestingly, in the UPS protein degradation process, the
only step requiring ATP hydrolysis is the step related to protein
unfolding [20,21]. In fact, ATP binding to the ATPase could
support the other steps and does not require ATP hydrolysis.

Notably, this could lead one to achieve new types of inhibitors
that indirectly inhibit proteasomes (electronic supplementary
material, S1). The base subunit of the 19S cap acts as a gate
and imports the proteins, while the lid acts as a
deubiquitinase. In fact, the 19S cap stimulates the 20S core to
degrade the proteins. The primary function of the 19S cap is
opening the gate and letting the proteins come to the CP [22].
The mechanism by which the proteasome opens the gate has
recently been defined [16]. These mechanisms are summarized
in several steps; the C-terminal of the ATPase binds to a box in
the topmost part of 20S, and consequently, the unfolded
protein comes to the CP to be destroyed. The binding of the
C-terminal domain of the ATPase to this box stimulates the
opening of the proteasome gate. This mechanism is similar to
the mechanism of a lock and key [16].

2.3. 11S requlatory complex

20S subunits can also bind with another regulatory complex
named 11S. 115 is a heptameric structure that does not have
any ATPase and has three o subunits and three B subunits.
What is important is that it can degrade only small peptides,
and it cannot degrade a complete protein due to its inability
to unfold long proteins. This complex is also known as
REG, PA28 (proteasome activator 28) and PA26 (proteasome
activator 26) [15]. To open the gate of the proteasome, the
11S complex acts like the 19S cap [23]. Generally, the
expression of the 11S complex relates to the immunoprotea-
some production in response to IFN-y expression to
produce peptides connected to the major histocompatibility
I (MHC 1) in viral infections.

3. Assembly of proteasomes

To understand how the protein is destroyed, it is necessary to
study how proteasome components are assembled. Several
chaperones play a role in the efficient assembly of the 20S
proteasome. For instance, to study the starting point and
the development of the proteasome’s assembly, chaperones
simultaneously contact precursors. However, there is little
information about the 195 regulatory cap’s assembly [24].

4. Ubiquitination process

The first step of the protein degradation process is protein ubi-
quitination. Proteasomes target proteins for degradation that
require three enzymes. As figure 3 illustrates, first, a ubiqui-
tin-activating enzyme (E;) hydrolyses the ATP and then
adenylates one ubiquitin molecule. Later, this ubiquitin is trans-
located to the cysteine active site of E1 [25]. Finally, adenylated
ubiquitin is translocated to the second enzyme, cysteine, the
ubiquitin conjugated enzyme (E;). An enzyme called ubiquitin
ligase (E3) recognizes the targeted protein and catalyses the
translocation of the ubiquitin from E; to the protein. What is sig-
nificant is that the targeted protein should be marked by at least
four ubiquitin molecules and this must happen before recog-
nition of the proteins by the lid [26]. Moreover, the ubiquitin
molecules are conjugated to each other by the leucine residue
and form a ubiquitin chain. After ubiquitination, the ubiquitin
receptor should recognize the targeted protein. These receptors
have one ubiquitin-like N-terminal domain (UBL) and one or
more ubiquitin connected ridge(s) (UBA). RP regulates UBL,
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Figure 3. Ubiquitination process. First, E; hydrolyses ATP and then adenylates one ubiquitin molecule. Later, this ubiquitin is translocated to the cysteine active site
of E;. After that, this adenylated ubiquitin is translocated to the cysteine of E,. Finally, E; recognizes the targeted protein and catalyses the translocation of the

ubiquitin from E, to the protein.

and UBA is conjugated to the ubiquitin by three a-helix bonds.
These receptors may accompany the polyubiquitinated proteins
to the proteasome [27].

5. Protein degradation process

As we previously discussed, the protein is identified by RP
after being ubiquitinated. This protein should then come to
CP contact the proteases [14,21]. First, it should be deubiqui-
tinated and this deubiquitination leads to the formation of a
nuclear proteolytic compartment that stimulates the protea-
some’s catalytic activity [28]. The hole inside the CP is too
narrow (almost 13 A) and is filled by the N-terminal domains
of o subunits; consequently, at first, the proteins should be
unfolded [14]. It is noteworthy that several studies have
been completed based on creating a mutation in the o subunit
to inhibit proteasome activity (electronic supplementary
material, S1). The passage of the proteins from CP is called
translocation [14,21]. Remarkably, to translocate from the
CF, all proteins should be unfolded up to 20 amino acids
[14]. One of the most important things is that some characters
can inhibit the process of degradation. For instance, disulfide
bonds are inhibitors for this process [29]. Moreover, long
sequences of glycine and alanine may inhibit the unfolding
process, decreasing protein degradation quality [30]. Interest-
ingly, mutations that interrupt this process can help in the

discovery of an efficient way to inhibit the proteasome (elec-
tronic supplementary material, S1). Generally, the
degradation process results in the formation of small pep-
tides, which can be degraded to smaller amino acid chains
by other processes [31].

6. Targeting the ubiquitin—proteasome
system for cancer therapy

Although there is no efficient algorithm for treating cancer in
a relapsed condition, using some general principles could be
beneficial. For patients in a relapsed condition in the first
period of their disease, using single agents depending on
what was used for their initial treatment and treatment-
related toxicity is a reasonable approach. Furthermore, for
those patients who have not had grafts as part of their treat-
ment or have benefited from grafts for a long duration, an
autograft is the best choice. Moreover, for patients with devel-
opment-relapsed conditions or invasive diseases, using new
agents in combination with cytotoxic agents may be more
appropriate [32]. A group of agents used in these conditions
include those inhibiting the UPS. The clinical success of Bor-
tezomib for the treatment of multiple myeloma (MM)
illustrated that targeting the UPS is valid and possible [33].
What is notable is that we could target two main processes in
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Figure 4. (a) Ubiquitin-proteasome system inhibitors. (b) List of the inhibitors of the ubiquitination process as well as protein degradation.

this system: ubiquitination and protein degradation. To inhibit
ubiquitination, we can target three parts, including E;, E; and
E; enzymes. We can also block protein degradation, which
includes inhibition of ubiquitin recognition, ubiquitin separ-
ation, protein unfolding and protein destruction. To achieve
this goal, we can inhibit Rpn-13, ATPase and DUBs in RP as
well as the o and B subunits in CP (figure 4).

