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INTRODUCTION

Targeted cancer therapy aims to disrupt aberrant 
cellular signaling pathways. Drug targets are identified 
within those pathways that should be functionally linked to 
disease progression and have a disease specific biomarker to 
predict or assess therapeutic response [1]. Such biomarkers 
are thus surrogates of pathway state, but there has been 
limited success in translating candidate biomarkers to 
clinical practice [2]. Indeed only a tiny fraction of identified 
potential biomarkers have been adopted into clinical practice 
[3]. A key limitation to clinical translation of biomarkers 
is rooted in a drug design process typically framed in a 

single-target-single-drug paradigm [4] in the face of three 
major complexities: (1) the intrinsic complexity of pathway 
networks, (2) unforeseen feedback effects, and (3) dynamical 
adaptive changes in pathways when challenged by a drug.

Each of these complexities attracts different 
challenges. Topological complexity is an essential 
regulatory characteristic of cellular signaling pathways, 
with signaling networks exhibiting such features as 
pathway cross-inhibition, cross-activation, redundancy 
and convergence [5]. Targeted therapies can impact these 
regulatory processes resulting in system-scale changes to 
behavior reaching beyond the targeted region in ways that 
are difficult to predict [6]. Feedback in signaling networks 
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ABSTRACT
Targeted cancer therapy aims to disrupt aberrant cellular signalling pathways. 

Biomarkers are surrogates of pathway state, but there is limited success in 
translating candidate biomarkers to clinical practice due to the intrinsic complexity 
of pathway networks. Systems biology approaches afford better understanding 
of complex, dynamical interactions in signalling pathways targeted by anticancer 
drugs. However, adoption of dynamical modelling by clinicians and biologists is 
impeded by model inaccessibility. Drawing on computer games technology, we 
present a novel visualization toolkit, SiViT, that converts systems biology models of 
cancer cell signalling into interactive simulations that can be used without specialist 
computational expertise. SiViT allows clinicians and biologists to directly introduce 
for example loss of function mutations and specific inhibitors. SiViT animates the 
effects of these introductions on pathway dynamics, suggesting further experiments 
and assessing candidate biomarker effectiveness. In a systems biology model of Her2 
signalling we experimentally validated predictions using SiViT, revealing the dynamics 
of biomarkers of drug resistance and highlighting the role of pathway crosstalk. No 
model is ever complete: the iteration of real data and simulation facilitates continued 
evolution of more accurate, useful models. SiViT will make accessible libraries of 
models to support preclinical research, combinatorial strategy design and biomarker 
discovery.
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likewise has a regulatory role, exerting either positive or 
negative effects on cascade components [7]. Feedback loops 
provide plasticity in signaling pathway behavior that can 
enable cells to adapt to therapeutic insult [8]. Further, there 
is a growing body of research to suggest that the strengths 
of these regulatory mechanisms are not static: they are 
dynamic over time in response to drug action [9] and so it 
is likely that dynamic features of network signaling might 
form the basis of drug targets rather than the network 
components themselves [10]. These complexities and 
dynamical adaptive changes may confer resistance to 
drug therapy [11] and increasing evidence from clinical 
studies that combination therapies offer a possible route to 
address drug resistance [12, 13] and cell line studies point 
towards the use of combination therapy to sensitize cells to  
anti-cancer therapy [14].

In the face of this complexity, our representations 
of signaling pathways and drug combinations have 
become increasingly sophisticated, and there is a growing 
opportunity for systems biology modeling to contribute to 
experimental design and to unravel the mechanisms and 
complexities of network functioning and combination 
therapy design [15]. For example, in a recent theoretical 
study of mono- and combination therapy to overcome drug 
resistance to kinase inhibitors [16] based on thermodynamic 
factors, the developed model is able to demonstrate both 
resistance to single drug treatment for two inhibitors 
when applied individually to the same kinase target and 
the overcoming of that resistance when those inhibitors 
are applied in combination. Further, through systematic 
investigation into model dynamics a suggested mechanism 
of action is identified, whereby the binding of one promoter 
to an inhibitor introduces conformational change in another 
promoter and this change provides a target for a second 
inhibitor to act in combination.

