
 1

EstroGene database reveals diverse temporal, context-dependent and directional 1 

estrogen receptor regulomes in breast cancer 2 

 3 

Zheqi Li1,2, Tianqin Li3, Megan E. Yates2,4,5, Yang Wu6,2, Amanda Ferber2, Lyuqin 4 

Chen1,2, Daniel D. Brown2,7, Jason S. Carroll8, Matthew J. Sikora9, George C. Tseng10, 5 

Steffi Oesterreich1,2,4, Adrian V. Lee1,2,4,7* 6 

 7 

1. Department of Pharmacology and Chemical Biology, University of Pittsburgh, 8 

Pittsburgh PA, USA 9 

2. Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC 10 

Hillman Cancer Center, Pittsburgh PA, USA 11 

3. School of Computer Science, Carnegie Mellon University, Pittsburgh PA, USA 12 

4. Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, PA, 13 

USA. 14 

5. Medical Scientist Training Program, University of Pittsburgh School of Medicine, 15 

Pittsburgh, PA, USA. 16 

6. School of Medicine, Tsinghua University, Beijing, China 17 

7. Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, PA, USA. 18 

8. Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, 19 

UK 20 

9. Department of Pathology, University of Colorado Anschutz Medical Campus, 21 

Aurora, CO, USA 22 

10. Department of Biostatistics, University of Pittsburgh, Pittsburgh PA, USA 23 

 24 

*Corresponding Author:  25 

Adrian V. Lee, PhD 26 

Mailing address: The Assembly, Room 2051  27 

5051 Centre Avenue, Pittsburgh, PA, 15213 28 

Email: leeav@upmc.edu 29 

 30 

 31 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526388doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526388doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526388doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.30.526388
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2023.01.30.526388
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2023.01.30.526388
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2

Key Words 32 

Estrogen receptor, Multi-omic profiling, Breast cancer, Database, Gene regulation 33 

 34 

Financial Support 35 

This work was supported by the Breast Cancer Research Foundation (AVL and SO]; 36 

Susan G. Komen Scholar awards (SAC110021 to AVL and SAC160073 to SO]; the 37 

Metastatic Breast Cancer Network Foundation [SO]; the National Cancer Institute 38 

(R01CA221303 to SO, R01256161 to AVL, F30CA250167 to MEY, R01CA251621 to 39 

MJS], the Fashion Footwear Association of New York, Magee-Women’s Research 40 

Institute and Foundation, The Canney Foundation, The M&E Foundation, and the Shear 41 

Family Foundation. SO and AVL are Hillman Fellows. ZL is supported by John S. Lazo 42 

Cancer Pharmacology Fellowship.  43 

 44 

Conflict of Interest Disclosure Statement 45 

Tsinghua University paid the stipend of University of Pittsburgh-affiliated foreign scholar 46 

Yang Wu from Tsinghua University.  47 

  48 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526388doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.30.526388
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3

Abstract 49 

As one of the most successful cancer therapeutic targets, estrogen receptor-α 50 

(ER/ESR1) has been extensively studied in decade-long. Sequencing technological 51 

advances have enabled genome-wide analysis of ER action. However, reproducibility is 52 

limited by different experimental design. Here, we established the EstroGene database 53 

through centralizing 246 experiments from 136 transcriptomic, cistromic and epigenetic 54 

datasets focusing on estradiol-treated ER activation across 19 breast cancer cell lines. 55 

We generated a user-friendly browser (https://estrogene.org/) for data visualization and 56 

gene inquiry under user-defined experimental conditions and statistical thresholds. 57 

Notably, documentation-based meta-analysis revealed a considerable lack of 58 

experimental details. Comparison of independent RNA-seq or ER ChIP-seq data with 59 

the same design showed large variability and only strong effects could be consistently 60 

detected. We defined temporal estrogen response metasignatures and showed the 61 

association with specific transcriptional factors, chromatin accessibility and ER 62 

heterogeneity. Unexpectedly, harmonizing 146 transcriptomic analyses uncovered a 63 

subset of E2-bidirectionally regulated genes, which linked to immune surveillance in the 64 

clinical setting. Furthermore, we defined context dependent E2 response programs in 65 

MCF7 and T47D cell lines, the two most frequently used models in the field. Collectively, 66 

the EstroGene database provides an informative resource to the cancer research 67 

community and reveals a diverse mode of ER signaling. 68 

   69 
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Introduction 70 

More than two-thirds of breast cancers express estrogen receptor-α (ER/ESR1)(1) and 71 

therapeutic strategies blocking ER signaling is a long-standing and effective treatment 72 

strategy (2,3), though the landscape of breast cancer treatments is constantly evolving, 73 

such as the recently incorporated immune checkpoint inhibitors(4,5). Unfortunately, 74 

resistance to hormonal therapy remains a barrier and a large public health issue (6,7). 75 