7. E; enzymes and their inhibitors

Currently, just two E; enzymes have been identified named
Ubiquitin-activating Enzyme 1 (UBE1) and Ubiquitin-like
modifier-activating enzyme 6 (UBA6) [34]. Only two
inhibitors called PYR-41 and PYZD-4409 have recently been
presented [35,36]. PYR-41 seems to inhibit the activation of
the nuclear factor x-light-chain-enhancer of activated B cells
(NF-kB) by regulating the stabilization of the NF-kB inhibitors
(IkB). In addition, it blocks the destruction of the tumour sup-
pressor p53, which in turn increases the transcription of p53
[35]. PYZD-4409 induces apoptosis resulting from stress in
the cancer cells and in a leukaemia mouse model and causes
a delay in tumour growth [36]. Although these findings
show the high potential of the E; enzymes to be targeted for
cancer therapy, none of these inhibitors currently have clinical
efficiency because of their poor pharmacokinetic properties.

8. E; enzymes and their inhibitors

There are 38 E, enzymes in the human genome, which illus-
trates its specificity compared to the E; enzyme [37]. CC0651
is an allosteric inhibitor for CDC34, which is a common E,
enzyme for cullin-ligase complexes. The fact that CC0651
causes tumour suppressors to aggregate and results in cell pro-
liferation inhibition shows that it can become an efficient

inhibitor in clinical applications [38]. However, for

pharmacokinetic reasons, its development faces many pro-
blems [39]. Another potential target of cancer therapy is
UBC13 (encoded by UEV1A), an E, enzyme regulating the
NF-kB pathway induction by forming chains depending on
the ubiquitin K63. It has been shown that the NSC697923 inhibi-
tor can inhibit the formation of K63 chains by UBC13 and also
can affect the proliferation and survival of the larger B cells in
lymphoma [40]. BAY-11-7082 is a well-known inhibitor of the
NF-kB pathway and can inhibit IkB kinase. However, it can
also inhibit UBC13 because it can prevent the binding of ubiqui-
tin to UBC13; hence, it can inhibit the formation of the K63 chain
in a similar way to the action of NSC697923 (a cell-permeable
and selective inhibitor of E,) [41]. However, although the E,
enzyme inhibitors show great potential for cancer therapy, so
far they have only been used in preclinical studies [33].

9. E5 enzymes and their inhibitors

E3 ligases can be single peptides such as parkin, simple
complexes like hetero/homodimers (e.g. mouse double
minute 2 homologue (MDM?2) or X-linked inhibitor of the
apoptosis (XIAP) protein) and big complexes such as cullin—
RING-ligase complexes or the anaphase-promoting com-
plex/cyclosome (APC/C) [42]. Generally, there are two main
classes of E; ligases [43]: HECT (Homologous to the E6GAP Car-
boxyl Terminus), in which there are 30 in the human genome,
and RING ligases, which include RING and RING-like ligases
and also their concomitant proteins, of which there are about
600 in the human genome (figure 5). On the one hand, HECT
ligases have a C-terminal domain that accepts a ubiquitin mol-
ecule from E; enzyme by forming a thioester bond before the
ubiquitin translocation of the substrate [44]. On the other
hand, RING ligases have a zinc finger, letting E, directly trans-
fer the ubiquitin to the substrate [45]. There is a subclass of
RING ligases known as RBR (RING-between-RING), which
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Figure 6. RINGT-IBR (in-between-RING)-RING2 ubiquitin ligase. RBR (RING-between-RING) has two domains having elements of both RING and HECT ligases; one
RING domain binds to the E, while another RING domain accepts the ubiquitin molecule before its translocation to the substrate.

has two domains having elements of both RING and HECT
ligases; as figure 6 indicates, one RING domain binds to the
E,, while another RING domain accepts the ubiquitin molecule
before its translocation to the substrate [46]. As to the role of E3
enzymes in the final determination of the targeted protein, they
play an important part in cell regulation. In fact, they control
and regulate the key factors of apoptosis (caspases), cell
growth (p21, p27 and p53), proliferation and genome stabiliz-
ation (cyclin and C-Myc), immune processes (PP-L1),
inflammation processes (NF-kB), and metastasis and angio-
genesis (Wnt) (table 1). What is important is that the
incorrect regulation of E; ligases or a mutation in them results
in the overexpression of oncogenes or downregulation of the
tumour suppressors and, therefore, causes development of
cancer. Hence, understanding the molecular goals and func-
tion of E; ligases is of benefit for designing an effective
method for cancer therapy [42]. As we previously mentioned,
to access an efficient treatment for cancer, it is necessary to
target a higher level in the UPS like Ej; ligases [13]. Different
inhibitors of these enzymes are discussed in table 1.

9.1. Tumour protein p53

Tumour protein p53 (Tp53) is a transcription factor known as a reg-
ulator of cell functions and proliferation and a controller of the cell
cycle, responding to DNA damage and apoptosis [42]. In addition,
P53 has an anti-cancer property through inhibiting angiogenesis.
When tumours grow, they need angiogenesis to supply nutrients.
Therefore, p53 decreases tumour growth through involvement in
the creation of hypoxia-inducible factors HIF1, HIF2, which
impact angiogenesis, inhibiting the production of angiogenesis
inducing factors and increasing the production of angiogenesis
inhibitors like arresten [83,84]. Mechanical signals cause HIF-1o
and HIF-2o to affect the amounts of p53 in stem cells so that
HIF-1o stabilizes p53, whereas HIF-2a: suppresses it [85]. The o
subunit of HIF becomes hydroxylated in its proline residue by
HIF proline hydroxylase, which results in its ubiquitination by
an E; ligase named VHL (von Hippel-Lindau tumour suppressor)
and its rapid degradation by the proteasomes [86]. What increases
the HIF factor in the hypoxic condition is the inhibition of prolyl
hydroxylase, which affects the amounts of p53 [87].
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Table 1. (Continued.)
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In unstressed cells, the amount of p53 is kept low by
its continuous destruction. To this end, one protein named
MDM2, which is called HDM2 in humans, binds to p53,
prevents its action, and transfers it from the nucleus to cytosol.
MDM?2 also acts as a ubiquitin ligase and conjugates the
ubiquitin covalently to p53 and, therefore, marks p53 to be
destroyed by proteasomes. However, p53 ubiquitination is
reversible. Interestingly, p53 becomes activated by MDM?2 acti-
vation, which sets up a feedback loop. The amount of p53 can
show oscillations in response to certain stresses, thus indicating
whether the cells survive or die [88]. When activation of p53 is
necessary, MI-63 (a small molecule inhibitor of MDM2-p53 inter-
action) binds to MDM2 and reactivates p53 [89]. Various
combinations stabilize p53, for example, by deubiquitinating it,
which is necessary for p53 activity against cell stress [90]. A
special ubiquitin protease called USP7 (or herpes virus-associ-
ated ubiquitin-specific protease (HAUSP)) can remove the
ubiquitin from p53 and protect it from destruction by the protea-
some. Recent studies have shown that HAUSP is usually located
inthe nucleus, although some of it may be found in the cytoplasm
and mitochondria. Besides, its overexpression causes the stabiliz-
ation of p53. However, not only does depletion of HAUSP fail to
decrease p53 levels, but it actually increases its levels since
HAUSP binds to MDM2 and deubiquitinates it. In unstressed
cells, HAUSP seems to bind with MDM2 more easily than p53.