The value of this and other systems biology models 
depends on sophisticated model analysis and interpretation 
of model complexities, including for example the 
determination of system-scale control parameters such 
as the transition from drug resistance to sensitivity [17] 
and state space search optimization methods for model 
parameter estimation [18]. Analytical methods such as these 
are typically the working arena of theoreticians. Importantly, 
biologists and clinicians with the pertinent domain expertise 
are then dependent on such theoreticians to explore 
model dynamics, and this is a relative barrier to effective 
implementation of systems biology models into preclinical 
and clinical stages of drug development.

To overcome this barrier, we present a new, 
interactive, visualization and animation technology, SiViT 
(Signaling Visualization Tool), to enable biologists and 
clinicians to work directly with the model. SiViT allows 
biologists and clinicians to directly introduce and visualize 
the effects of changes in pathway dynamics in silico (for 
example by introducing mutations or inhibitors) thereby 
identifying unforeseen interactions, suggesting further 

experiments where the model is incomplete and identifying 
and assessing the possible effectiveness of candidate 
biomarkers as read outs of pathway status after dynamical 
adaptation. SiViT is generalizable and accessible, thus 
supporting preclinical research, combinatorial strategy 
design and biomarker discovery.

SiViT provides a single framework within which 
models may be imported (in Systems Biology Markup 
Language (SBML) format [19]) and their dynamics 
animated. Model structure is automatically projected onto a 
graph, with graph nodes representing entities in the network, 
such as molecular species and drugs, and edges representing 
node interconnections–the pathways. SiViT allows 
interactive animation of both species concentrations and 
signaling activity over time. These core features enable life 
scientists to animate and probe the dynamics of a cellular 
signaling model. Most importantly, SiViT allows domain 
experts to interact with the model, be it by introducing 
species mutations and/ or by adding specified (combinations 
of) concentrations of drugs at specific times.

Beyond these features, SiViT facilitates comparison 
of model dynamics in two different experimental regimes, 
for example with and without drug intervention and/ or 
under species mutation, through an easy to use menu 
system. Comparisons between experimental regimes are 
depicted using intuitive, color-coded animations. The result 
is an interactive in silico exploration and discovery platform 
to enable the life scientist to explore and exploit existing 
SBML-format models of cellular signaling and drug action. 
We illustrate these model features using as an exemplar the 
cell signaling model and experimental regimes described in 
detail in [20] and [21]. SiViT and supporting documentation 
is available from the authors on request together with the 
exemplar signaling model. SiViT requires a full installation 
of MATLAB 2011b (www.mathworks.com) but will 
automatically install all other required software.

RESULTS

Visualizing signaling networks with SiViT

The visualization created by SiViT is encapsulated in 
a User Interface (Figure 1). SiViT automatically arranges 
the model as a network where nodes are species and edges 
are reactions, arranged according to a force-directed graph 
algorithm [22] that optimizes layout. A play icon allows 
visualization of model dynamics and is linked to a slider bar 
that allows the user to manipulate the visualization forwards 
and backwards in time.  

The main window (Figure 1) depicts the signaling 
network in response to a particular in silico experimental 
regime (drug interventions, mutational status). The color 
scheme depends on the configuration of SiViT. For a single 
experiment SiViT shows the network in white. Each species 
is shown as a node and species concentration is depicted 
by the radius of a translucent sphere around that node  
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(see Figure 1, Inset 2). Importantly this radius will increase 
and/ or decrease over the course of the simulation according 
to the calculated concentrations from within the signaling 
model. Reaction velocities among nodes are visualized in 
a similar manner: edge thickness is a function of reaction 
velocities and so increases and/ or decreases in line with 
model dynamics.