Numerous mechanisms of resistance have been uncovered including genetic alterations 76 

in ER action, hotspot mutations(8,9), fusions(10) and ESR1 copy number 77 

amplification(11). A thorough understanding of ER action in breast cancer is a key 78 

breast cancer research goal, which could pave a path towards novel ER-target 79 

therapies. 80 

 81 

As a member of nuclear receptor family, ER is vital in sensing external hormonal cues 82 

and triggers various downstream phenotypic cascades in breast cancer cells. 83 

Classically, upon activation by ligands, ER forms dimers and binds to sites on DNA to 84 

enhance gene expression(12,13). In addition, recent studies have discovered several 85 

alternate ER effects such as modifying 3D chromatin loops to bring genes together for 86 

coordinated transcriptional regulation(14), modifying epigenetic factors such as FOXA1 87 

to reshape chromatin landscapes(15) and controlling mRNA metabolism to sustain cell 88 

fitness towards external stressors(16). The ER signaling cascade is extraordinarily 89 

dynamic, heterogenous and context-dependent. For instance, a recent study showed 90 

that prolonged E2 administration induces transcriptional output and chromatin 91 

landscape fluctuations partially attributed to H2A ubiquitin ligase RING1B(17). Further, 92 

single-cell multi-omics delineated two E2 response programs associated with ER and 93 

FOXM1 respectively, which designates distinct chromatin accessibility states(18). The 94 

complex nature of the ER regulatory machinery provides a challenge to its dissection 95 

and understanding. 96 

 97 

Advances in sequencing technologies have evolved at an unprecedented rate during 98 

the past decade and have largely facilitated genome-wide profiling of ER action in 99 

breast cancer(19). For example, RNA-sequencing together with earlier probe-based 100 
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microarray platforms revealed genome-wide E2-induced transcriptomic changes (20). 101 

Likewise, ER ChIP-sequencing identified differential ER binding regions (21). The rapid 102 

development of single-cell omics will provide greater granularity and allow assessment 103 

of the heterogeneity of E2 response (18). Nevertheless, the benefits of the rapidly 104 

growing data sets of ER action, many of which are publicly available, is limited in part 105 

due to the paucity of an end-to-end data harmonization for uniform data curation, 106 

processing, and analysis.  107 

 108 

Researchers have several data sets to choose from when examining if a gene of 109 

interest is regulated by E2, albeit repeated analysis of individual datasets consumes 110 

time and often reveals experimental variation and lack of reproducibility. Inter-data set 111 

variations are expected even under the same design due to the potential for different 112 

cell lines source, reagents, and sequencing platforms, and thus an E2-related multi-113 

omic database which is comprehensive in its inclusion of available datasets is in great 114 

demand. We therefore developed the EstroGene knowledgebase to overcome these 115 

barriers. Unlike other databases such as the Cistrome DB(22) and GREIN(23) , which 116 

primarily focus on providing access to data from a single omic platform and without 117 

regards to a specific type of experimental analysis, or other broadly-targeted nuclear 118 

receptor omic database such as the Transcriptomine (24) and Signaling Pathways 119 

Ominer (25), EstroGene focuses on a simple E2 stimulation experimental design in 120 

breast cancer cell lines and integrates multiple types of data covering transcriptome, 121 

genomic occupancy and chromatin interaction profiling. EstroGene provides a user-122 

friendly browser allowing researchers a fast and comprehensive overview of ER 123 

regulation and concordance across hundreds of curated experiments. Once developed, 124 

we used the diversity of experimental conditions (i.e., E2 stimulation duration, doses, 125 

and models) to perform an in-depth analysis to elucidate the directionality of E2 126 

response, temporal, trajectory, and contextual dependencies. We believe that 127 

EstroGene provides a useful analytic tool to help researchers rigorously and efficiently 128 

accelerate new discoveries on estrogen receptor biology in breast cancer and will 129 

ultimately facilitate the development of novel therapeutic concepts for treatment of 130 

endocrine resistance in breast cancer. 131 
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 132 

Results 133 

Ingestion, annotation, and curation of sequencing data from estradiol stimulated 134 

breast cancer cells  135 

To collect publicly available ER-related sequencing data sets, we initiated this project by 136 

mining data from the Gene Expression Omnibus using the key words “estrogen” or “E2” 137 

or “estradiol” plus “breast cancer” plus “the name a specific type of sequencing 138 

technology” (e.g., “RNA-seq” or “RNA-sequencing”). Our search strategy included 139 

seven widely used sequencing techniques including transcriptomic profiling (RNA-seq, 140 

microarray, GRO-seq), genomic occupancy profiling (ER ChIP-seq), chromatin 141 

accessibility profiling (ATAC-seq) and chromatin interaction profiling (ER ChIA-PET and 142 