Another factor that stabilizes p53 is ubiquitin carboxyl-
terminal hydrolase 10 (USP10) (a deubiquitinase). In unstressed
cells, USP10 is located in the cytoplasm, it deubiquitinates
cytoplasmic p53 and reverses the ubiquitination of MDM2.
Following DNA damage, it becomes located in the cytoplasm
and increases the stabilization of p53. Notably, USP10 does
not bind to MDM2 [91]. Another way to stabilize p53 is by phos-
phorylating its N-terminal domain, preventing the binding of
MDM?2 to it. Some proteins such as pinl bind to p53 and
cause a change in its structure, which results in more protection
against MDM2. Phosphorylation of p53 also leads transcription
factors such as P300 and P300/CBP-associated factor (PCAF) to
be bound to p53 and then acetylate its C-terminal domains.
However, deacetylase enzymes such as sirtl and sirt7 can
deacetylate p53 and, therefore, block apoptosis [92]. Some onco-
genes can also inhibit the activation of MDM?2 by increasing the
transcription of those proteins bound to it.

Additionally, another E3 ligase that affects p53 is called E;
ubiquitin ligase E6-associated protein (E6AP) or Ubiquitin-
protein ligase E3A (UBE3A). It is a HECT ligase with a molecu-
lar weight of about 100 kDa, which was discovered as an
interaction between human papillomavirus E6 protein and
p53. Neither E6AP nor E6 has a strong relation with p53, but
as a complex, E6/E6AP can bind to p53 and change the proper-
ties of the E6AP substrate, which lets E6AP ubiquitinate p53
and target it for degradation [93]. Significantly, EGAP may
have a role in cervical cancer caused by the human papilloma-
virus [94].

9.2. SCF complex (Skp, Cullin, F-box containing
complex)

9.2.1. SKP2

The SCF complex is a multiunit playing several roles in cell
regulation. Cullin1 (Cull) is the main substrate of this complex,
which ubiquitinates targeted proteins in their N-terminal
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domains. Notably, it uses two adapter proteins to bind to the
substrate; Cull directly binds to S-phase kinase-associated
protein 1 (SKP1), then binds to 70 F-box proteins, which
directly binds to the substrate [95]. F-box proteins are those
having at least one F-box domain. The F-box domain is a struc-
tural protein having 50 amino acids, which intermediates the
interaction between the proteins. The F-box protein in SKP2
has three o helices and directly binds to the SKP1 protein of
SCF [96]. Cull, in its C-terminal domain, binds to the protein
adapters named RING-box protein 1 (Rbx1) and RING-box
protein 2 (Rbx2), which will bind to an active E2 enzyme
[97,98].

The S-phase kinase-associated protein 2 (SKP2) is an F-box
protein that is more active in the S-phase [99]. In the S-phase, E
cyclin binds to the ubiquitinated and phosphorylated p27
using the Cyclin-dependent kinase 2 (Cdk2) complex [100].
p27 is a Cdk inhibitor that in humans is coded by a gene
called CDKN18 [101]. It also binds to the Cdk2-E cyclin and
Cdk4-D cyclin complex and inhibits their action, hence
controlling the cell cycle at the G1 point. p27 degradation
reverses Cdk2-E/A cyclin complex inhibition, thus letting
the cell enter S-phase and become prepared to enter
mitosis [102].

However, another target of SKP2 is p21. p21 is known as a
Cdk1 inhibitor, which is able to inhibit all Cdk/ cyclin complexes
[103], although it firstly inhibits Cdk2 [104,105]. Additionally,
it is the main target of p53 and, therefore, collaborates with
DNA damage for cell cycle arrest [106-108]. In some cases, to
reinforce the SKP2 binding to the substrate, it is necessary to
use a helper protein called CKS1 [109]. SKP2 can reinforce the
transcription of C-Myc as well as its degradation [110]. It is
shown that C-Myc represses the p21 promoter [111]. Interest-
ingly, acetylation of p300 by SKP2 changes the location of
SKP2 from the nucleus to the cytoplasm, resulting in an increase
in cell proliferation and tumour regeneration [112]. SKP2
mutations have recently been reported in several cancers,
including blood, colorectal, bone, ovarian and cervical [109,113].

9.2.2. Fbxw7

F-Box and WD Repeat Domain Containing 7 (Fbxw?) (in yeast,
Cdc4) have a homodimeric domain and an F-box domain that
binds to SKP1. The structure binding to the substrate is a f-pro-
peller structure formed from eight WD40 repeats located on
Fbxw?7 [114]. Binding of the substrate to Fbxw7 depends on
the WD40 arginine contact with phosphorylated region of
the substrate [114]. What is important is that the mutations pre-
venting substrate binding, especially in the arginine of the
WD40 region, are usually seen in tumour samples [115]. Due
to the homodimerization of Fbxw7, these mutations may
have a dominant-negative effect [116]. This effect relates to
the fact that the mutant Foxw7 can effectively bind to the sub-
strate while it is unable to ubiquitinate it [117]. Notably,
mutation of Fbxw?7 is common in several cancers such as
blood and bile duct [118].

One of the best substrates for Fbxw?7 is E cyclin [119],
whose degradation and ubiquitination depend on being
phosphorylated by Cdk2 and glycogen synthase kinase 3
(GSK3) [120]. Interestingly, dimerization of Fbxw?7 can
change its ability to bind to E cyclin and other substrates
[121]. Other targets of Fbxw?7 include transcriptor factors
such as Notchl, C-JUN and Myc-C [122], proteins bound to
DNA [123] and mTOR (the mammalian target of rapamycin)

protein. It is noteworthy that the large T antigen of SV40 (the [ 9 |

simian vacuolating virus 40 or simian virus 40), which has a
CDP domain, can inhibit Fbw7-driven cyclin E turnover
[43,124].