Where two different experimental regimes are set 
up for comparison, the visualization is tri-colored (white, 
red, blue). Regimes are defined via the intervention 
panel, and one regime is designated “Control”; the other 
“Experiment”. For every time point the values of each node 
and each edge in the Control and Experiment are compared. 
If there is no difference between these values the node/ 
edge is white; if the Experiment value is higher or lower 
than the Control value the node/ edge is colored red or blue 
respectively, with intensity proportional to this difference. 
The intervention panel (Figure 1, Inset 1) is a pop-up dialog 
box that allows the introduction of known drugs and/ or 
mutations. Drugs may be selected from a drop-down list 
and both the dosage and timing of application of that drug 
specified. For protein expression and catalytic activity 
changes indicative of mutations, any species in the model 
may be selected from a drop-down list and the protein 

concentration level or kinetic constant and the time of 
change in that concentration level or kinetic constant may 
be specified. In this way, complex regimes with multiple 
drugs and multiple mutations may be specified.

Additionally, and to illustrate the visualization of 
other models with SiViT, we loaded the SBML model of 
ERK signaling from [23]. In an exploration of the link 
between cell fate and signaling dynamics model results 
show that an increasing in one ERK isoform results in 
a decrease in the other isoform. To demonstrate model 
functioning we reproduced some key findings (see 
Supplementary Figure S1).

Interactive animation of signaling responses to 
combination therapies

Using the model of the PI3K/PTEN/AKT and RAF/
MEK/ERK signaling pathways developed in [20], [21] and 
[17], we use SiViT to reveal the dynamic signaling response 
to: (1) application of a growth inhibitor drug; (2) introduction 
of a mutation in the network that is known to confer drug 
resistance; (3) addition of a second drug to restore network 
sensitivity, i.e. a combination therapy to overcome drug 
resistance.

Figure 1: SiViT graphical user interface components. Signaling network visualization with major components of a menu bar 
(upper top), time slider bar (lower top), central viewing frame (main area) and intervention panel (right). The visualization illustrates a 
pop-up dialogue box (Inset 1, bottom right) for amending drug regime and mutational status together with Inset with magnified detail (Inset 
2, bottom left).
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The computational model describes the signaling 
response kinetics to heregulin, a growth factor that binds 
with receptors in the Erbb family to induce HER3/HER2 
receptor dimerization pHER23 (see model schematic in 
Figure 2). This in turn stimulates tyrosine phosphorylation 
that in turn drives intra-cellular signaling activity. This 
signaling activity can be inhibited by receptor tyrosine 
kinase (RTK) inhibitors, and we include one such inhibitor 
in our model: pertuzumab (2C4 antibody). Pertuzumab 
is designed to target HER2 to inhibit HER2 dimerization 
with other Erbb family members, and especially formation 

of the oncogenic HER2-HER3 dimer. This HER2-HER3 
dimer can activate the PI3K/PTEN/AKT signaling pathway 
that governs cell survival and so proliferation and tumor 
growth. Pertuzumab thus acts to suppress activation of the 
PI3K/PTEN/AKT cell survival pathway. Supplementary 
Videos S2 to S4 and still Figure 3A–3D show the dynamical 
response of this model visualized through SiViT, and show 
the PI3K/PTEN/AKT pathway vertically downwards. 

Supplementary Video S2 shows the addition of 30 nM 
pertuzumab at the beginning of the simulation, and animates 
the network dynamics in response to drug action compared 

Figure 2: Network schematic. The model of the PI3K/PTEN/AKT and RAF/MEK/ERK signaling network; figure reproduced from 
[17].
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to network functioning without drug application. The drug 
is added through a drop-down menu of available therapies, 
with a standard dosage provided that can be edited, and the 
drug is added at the current time point in the simulation by 
default (also editable to allow for sequential application). 
The first minute of simulation dynamics shows the early 
network response to the addition of the drug (top left): 
regions depicted with higher activity are the node in the 
network representing the drug concentration and the HER2 
node to which it binds. Additionally, increases in HER3 
and HER3 bound with heregulin are observed (in red) since 
HER2 inhibition limits HER2/HER3 dimerization and so 
more HER3 is free.

SiViT highlights the impact of pertuzumab on 
network signaling following drug action, and shows this 
impact propagating along both PI3K/PTEN/AKT and RAF/
MEK/ERK pathways over time in Supplementary Video S1. 
Figure 3A depicts the response of the signaling network to 
30 nM pertuzumab after 1 minute compared with normal 
functioning in the absence of pertuzumab. This reduction in 
signaling activity was constant throughout the simulation: 
Figure 3A shows the simulation after 10 minutes. The key 
output from this pathway, AKT, is shown in the graph insert 
in Figure 3A: SiViT analysis revealed an increase in AKT, 
and so a decrease in active, phosphorylated AKT over the 
10 minute simulation. Note the single node to the far left of 
this pathway is the input node for a second drug.

Within this pathway, the PTEN-pPTEN cycle 
response was time variant as shown in the Supplementary 
Video S2: PTEN concentration level decreased over time 
in normal functioning since activated PTEN, i.e. pPTEN, 
increased. Following inhibition by pertuzumab those 
species that would normally bind with PTEN were inhibited 
(blue) and so PTEN levels reduced at a much slower rate. 
Figure 3A shows no (notable) change in PTEN level after 
1 minute; Figure 3B reveals the relative increase in PTEN 
level following inhibition and the graph insert in Figure 3B 
shows PTEN level over the whole simulation.

A similar time variant is observed in the RAF/MEK/
ERK signaling pathway. Figure 3A–3D shows the RAF/
MEK/ERK pathway across the top of the signaling network. 
As a consequence of the reduction in input signal pHER23 
following HER2 inhibition by Pertuzumab we observed a 
reduction in signaling activity in the whole pathway at 1 
minute (Figure 3A). At 10 minutes (Figure 3B) we observed 
increases in signaling activity. Importantly, and in contrast 
to PI3K/PTEN/AKT signaling, this represents a time lag in 
signaling activity. The reduced input pHER23 slowed down 
the rate but not the level of signaling in this pathway: at the 
10-minute time point measured levels are then higher but 
this is an artefact of differential phasing. These dynamics 
can be observed in Supplementary Video S2.

Next we introduced a mutation, PTEN loss, into 
the network associated with resistance to anti-cancer drug 
therapy. PTEN loss was represented in the model by a 50% 

reduction in original PTEN level. Again we focused on AKT 
signaling and the impact of PTEN loss on the effectiveness 
of pertuzumab in inhibiting AKT signaling. Note that both 
our model and experimental systems confirmed that PTEN 
loss alone does not influence AKT activity. Supplementary 
Video S3 shows the introduction of that mutation through 
the Adjust Model section of the dialog box, and the resulting 
network dynamics in response to pertuzumab compared 
with a network response without this mutation. SiViT 
reveals an increase in AKT signaling, shown in the edges 
connected to the AKT node and these are visible from one 
and a half minutes onwards. Supplementary Video S3 also 
shows progressive decreases in the region surrounding 
PTEN (lowest part of the network in Figure 3C) manifest 
in the various PTEN complexes (see schematic in Figure 2), 
with some nodes that would otherwise interact with PTEN 
showing an increase due to lower levels of complex 
formations. Figure 3C shows the effect of PTEN loss on the 
efficacy of Pertuzumab compared with Pertuzumab action 
in a network with no mutation. Figure 3C depicts a marked 
decrease in the amount of AKT (see graph insert) over the 
10-minute period, reflecting the increase in AKT signaling. 
Finally, the decrease in MEK, pMEK and ppMEK is due to 
cross-talk between the PI3K/PTEN/AKT and RAF/MEK/
ERK signaling pathways, e.g. lower levels of activating, 
phosphorylated RAF.

We then restored network sensitivity to pertuzumab 
following PTEN loss with the addition of a second drug, 
the PI3K inhibitor LY294002. The combination therapy 
of pertuzumab and LY294002 was identified via an 
in silico perturbation analysis and subsequently confirmed 
via in vitro experiments [17], to derive a control parameter 
that governs the signaling response of the PI3K/PTEN/
AKT pathway to pertuzumab. This control parameter 
encapsulates the ratio of PTEN to the product of active 
PI3K and AKT, and so PTEN loss can be compensated for 
by PI3K inhibition (or AKT inhibition). Supplementary 
Video S4 and Figure 3D show the response of the mutated 
network to this combination therapy compared to the normal 
network response to pertuzumab. Note that in [17] we 
reported on 5000 nM of LY294002; here we used SiViT to 
explore the parameter space to identify a very close match to 
AKT signaling in normal response to pertuzumab (see Inset 
graph) with only 100 nM of LY294002. The down-regulated 
region in Figure 3D at 10 minutes of simulation time occurs 
because of the reduction in concentrations of PTEN (through 
mutation) and PI3K (through drug action). Supplementary 
Video S4 reveals the dynamics of this down-regulation, 
and shows differential, increased down-regulation of the 
PI3K/PTEN/AKT pathway after 1 minute compared to the 
original sensitive network (Supplementary Video S2). This 
difference is short-term and after approximately 7 minutes 
there is no substantial difference between the original 
sensitive network and this network where sensitivity has 
been restored through combination therapy.
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Dynamics of biomarkers of drug resistance