9.2.3. B-Transducin repeat-containing protein

B-Transducin repeat-containing protein (B-TrCP) play an
important role in regulating the controlling points of the
cell cycle. It also inhibits the action of Cdkl by destroying
CDC25A (M-phase inducer phosphatase 1) in cooperation
with the Chkl in response to genotoxic stress [125,126] and
results in blocking of cell cycle development before DNA
repair is completed. During DNA repair, B-TrCP targets clas-
pin with a phosphatidylinositol 4-kinase (PIK1)-dependent
method [127-129]. In addition, B-TrCP is known as an impor-
tant factor in protein translation, cell growth and cell
survival. Indeed, in response to mitogens, programmed cell
death protein 4 (PDCD4), which is an inhibitor of the trans-
lation initiation factor e[F4A (eukaryotic initiation factor-4A)
is destroyed in a B-TrCP and S6 kinase beta-1 (S6K1)-depen-
dent condition. This leads to cell growth and elongation of
protein translation [130]. Another target of B-TrCP playing
a role in protein translation is eukaryotic elongation factor-2
kinase (eEF2K), which inhibits the elongation of protein
translation by phosphorylating eukaryotic elongation factor
2 (eEF2) and also decreasing its attraction to the ribosome
[131]. In addition, B-TrCP helps mTOR and Casein kinase
la (CK-10) to destroy DEPTOR (an inhibitor of mTOR) and
produces an automatic reinforcement loop for the complete
promotion of mTOR activation [132-134]. At the same time,
B-TrCP destroys an apoptosis protein named BimEL (the
major splice variant of Bcl-2-interacting mediator of cell
death) to promote cell survival [135]. Moreover, in the same
tissue, B-TrCP acts as an oncoprotein. High levels of B-TrCP
expression are found in cancers, including colorectal [136],
pancreatic [137], hepatoblastoma [138] and breast cancers
[139].

Enhanced cell cycle performance and successful mitosis rely
on the coordination between cyclin function and degradation
[140]. The disruption of this coordination can result in mitosis
mistakes, unconsciousness and cancers [141]. While Cdk 1/2
mediates cell entrance to mitosis, the continuation of mitosis
and the cell’s exit from mitosis depend on APC/C [42]. Cell
division cycle 20 (Cdc20) is a basic regulator of cell division,
which in humans is coded by the CDC20 gene [142]. Accord-
ing to current knowledge, its most important function is
activation of APC/C. The protein complex APC/C-Cdc20
has two basic downstream goals. First, it targets the securin
for destruction, which in turn leads to cohesion degradation
and, therefore, results in chromatid separation. It also targets
the S and M phase cyclins for destruction, letting the cell exit
from mitosis.

Notably, another protein that plays a complementary role
in the cell cycle is named Cdh1, which is a homologue with
Cdc20. As a regulatory protein, Cdc20 cooperates with lots
of other proteins at different cell cycle points. In summary,
this protein is necessary for two microtubule-dependent pro-
cesses: nuclear motivation before anaphase and chromosome
separation [143].



9.4.1. XIAP

XIAP is an E; ligase from the IAP family known to have three
IAP baco virus N-terminal domains and a RING C-terminal
domain [144]. IAPs, such as XIAP, play the main role in regulat-
ing cell response to apoptosis. XIAP is expressed in several
cancers, especially kidney and skin cancers [145,146]. The
XIAP binding region between BAKI1-interacting receptor-like
kinase 1 (BIR1) and BAKI-interacting receptor-like kinase 2
(BIR2) includes the active site and inhibits caspases 3 and 7
[147]. Furthermore, the BAKI-interacting receptor-like kinase
3 (BIR3) domain of XIAP binds to caspase 9 and inhibits its acti-
vation [148]. Moreover, XIAP ubiquitinates caspase 3, caspase 9
and caspase 7 target them for destruction by the proteasome
[145]. Ultimately, in addition to its role as an E; ligase, XIAP
also acts as a neddylator, by which it inhibits the activation
of caspases [149].

Neddylation is a process in which a ubiquitin-like protein,
NEDDS, becomes conjugated with the substrate. This process
is similar to ubiquitination, although it is dependent on its
own E; and E, ligases. NEDDS8 binds to the substrate
by forming the isopeptide bond between the glycine of
the NEED8 C-terminal domain and the substrate’s lysine.
Neddylation of the substrate results in structural change
that may prevent molecular motivation and block conju-
gation of different substrates to it. In addition, it can cause
the proteins, which are usually bound to the substrate, to
become incompatible with it. For example, Cullin-Associated
NEDDS-Dissociated Protein 1 (CAND1) could not bind to a
neddylated protein [150].

9.4.2. Park2

Park2 (PARKIN) is an RBR-E; ligase, and hence, as men-
tioned before, it has both HECT and RING properties [151].
In cancer, the location of park?2 is usually eliminated [152].
In the mouse model, elimination of park2 results in liver
cancer [153]. Additionally, it can cause colorectal cancer
[154]. Moreover, park2 plays the main role in mitophagy
[155] that may impact cell redox [156], proliferation and
metastasis [157]. The role of park2 in regulating the cyclin
level is an important factor. Park2 destroys the D [158] and
E [159] cyclins by a Cull-dependent method [160]. The
mutation of park2 that takes place in cancers results in the
stabilization of these cyclins in the G1/S phase, which
causes an increase in the number of the cells being in the S
and G2/M phases [159,160]. Also, it can increase the speed
of cell proliferation [158]. Moreover, during mitosis, park2
cooperates with Cdc20 and Cdhl by an APC/C-dependent
method [161]. Furthermore, park2 ubiquitinates HIF-lo
and, therefore, helps in cell migration. Consequently, its elim-
ination causes tumour metastasis in mouse models [162].

9.4.3. Speckle Type BTB/POZ protein

The Speckle Type BTB/POZ protein (SPOP) is a Cull adapter
that is mutated in 10% of prostate cancers [163]. Moreover,
SPOP has three main regions: a MATH N-terminal for recog-
nizing the substrate [164], a BTB domain for dimerization
and interaction with cul 3 and a BACK domain for assem-
bling SPOP dimers as oligomers [165]. Interestingly,

oligomerization of SPOPs increases their binding to the sub- [ 10 |

strate and increases the substrate ubiquitinated by SPOPs
[166]. Owing to the SPOP role in the regulation of the proteins
involved in cell protection, a mutation in the MATH domain
blocks the binding of SPOP to the substrate, hence it causes
cancer development [167]. In addition, it plays a role in immu-
notherapy by ubiquitinating and degrading programmed
death-ligand 1 (PD-L1) [168]. What is important is that
mutant SPOPs cannot ubiquitinate PD-L1 that lets the
tumour cells grow [167]. Similarly samples from pancreas
cancer with mutant SPOP had high levels of PD-L1, showing
the role of SPOP in immune system invasion [169]. Some of
the other proteins targeted by SPOP are: proto-oncogene
DEK [170], deSUMOlyase SENP7 [171], C-Myec [172], Cdc20
[173], phosphatases PTEN and Dusp 7 [165], Gil 2 and Gil 3
[174,175] and transcription factors BET (BRD 2—4) [176-178].