In [24] we used a slightly modified version of 
the model presented in Figure 2 and developed a global 
sensitivity analysis (GSA) approach to support exploration of 
the effect of adjusting multiple model parameters on signaling 
pathway activity, with a particular focus on phosphorylated 
AKT. Biomarkers of AKT signaling dysregulation were 
determined based on those parameters that had the highest 
levels of sensitivity for pAKT signaling levels. Figure 4A–4D  
show the integration of GSA and SiViT analyses for the 
identification and interpretation of biomarkers PDK1 and 
PI3K. Figure 4A shows experimental results and model 
predictions for phosphorylated AKT signaling dynamics in 
OVCAR4 cell line in response to heregulin stimulation and 
drugs targeting either HER2 growth receptor or the identified 
biomarkers PDK1 and PI3K. Figure 4B–4D shows SiViT 
visualizations of the OVCAR4 cell line for each experimental 
condition in Figure 4A. 

Supplementary Video S5 and Figure 4B show the 
response of the signaling network to heregulin and 30nM 
of Pertuzumab after 60 minutes compared with normal 
functioning. The effect of pertuzumab is similar to the PE04 
network of Figure 3A: SiViT analysis revealed an increase 
in AKT, and so a decrease in active, phosphorylated AKT 
over the simulation. Following inhibition by pertuzumab 
those species that would normally bind with PTEN were 
likewise inhibited (blue). Of note is the effect of pertuzumab 
on signaling downstream of AKT (far right of Figure 4B). 
Downstream AKT complexes were down-regulated; in 
contrast, SiViT revealed upregulation in the MEK signaling 
cascade that binds with PP2A. PP2A provides cross-talk 
between AKT and MEK pathways, and it is this cross-talk 
that drives upregulation of MEK-PP2A complexes. Down-
regulation of AKT causes an increase in availability of 
PP2A, the levels of which remain largely constant following 
pertuzumab, resulting in increased MEK-PP2A complexes. 
The effect of this cross-talk becomes increasingly 

Figure 3: SiViT visualizations of PI3K/PTEN/AKT signaling. (A) PI3K/PTEN/AKT signaling network showing substantial 
down-regulation in blue. Inset shows increase in AKT levels after 1 minute following pertuzumab application (blue line); (B) PI3K/PTEN/
AKT signaling network 10 minutes after pertuzumab application. The network shows increases in signaling with respect to signaling at 
1 minute (Figure 3A). Inset shows the relative decrease in phosphorylated PTEN level following inhibition (blue line); (C) The effect of 
PTEN loss on the efficacy of pertuzumab compared with pertuzumab action in a network with no mutation after 10 minutes. Inset shows a 
drop in AKT, representing increased AKT signaling following mutation (blue line); (D) The response of the signaling network after 10 in 
response to combination therapy to overcome acquired resistance: Inset shows that signaling levels in the mutated-resistant network (blue 
line) match those for normal functioning (black line). 
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pronounced over the time course of the simulation as shown 
in Supplementary Video S5. The Inset in Figure 4B shows 
integrated pAKT signaling in response to heregulin the 
presence (blue line) and absence (black line) of Pertuzumab 
and these show good agreement with the blue (HRG+2C4) 
and red (HRG) lines in Figure 4A respectively.

Figure 4C and 4D show the network response 
to heregulin and either PDK1 inhibition with UCN-01 
(Figure 4C) or PI3K inhibition with LY294002 (Figure 4D) 
compared to the network response to heregulin. Figure 4A 
shows PDK1 inhibition is less effective at reducing AKT 
signaling than Pertuzumab. In addition to this single 
measure, Figure 4C shows the effect of PDK1 inhibition on 
the entire network after 60 minutes, and reveals markedly 
less inhibition upstream of AKT compared with inhibition 
by Pertuzumab. Down-regulation and upregulation of 
the AKT and MEK signaling cascades respectively are 
comparable with signaling activity following pertuzumab 
and this is driven by the same PP2A cross-talk. Figure 4D 
shows the effect of PI3K inhibition on the whole network. 
Network response to PI3K inhibition is broadly similar 
to Pertuzumab inhibition across the network, although 

the down-regulation of the PI3K/AKT pathway is more 
pronounced following PI3K inhibition. Insets in Figures 4C 
and 4D show time course dynamics of the integrated pAKT 
signaling in response to heregulin the presence (blue line) 
and absence (black line) of PDK1 and PI3K inhibition 
respectively, and these show good agreement with the purple 
(HRG+UCN-01) and green (LY294002) lines in Figure 4A.

DISCUSSION

We have developed an interactive animation tool 
that can import any suitably formatted dynamical model 
written in SBML. SiViT is compatible with a wide range 
of curated models stored on the open access EMBL-EBI 
BioModels database (https://www.ebi.ac.uk). We provide 
scripting that converts those models to a form executable 
by the SimBiology toolbox. Models may be uploaded to 
the BioModels database for curation and then used with 
SiViT. Additionally, our software is open source and so 
other researchers are able to provide bespoke conversion 
scripts, in either Java or MATLAB, guided by our scripts 
or otherwise.

Figure 4: Experimental results and SiViT visualizations of signaling dynamics in the OVCAR4 cell line. Figure 4A 
shows phosphorylated AKT over one hour in response to heregulin stimulation (red line) combined with pertuzumab (blue line), PI3K 
inhibitor LY294002 (green line) and PDK1 inhibitor UCN-01 (purple line); Figure 4A reproduced from [24]. Figure 4B–4D shows SiViT 
visualizations after one hour; Insets show integrated AKT signaling in the control condition (black line; heregulin only) and in response to 
pertuzumab (Figure 4B), LY294002 (Figure 4C) and UCN-01 (Figure 4D).
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SiViT allows a non-computational specialist user to 
interrogate the possible effects of a drug, a combination of 
drugs and the response of a biomarker to adaptive change 
in the tumor cell. Biomarker elucidation in the context of 
combination therapies attracts the challenge of searching 
through a large state space of possible drug targets, pathway 
status readouts, drug dosages and timings of application 
in a problem domain characterized by non-linearities, 
topological complexity and dynamic rewiring. Systems 
biology models can capture some of that complexity as 
exemplified in our consideration of signaling responses to 
combination therapies. Computational search frameworks 
can explore that state space in a focused, directed manner 
as exemplified in our elicitation of biomarker dynamics. 
SiViT affords observation of those complexities in a given 
network and allows easy exploration of model dynamics 
and sensitivities that can inform the search criteria crucial to 
success of any computational search framework. SiViT can 
make a direct contribution to complement existing efforts 
in this arena of study.

For example, [25] describe a model for predicting 
the impact of combination therapies on the RAS/PI3K 
signaling network for a panel of cell lines with different 
mutational status. They show how model analysis can 
support the identification of combination treatments and 
subsequently confirm the predictions from the model 
in a xenograft system. A central issue raised is that only 
particular combination treatments work for particular cells 
and modeling can guide this challenging discovery process. 
Complementary to such model analysis, our approach allows 
biologists and clinicians to design in silico combination 
treatments by adding drugs to different cell lines with 
specified doses and mutations through a menu interface and 
observing the impact on the signaling network.