In multiple cancers consisting of hepatocellular carcinoma
(HCC), breast cancer, colorectal cancer and lung cancer,
the proteasome subunits showed maladaptive expression
[179]. For instance, the proteasome beta subunit 4 (PSMB4),
a subunit of the CP complex, is upregulated in epithelial
ovarian cancer in which clinicopathological characteristics
and worse prognosis occur owing to the overexpression of
PSMB4 [180]. Furthermore, the 26S proteasome non-ATPase
regulatory subunit 10 (PSMD10), another well-studied onco-
protein as a valuable biomarker for recurrence and survival,
is often overexpressed in HCC and enhances HCC invasive-
ness and metastasis [181]. Moreover, it regulates the balance
between apoptosis and cell cycle by degrading retino-
blastoma protein transcriptional corepressor 1 (RB1) and
Tp53 [182,183].

10.1.1. o subunit inhibitors

Although it seems that proteasome alpha subunits (PSMAs)
take part in the malignant progression of human cancers,
in most of them, the expression patterns and prognostic
values of individual PSMAs remain elusive. Even though
seven alpha subunits (PSMA1-7) have been known, only
several of them have proved to have an association with can-
cers. For instance, pulmonary neuroendocrine tumours have
increased PSMA1 and PSMA5 mRNA expression compared
to normal tissues. Moreover, susceptibility to lung cancer
has an undeniable relationship with PSMA4 polymorphisms,
so an increased level of PSMA4 has a significant role in the
regulation of cell proliferation and apoptosis in lung cancer.
PSMAY can also take part in the development of HCC by
destroying several proteins playing a role in replicating the
hepatitis B virus. Furthermore, colorectal cancer has shown
overexpressed levels of PSMA?7 that are meaningfully related
to the cancer patient’s prognosis. Interestingly, it has been
shown that PSMA7 depletion in colorectal cancer cells leads
to decreased cell invasion and migration [179].

Accordingly, PSMAs are involved in numerous human can-
cers; however, inhibitors of these subunits are not used
frequently. The only report of their utilization to date was by
Cron et al. in 2013 [184], who investigated whole-genome
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Adapted from [184]. Copyright © 2013 Public Library of Science.

RNAIi screens to recognize knockdowns that increase non-
small cell lung cancer (NSCLC) cytotoxicity most reproducibly,
the treatment of which fails in a majority of locally advanced
patients despite optimal radiation therapy (RT), chemotherapy
and/or surgery. PSMAL1 is one of several proteasome subunits
recognized by these screens among top hits, and was the top-
most one. Some of the synergistic impacts of radiation and
proteasome inhibition are as follows: a 50% reduction in the
expression of NF-kB-inducible homologous recombination
(HR) genes BRCA1 (breast cancer type 1 susceptibility) and
FANCD2 (FA complementation group D2), an 80-90%
reduction in HR and a decrease in FANCD2, BRCA1 and
RADS51 ionizing radiation, which induced foci. Notably, to
knockdown PSMAI, they use doxycycline. Interestingly,
Cron et al. observed more proteasome inhibition after PSMAI1
knockdown in comparison with the utilization of Bortezomib
(figure 7), which may be due to poor tumour drug penetra-
tion of Bortezomib [184]. Despite this advantage, more
investigation is needed to use these inhibitors clinically.

10.1.2. B subunit inhibitors

Generally, there are five main classes of these kinds of
proteasome inhibitors: peptide aldehydes, peptide boronates,
epoxomicin and epoxyketones, lactacystin, B-lactone and
vinyl sulfones. Most of these inhibitors have an inhibition
effect on the Bs subunit of proteasomes because B; and B, inhi-
bitions are not as effective as they should be. However,
inhibition of Bs is much more effective.

Peptide aldehydes (e.g. MG-132) were the first protea-
some inhibitors to be discovered [185]. However, these
inhibitors have several deficiencies; for example, in cell cul-
ture, MG-132 becomes rapidly oxidized and, therefore,
converted to an inactive acid [186]. In comparison to peptide
aldehydes, peptide boronates are more effective inhibitors.
The dissociation rate of peptide boronates is slower and the
reaction is irreversible [186]. What is more, they do not
become oxidized; hence, they are much more stable [186].
Another class of proteasome inhibitors is Epoxyketone, and
the most well-known Epoxyketone inhibitor is Carfilzomib
[187]. Lactacystin is a nanopeptide inhibitor [187]. What is
interesting is that it does not directly inhibit the proteasome.
At neutral pH, it converts to clasto-lactacystin-p-lactone, reac-
tivating the proteasome [187]. Ultimately, vinyl sulfones are

another class of proteasome inhibitors whose synthesis is
easy and inexpensive [187].

Three proteasome inhibitors named Bortezomib, Carfilzo-
mib and Ixazomib are currently confirmed by the FDA (US
Food and Drug Administration). At first, Bortezomib was
approved in 2003 for those patients having relapsed MM
[188]. Nowadays, its usage has been expanded for new MM
patients and for the treatment of mantle cell lymphoma (a
rare form of non-Hodgkin lymphoma having a usual scatter
pattern of small lymphocytes and small slit cells) [189]. Gen-
erally, three models are well known; inhibiting NF-kB by
stabilization of IkB, activating the response of misfolded pro-
teins by inhibition of proteasome due to high endoplasmic
reticulum (ER) stress, and finally, stabilization of the apopto-
sis proteins such as BAX (BCL2 associated X, apoptosis
regulator) and NOXA (BH3-only member of the BCL-2
family) [39,188,190,191].

Carfilzomib was approved in 2012 by the FDA for those
patients having relapsed MM and previously cured by
Bortezomib [189,190]. This inhibitor binds reversibly to the
proteasome and inhibits its activation up to 80%. As mentioned
previously, it is used when Bortezomib is not effective [39]. In
2015, another proteasome inhibitor was approved by the
FDA named Ixazomib. It was used in combination with lenali-
domide and dexamethasone. In contrast with Bortezomib and
Carfilzomib, Ixazomib is available orally [192]. There are two
more proteasome inhibitors that are in clinical trials: Morizo-
mib and Oprozomib. Morizomib is a kind of B-lactone
inhibitor. In high concentrations, it can also inhibit the B; sub-
unit [193]. What is important is that Morizomib can overcome
the resistance to Bortezomib and Carfilzomib [194]. Oprozo-
mib is another proteasome inhibitor that is in the class of
epoxyketone inhibitors [187]. All of these inhibitors inhibit
the Bs subunit of the proteasome (chymotrypsin).

The reaction between chymotrypsin and substrate takes
place in two steps: a primary step at the start of the reaction
and a steady-state phase following Michaelis-Menten kinetics.
The first step is hydrolysis, which in turn is done in two steps:
(i) acylation of the substrate to form an acyl-enzyme intermedi-
ate and (ii) deacylation of the enzyme to its first form. These
events occur by the coordinate action of three amino acids in
a catalytic triple [195]. The aspartate’s hydrogen bonds to the
N-6 hydrogen of histidine, causing an increase in the pK, of
its fourth nitrogen. Hence, serine becomes deprotonated,
which means serine loses its proton. This deprivation causes
the serine’s sidelong chain to act as a nucleophile and bind to
the carbonyl carbon of the main chain of the substrate, which
had electron deficiency. The ionization of carbonyl oxygen
becomes stabilized by the formation of two sidelong hydrogen
bonds to the main chain’s N-hydrogens. These reactions result
in a tetrahedral combination and lead the peptide bond to be
broken down. The formation of an acyl-enzyme intermediate
bonded to serine causes the new N-terminal of the protein to
be broken down and separated. Moreover, in the second step
of the reaction, one water molecule becomes activated by histi-
dine and acts as a nucleophile. The oxygen of the water attacks
the carbonyl carbon of the acyl group of serine, which results in
the formation of a secondary tetrahedral combination, regener-
ation of the OH group of serine and the release of a proton, as
well as a protein with a newly formed C-terminal domain
(figure 8) [195]. In these reactions, if the aspartate amino acid
of the chymotrypsin binds to an inhibitor, the rest of the
hydrolysis route will not continue; therefore, the proteasome
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Figure 8. The process of protein proteolysis by chymotrypsin. (a) The substrate becomes acylated to form an acyl-enzyme intermediate. The hydrogen of the
aspartate binds to the N-& hydrogen of histidine. (b) The sidelong chain of the serine acts as a nucleophile and binds to the carbonyl carbon of the substrate’s
main chain. (c) lonization of carbonyl oxygen becomes stabilized by the formation of two sidelong hydrogen bonds to the N-hydrogens of the main chain. These
reactions result in a tetrahedral combination and cause the peptide bond to be broken down. (d) Formation of an acyl-enzyme intermediate bonded to serine and
causes the new N-terminal of the protein to be broken down and separated. Moreover, in the second step of the reaction, one water molecule becomes activated by
histidine and acts as a nucleophile. The oxygen of the water attacks the carbonyl carbon of the acyl group of serine, which results in the formation of a secondary
tetrahedral combination, regeneration of the OH group of serine and the release of a proton as well as a protein with a newly formed C-terminal domain.

becomes inactivated. For example, the bromine atom in
the Bortezomib can bind to the oxygen of the aspartate and
inactivate it.

It is noteworthy that the above findings have also been
confirmed by computational methods so that Wei et al.
used first-principles quantum mechanical/molecular mech-
anical (QM/MM)-free energy (QM/MM-FE) calculations to
illustrate the first detailed systematic computational study
on the reaction mechanism of the proteasome with Epoxomi-
cin inhibitors (EPX) [196]. In this study, they carried out MD
simulations and QM/MM-FE calculations to further explore
the subsequent chemical reaction mechanism of EPX with
proteasome in the B5 catalytic site (chymotrypsin). According
to figure 9, these computational studies demonstrate that the
possible mechanisms for this reaction are via five steps
presented in [196].

However, several inhibitors exist acting on other mechan-
isms. For instance, bioinformatics studies of Di Dato et al.
[194] demonstrated that the cationic porphyrins as new lead
structures could be used for the development of a novel class

of multifunctional inhibitors. Indeed, docking methods and
NMR measurements show that cationic porphyrins act as a
reversible inhibitor of the human 20S proteasome by using
the interactions of the positively charged N-methyl-pyridyl
moieties with the negative residues on the a-ring in proximity
to the gate channel [197]. Notably, these highly versatile inhibi-
tors conjugate to the parent frame with variously charged
moieties, which in turn devote special properties to the
molecule. It confirms they may be fine-tuned and that this
can be correlated to the key role of electrostatics in driving
porphyrin/proteasome interactions.

10.2. 195 requlatory cap inhibitors
10.2.1. Ubiquitin receptor inhibitors

Rpn-10 and Rpn-13 are two ubiquitin receptors of the 26S pro-
teasome in the 19S RP. Rpn-10 (originally called S5) was first
recognized in humans as a proteasome subunit in 1994 [198]
and Rpn-13 was first reported in 2006 [199-201]. As mentioned
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Figure 9. The suggested mechanism for the reaction of epoxomicin (EPX) with proteasomes. Possible mechanisms for this reaction are via five steps. (i) Proton
transfer process, activating Thr1-Oy directly via Thr1-Nz to form a zwitterionic intermediate. (ii) Nucleophilic attack on the carbonyl carbon of EPX by the negatively
charged Thr1-Oy atom. (jii) Proton transfer from Thr1-Nz to the carbonyl oxygen of EPX. (iv) Thr1-Nz attacks the carbon of the epoxide group of EPX, along with the
epoxide ring-opening (SN2 nucleophilic substitution) so that a zwitterionic morpholino ring is formed between residue Thr1 and EPX. (v) The product of the mor-
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previously, these ubiquitin receptors are exactly located at the
apex of the 265 proteasome, making it possible for polyubiqui-
tinated substrates to be accessibly captured and to be degraded.
While Rpn-13 contains one ubiquitin-interacting surface,
Rpn-10 has two ubiquitin-interacting motifs (UIMs), which
can bind to ubiquitin chains at the same time but at different
affinities [202]. Since Rpn-13 is unnecessary in healthy cells
and is overexpressed in a variety of cancers, including ovarian,
MM and gastric cancer, it has been more noteworthy than
Rpn-10 up to now (electronic supplementary material, S2)
[203-205]. Until now, only two inhibitors of Rpn-13 have
been known: a covalent irrevocable chalcone named RA190
and a non-covalent revocable peptoid named KDT-11.