Moreover, given a growing awareness that it is not 
simply the mix of drugs that constitute a combination 
therapy but also the scheduling of their application, SiViT 
can support sequential application studies. For example, 
[9] undertook a sophisticated combined experimental 
and theoretical study of the sequential application of anti-
cancer drugs. They noted that complexities in signaling 
networks such as feedback and cross-talk make predicting 
cellular responses to drug action difficult and especially 
so in cancer cells since functioning is aberrant. This 
difficulty is compounded for combination therapies. [9] 
targeted triple negative breast cancers and showed that 
EGFR inhibition prior to DNA damaging chemotherapy 
(doxorubicin) sensitizes some cell lines to that damaging 
agent. Analysis of gene expression profiles of cell lines 
that were both sensitive and insensitive to time-staggered 
EGFR inhibition followed by doxorubicin revealed marked 
differences in genes including those linked to key survival 
and inflammation pathways. Further proteomic analyses 
revealed differences in pathways, including those linked 
to survival, in cells sensitive to sequential combination 
therapy. This response is explained in terms of a rewiring of 

the signaling pathways to sensitize cells to doxorubicin as a 
result of pre-treatment with EGFR inhibitor; co-treatment or 
post-treatment did not sensitize cells.

The notion of pre-treating cells to promote 
sensitivity to a second treatment seems intuitive, yet 
other work highlights further complexities in sequential 
combination therapy [26]. In this study a time-dependent 
effect of PI3K/mTOR inhibition on doxorubicin-induced 
apoptosis in neuroblastoma cells was observed. Post-
treatment with the PI3K/mTOR inhibitor most sensitized 
the cells to doxorubicin treatment; the sensitizing effect 
was less pronounced in co-treatment and pre-treatment. 
This observation reveals that the order of application of 
combination therapy depends on context. SiViT provides 
a platform that supports such contextual investigation. 
Drugs can be added in any order, with each added at 
an individually specified time and dose. Comparison 
between different regimes, which could vary in timing and 
or dose, allows in silico optimization of time-staggered 
combination therapies.

Clearly, the identification of biomarkers and the design 
of effective combination therapies are challenging and 
require systematic experimental study informed by systems 
biology modeling. We propose that SiViT provides a valuable 
bridge between the fields of cell biology and computational 
modeling, enabling cell biologists and clinicians to explore 
available models of signaling pathways and drug actions in 
an environment that does not require expert computational 
modeling expertise, simply an awareness of the process of 
modeling. Through our generalizable technology we seek 
to promote the uptake of modeling by the biological and 
clinical communities in support of preclinical research, 
combinatorial strategy design and biomarker discovery.

MATERIALS AND METHODS

SiViT framework

SiViT comprises three major components: a controller 
interlinking interfaces to both the user and to MATLAB for 
model (re)calculation, and is implemented as a suite of Java 
program files. Figure 5 depicts the overall structure of SiViT. 
SiViT requires as external files the cellular signalling model 
itself as implemented in MATLAB with the model structure 
represented within a SBML scheme, a list of therapeutic 
interventions (drug name and typical concentration) and an 
optional set of 3D graphical object files (not shown).

Central to this architecture is the SiViT controller, 
which has two major roles: to import both a specific 
signaling model and a predetermined list of model 
interventions; and to translate both user interactions with the 
visualized model into updated parameter sets for MATLAB, 
and model results into the visualized model. Optionally the 
SiViT controller can import 3D graphical objects illustrating 
each node (species) to enhance visual aesthetics (not shown 
in Figure 5; see User Interface below).



Oncotarget29665www.impactjournals.com/oncotarget

Importing the model requires the reading in of the 
SBML scheme that defines the model. Implemented using 
the matlabcontrol (code.google.com/p/matlabcontrol/) 
Java API to MATLAB, the SiViT controller establishes 
a communication protocol to MATLAB in terms of 
parameters and forms a software link in order to invoke 
the MATLAB model, managed by the MATLAB interface. 
The list of pre-defined therapeutic interventions is a file of 
[drug name, dosage] pairs; note dosage (in nM) and time 
of application can be modified through the User interface. 
Note interventions not on this list can be introduced easily. 
The algorithm describing SiViT operation is provided in 
Supplementary Text S6.