Notably, the optimization of activity and solubility of
several chalcones such as AM114 that is known to be inhibited
by ubiquitin-mediated protein degradation led to the discovery
of RA190 in 2013 [206-208]. RA190 seems to trigger the
unfolded protein response (UPR) and cause accumulation of
polyubiquitinated proteins, resulting in ultimate cell apoptosis.
Bortezomib-resistant cell lines are an important problem that
can be treated by this mechanism of action. Additionally, it
has promising anti-cancer activity towards cervical, MM and
ovarian cancers [206,208]. In 2015, a one-bead one-compound
(OBOC) peptoid library screen of 100 000 compounds resulted
in the discovery of the second well-known inhibitor of Rpn-13,
called KDT-11 [209]. KDT-11 acts like RA190 since it is a well-
known 20S CP B5 inhibitor, which has also appeared to cause
the accumulation of polyubiquitinated proteins in MM cells
that leads ultimately to cell apoptosis. A competitive fluor-
escence polarization (FP) assay has suggested that KDT-11
contrasts with RA-190 in regard to their surface binding. More-
over, KDT-11 could rather destroy the Uch3—Rpn-13 interaction
or bind to a novel surface on Rpn-13. In conclusion, despite the
advantage of KDT-11 over RA190, which is the selectivity of
KDT-11 for Rpn-13 in MM cells, improvement of its physical
properties needs more in vivo investigation [210].

10.2.2. ATPases inhibitors

Rpt1-6 are six distinct ATPases in the human proteasome that
form a heterohexameric ring-like structure [211] located on
the top of the 20S CP’s alpha subunits (figure 2) [212]. As
mentioned before, this ATPase ring can unfold and shuttle
the proteasome’s selected proteins for degradation via 20S
CP. In 2007, screening 30 000 compounds led to the identifi-
cation of a peptide called RIP-1 [213]. This compound was
shown to have inhibitory effects on Rpt1-6, especially Rpt4.

However, more investigations are required to reveal that tar-
geting Rpt4 is a viable mechanism of toxicity.

Besides the Rpt subunits, p97 (VCF, for valosin-containing
protein) is another ATPase that is greatly involved in the UPS
[214]. The homohexameric p97 protein complex differs from
the Rpt subunits in that the former appears to “pick’ ubiquiti-
nated proteins from inside the cell and transport them to the
19S RP, whereas the latter does not [215,216]. In addition, its
upregulation in multiple diseases and cancers highlights it as
a potential therapeutic target [217,218]. Four inhibitors are
known to inhibit p97. DBeQ is a selective and reversible p97
ATPase inhibitor that can block endoplasmic reticulum-associ-
ated degradation, modulate the autophagy pathway and
enhance the activation of cascades 3 and 7 in cancer cells.
ML240 is an ATP-competitive inhibitor of p97 ATPase, which
is similar to DBeQ), can promote activation of caspases 3 and
7 (in multiple colon cancer cells) and inhibit the endoplasmic
reticulum-associated degradation (ERAD) pathway. It can
also induce the accumulation of LC3-II (a standard marker
for autophagosomes) and modulates autophagosome matu-
ration. Another inhibitor is NMS873, which is a potent and
selective p97 ATPase allosteric inhibitor and is able to activate
the unfolded protein response and impair autophagosome
maturation. It can also present antiproliferative activity in
cancer cells [219]. Ultimately, another inhibitor that has recently
been suggested is xanthohumol, which is a polyphenol [220].

Deubiquitinating enzymes (DUBs) (also deubiquitinases)
remove ubiquitin from target proteins and, therefore, reverse
the effect of E3 ligases. Moreover, they can also take part in
ubiquitin recycling, maturation and editing [221-223]. Remark-
ably, about 100 DUBs exist that can be encoded by the human
genome. Cysteine proteases and zinc metalloproteases are
two main classes of DUBs based on the mechanism of enzymatic
cleavage. However, in another division based on sequence
and domain conservation, DUBs group into six subfamilies:
Machado-Joseph disease protein domain proteases (M]Ds),
monocyte chemotactic protein-induced protein (MCPIP),
ubiquitin carboxy-terminal hydrolases (UCHs), ubiquitin-
specific proteases (USPs), ovarian-tumour proteases (OTUs)
and JAB1/MPN/Mov34 metalloenzyme (JAMM)/Mprl, Padl
N-terminal (MPN) domain-associated metallopeptidases
(JAMMs) [222-225].



Conspicuously, the most numerous DUBs are USPs,
which have approximately 60 proteases in humans and
have sizes ranging from 50 to 300 kDa [223]. USPs consist
of a huge subdivision of proteins that have relevant DUB
activity. In particular, owing to extensive gene mutations
and USPs’ aberrant expression in different types of cancers,
USPs are considered potential anti-cancer targets. Also, inter-
est in developing USP-specific inhibitors as anti-cancer
therapeutic agents is increasing [226,227].

Up to now, several inhibitors have been developed
that target different DUBs. For example, 8-mercapto-N-((tetrahy-
dro-3-furanyl)methyl)-4-quinoline carboxamide, LND-57444,
VLX1570, ML323, (ADC-01,ADC-03, HBX41108,HBX19818,
P5091,P22077), 9-(ethoxyimino)-9H-indeno(1,2-b)pyrazine-2,3-
dicarbonitrile, WP1130, Mitoxantrone and GSK2643943A are
able to inhibit PSMD14, UCHL1, UCHL5 and USP14, USP1,
USP7, USP8, USP9X, USP11 and USP20, respectively. Markedly,
all of these inhibitors are in the preclinical stage except for
VLX1570, which is in the clinical trial phase [222].

However, among all of these DUBs, the most targeted
part of the RP is Rpnll. Remarkably, it is a metalloprotease
that is directly located above the translocation pore and
removes ubiquitin chains from the substrates targeted for
degradation [228]. Particularly, every mutation that disrupts
its catalytic activity can block the substrate degradation
and ultimately cause cell death [229]. Capzimin is the first-
in-class selective inhibitor of Rpnll recently developed by
Li et al. in 2017 [230]. In principle, what capzimin treatment
does is stabilize targeted substrates and inhibit proliferation
in several tumour cell lines [230]. This anti-tumour activity
introduces Rpnll inhibition as a productive alternative for
treating malignancies.