MATLAB interface

Interlinking the MATLAB model and the User 
interface is more complex. The User interface drives the 
dynamics of this interlink. In summary, the loading of a new 
model and changes to a model through the User interface 
(see below) generate interface events that are passed to 
the SiViT controller and converted into changes to the 
parameter set for the MATLAB interface. The MATLAB 
model is then (re)calculated and results passed back to the 
SiViT controller via a data structure. This data structure 
is then processed and passed to the User Interface for an 
updated visualization. Note the User interface is able to 
specify and then compare two different model regimes, and 
in this case the SiViT controller manages two concurrent 
data structures: one for each set of model results.

In more detail, the MATLAB interface is provided 
with a data structure capturing the form of the parameter 
set of the signaling model in terms of names of both 

species and reactions together with protein concentrations 
and reaction velocities over time. Through the 
matlabcontrol API the selected signaling model is executed 
and the time series of results (concentrations, velocities) 
updated. Any interventions added to the model through 
the User interface are captured as user-generated events 
and added to the parameter set for the signaling model. 
When the SiViT controller detects a parameter set change 
the MATLAB interface triggers recalculation of the model. 
The computed model may then be queried through this 
MATLAB interface for all species and reaction names, and 
all protein concentrations and velocities over time. This 
combination of intervention addition, model recalculation 
and state variable query provide all the data to feed the 
User interface.

User interface

The User interface is shown in Figure 1 and 
comprises a menu bar (upper top), time slider bar (lower 
top), central viewing frame (main area) and intervention 
panel (right). The menu bar allows the loading of a model 
into SiViT, and saving of the visualized model image (.jpg) 
at any point in the simulation. The interactive environment 
allows zooming in/out and rotational control of the model to 
support exploration and this combined with image saving, 
provides a means to record model dynamics.

The loaded model is arranged on screen 
procedurally, automatically accounting for the size and 
topological features of the signaling network. The view 
itself may be specified as 2D or 3D (allowing rotation 
around axes). Within this high-level constraint the 
spacing of the nodes is implemented as a force-directed 

Figure 5: SiViT architecture. Interoperation of major components (rounded rectangles), external resources (rectangles) and key 
interactions (arrows). Through the User Interface, users may select an SBML file containing the SBML scheme for the model, and load 
that model into SiViT with an accompanying set of therapeutic interventions (a file of [drug name, dosage] pairs). SiViT then constructs a 
model as defined by the SBML, passed as parameters to MATLAB, and captures all time series data computed by MATLAB, i.e. the results, 
pertaining to all biomolecular species. The visualization is based on both the model structure, i.e. species and reactions as prescribed in 
the SBML, and the results of model execution, i.e. species concentrations and reaction velocities over time. A user may make changes to 
that model via the interface, e.g. by adding a drug at a prescribe time, and this generates an event that is translated into a change in model 
parameters. This in turn results in a model recalculation, the results of which are passed back for re-visualization.
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graph layout algorithm [22]. This algorithm seeks to 
optimize the network structure such that edges are of 
equal length and that edges do not intersect (in 2D or 3D 
space as specified). In our implementation, and to provide 
additional flexibility in layout choices, it is also possible 
to constrain the layout algorithm such that the network is 
arranged onto the surface of a sphere.

The time slider bar allows the user to move forwards 
and backwards in time through simulation dynamics 
simply by moving the slider between 0 and maxTime, 
the maximum duration of the simulation. By pressing the 
play icon to the left of the slider bar, the slider icon on this 
bar will move from left to right automatically during the 
simulation. The play function can also be paused, and the 
slider moved by the user (forwards and backwards in time). 
Finally, a small dialogue box to the right of the slider bar 
allows modification of the speed of model animation.

The central viewing frame holds the signaling 
network itself, and the detail of the visualization is 
dependent on whether SiViT is being used to explore the 
dynamics of a single experimental regime or compare two 
different regimes. For a single experimental regime the 
visualization is monochrome (white). Nodes in the network 
depict species concentration: the radius of the sphere is 
proportional to the species concentration and so varies in 
line with model dynamics. If the optional 3D graphical 
objects are imported the center of the node is a bespoke 
volume image for that species; if not it is a yellow volume 
image. Reactions are shown as inter-node connections, i.e. 
graph edge, and edge thickness is proportional to reaction 
velocities and so varies in accordance with model dynamics 
over the course of the simulation.
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