Although the proteasome-ubiquitin system has the potential to
find an efficient treatment for cancer, until 2019, it was used
mostly for treating MM. However, in 2019, Rashid et al.
reported that this system’s inhibitors can be efficaciously
used for the treatment of brain cancer. This report opened a
new vision in this field [231]. Therefore, different ways for inhi-
biting this system in addition to ways to improve these
inhibitors have been suggested up to now.

Interestingly, several chemical changes using compu-
tational methods can introduce new inhibitors with much
more efficiency. Multiple ways exist to improve the properties
of inhibitors. For example, the substitution of some functional
groups’ inactive sites can be efficient, but even though this is
a good method, focusing on molecular scaffolds to achieve
better bioactive compounds is much more efficient [232].
Generally, a ‘scaffold’ is defined as a molecular core attached
to functional groups [233-235]. Molecular scaffolds have been
investigated by several studies. As an example, Hardcastle
et al. [236] have investigated isoindolinone as a scaffold to
improve MDM2 inhibitor properties. Their results showed
that isoindolinone is less efficient than the active compounds,
but its structure can be edited to change their substitution
and create a new location for the junction of MDM2. Thus,
it is possible to create various junctions by using ducking cal-
culations and investigating their properties using
computational methods.

Interestingly, it is also possible to investigate these inhibi-
tors and their binding affinity to the target from the point of
energetic view relying on the binding free energy composed
of both enthalpic and entropic contributions. In fact, we can
choose a compound that is energetically more stable by
using thermodynamic functions AH and AG. Notably,
owing to the binding of functional groups to an isoindolinone
complex as well as binding of the inhibitor to the target,
entropy decreases and we know that a decrease in entropy
leads to a decrease in system stability. In these inhibitors,
enthalpy—entropy compensation will be used to investigate
the interplay between entropy and enthalpy to achieve high
affinity of inhibitor and target binding and driving forces of
binding of the inhibitor to the target [237].

However, to achieve more efficient inhibitors, we should
choose the best scaffold. Towards this goal, one way is to
define a feature named TS (target selectivity), which is the
difference between pKi and pKip (pKia and pKig are the logar-
ithms of the potential value of target compounds A and B,
respectively) [238]. A graph is the best tool to understand
scaffold selectivity better. Imagine a graph of all targets in a
proteasome-ubiquitin system, which are nodes of this graph.
Edges are drawn between the nodes if they have at least five
common compounds. Notably, choosing number 5 controls
network noise and ensures the reliability of selectivity profil-
ing, as Hu et al. [238] indicated. Calculating the TS feature for
all targets and all scaffolds in bioactive compounds against
these targets showed the best scaffold with the highest TS
(between —3 and 3). Interestingly, in a community of targets,
a target that has the highest TS for a scaffold can give us the
most efficient inhibitor. As shown in a graph, each target is
bonded to several other targets. By comparing the common com-
pounds in these targets, we can identify the compound to which
the highest TS is related. Identification of these compounds can
help us to achieve a scaffold with the highest TS [238].
To change the TS, the pK; of the scaffold should be changed.

In order to efficiently change the pK;, we should know the
activity cliffs. Activity cliffs are defined as a pair or groups of
similar compounds that are extremely different in potency.
These cliffs have been categorized in several groups as ‘chir-
ality cliffs’, ‘topology dliffs’, ‘R-group cliffs’, ‘scaffold cliffs’
and ‘scaffold/topology cliffs’ [239]. Among these cliffs, the
most important for us are scaffold cliffs. Notably, in these
cliffs, the difference is the place of the same substitution
[240]. What is important is that scaffold cliffs have different
potential, so exchanging them with each other could
change the TS value. Of note, according to a synergistic
effect, the combination of scaffold cliffs and topology cliffs
(cliffs that are different in the position of the same set of sub-
stituents in a conserved scaffold) as scaffold/topology cliffs
has higher potential than the summation of each individual
potential [239]. Therefore, utilization of these cliffs can be
more efficient.

However, there are several ways to produce new scaffolds
that have the same or different bioactivity from the previous
ones experimentally. Generally, to achieve this goal, we can
use different procedures like ring-opening, contraction ring,
and expansion ring [241]. Particularly, two ways exist to syn-
thesize a scaffold by making a change in it. First, the biology-
oriented synthetic (BOS) method is used to produce structu-
rally novel molecules. In this procedure, a scaffold becomes
reduced in a stepwise process to convert to an intermediate
scaffold used to produce a new scaffold. To this end, both



chemical and biological (for example, a gene transferring
technique) limitations are common. Biologically, the scaffolds
synthesized in this way have the same bioactivity compared
to the primary scaffold [241]. The second procedure is frag-
ment biased compound design (FBCD), in which several
fragments are used to form a scaffold by conjugating to
each other [242]. Conjugation of these fragments to each
other occurs in different regions as follows [241]:

(1) by a linear connection,

(2) by an edge (the final scaffold is called fused edge on edge
scaffold),

(3) by one atom (the final scaffold is named Spiro scaffold),

(4) by two atoms and one bridge (the final scaffold is called
bridge bicyclist scaffold), and

(5) by an intermediate compound (the final scaffold is called
bridge bipodal).

Notably, these differences in fragment connections result
in different bioactivities. Interestingly, we can use these pro-
cedures to connect several scaffolds to produce a new
scaffold. Note that properties of a new scaffold such as its
bioactivity might be similar to primary scaffolds or syner-
gism. In fact, its bioactivity might be more than each
primary scaffold. However, what is notable is that com-
pounds sometimes rotate when they are binding to another
compound. This phenomenon leads to the formation of
regio-isomeric scaffolds, which are different in their bioactiv-
ities [241]. Anyway, exploring scaffolds systematically using a
structure-based method has the potential to open new sights
in drug discovery for further developments, especially in the
field of UPS.

Despite the passing of several years since the discovery of
UPS, much research is still needed to find an efficient treat-
ment for cancer. The success of Bortezomib as an inhibitor
of this system increased hope for continuing such research.
However, lately, it has been shown that using inhibitors to
target the ubiquitination process is more effective. Thus,
some inhibitors for E;, E, and E; enzymes have been pre-
sented here, of which only the E3 enzyme inhibitors were
clinically successful since the inhibitors of E; and E, enzymes
had poor pharmacokinetic properties. As for the various E;
ligases in the cell processes, targeting them for cancer therapy
is complex and, therefore, requires more investigation. How-
ever, there are several ways exist to improve the bioactivity of
the inhibitors, which are available now. One of these is to
investigate inhibitor scaffolds to increase their potential.
However, more research should be done to find the most
useful way, at the lowest cost, to increase anti-cancer
translation.
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