Hi-C). We focused on estradiol (E2) stimulation in charcoal stripped and/or serum-free 143 

treated breast cancer cell lines, but also included limited ChIP-seq datasets on ER 144 

action in complete medium. Results were further manually filtered to ensure the 145 

corresponding study was suitable. To extend the database, we are further 146 

crowdsourcing datasets via social media and a google form 147 

(https://docs.google.com/spreadsheets/d/1PFMGB_-COSrUujMKl_M-148 

Ogkmq4cAyuIEgoLwSLFuYTs/edit#gid=0) (Fig. 1A and Supplementary Table S1).  149 

 150 

We curated a total of 136 different datasets including 64 expression, 66 genomic 151 

occupancy and 6 chromatin interaction profiling studies published from 2004 to 2022 152 

(Table 1 and Fig. 1B). Of note, a large portion of these experimental designs included 153 

multiple cell lines, E2 doses or time points, which resulted in 246 individual experimental 154 

conditions.  155 

 156 

Chronologically, the number of sequencing datasets increased after 2010 (96.1% of all 157 

datasets) whereas microarray was the only technique used for RNA expression analysis 158 

before 2010. Transcriptomic (RNA-seq and microarray) and ER genomic occupancy 159 

profiling (ChIP-seq) were the most frequently applied methods (81.3%) (Fig. 1B), 160 

suggesting that the current understanding of ER action in breast cancer still mainly 161 

relies on the classic cistrome-to-transcriptome regulation. MCF7 and T47D cell lines 162 
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accounted for nearly 80% of all experiments (Fig. 1C) (Fig. 1C). The duration of E2 163 

exposure was mostly depended upon the investigation: transcriptomic profiling typically 164 

used a longer duration (69.5% above 6 hours) while cistrome profiling mainly captured a 165 

more rapid E2 response (71.1% below 1 hour) (Fig. 1D). All studies used saturated 166 

doses of E2, with 10 nM as the most frequently chosen dose followed by 1 nM and 100 167 

nM (Fig. 1E). Approximately 30% of transcriptomic and 50% of ER cistromic profiling did 168 

not include biological replicates (Fig. 1F). In addition, hormone deprivation prior to E2 169 

exposure varied with 61% of experiments performing hormone deprivation for 72 hours 170 

followed by 48 hours(Fig. 1G) and 76% studies using charcoal-stripped fetal bovin 171 

serum rather than calf serum (Fig. 1H). 172 

 173 

We hand-abstracted methodological details from the original publications or GEO 174 

profiles to determine to what extent experimental conditions were reported. Data-set 175 

level documentations such as source publications, experimental conditions and 176 

sequencing parameters are presented in Supplementary Data Table S1. We focused on 177 

RNA-seq, microarray and ChIP-seq as these studies had the greatest number of 178 

datasets. Essential experimental terms such as cell line name, E2 doses and treatment 179 

durations were included in nearly all data sets, however, specific details were frequently 180 

missing. Sources of cell lines, which has been stated as a pivotal cause of inter-dataset 181 

inconsistency(26), was only included in 42% of the studies. Cell passage number, an 182 

important indication of cell state(27), was missing in 96% of these reports. And finally, 183 

sources of estradiol used and their corresponding diluent were missing in 60% of 184 

documentations (Fig. 1I).  185 

 186 

 187 

EstroGene: a multi-omic database of ER-regulated action 188 

To enable researchers lacking sequencing and/or bioinformatics skills, we developed a 189 

web server named EstroGene (https://estrogene.org/) for data access and visualization. 190 

We first downloaded and used a single pipeline for processing and analysis of the 191 

majority of curated publicly available transcriptomic (23 microarray and 25 RNA-seq) 192 

and genomic occupancy data sets (32 ER ChIP-seq). The Estrogene web browser 193 
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home page consists of a general introduction to this project and highlights various 194 

features with the corresponding hyperlinks. Two major browsing modules are 195 

embedded to fulfil different research purposes: a user-defined single gene-based data 196 

visualization function and a user-defined statistical cutoff-based gene list query function.  197 

 198 

First, users can generate volcano plots and visualize the concordance of gene 199 

expression changes induced by E2 treatment from universal processing of 80 200 

microarray and 66 RNA-seq individual comparisons across 17 and 8 breast cancer cell 201 

lines, respectively. In addition, users can limit the search by cell line, E2 dose and 202 

treatment duration. We present the percentage of comparisons showing up- or down-203 

regulation of a certain gene (adjusted p value<0.05 for comparisons with replicates or 204 

|Log2FC|>0.5 for comparisons without replicates), to help users quantitatively evaluate 205 

the trend and consistency of regulation. For instance, the well-characterized estrogen-206 

induced gene GREB1 shows up-regulation in ~70% of microarray and RNA-seq 207 

analyses (Fig. 2A), while the estrogen-repressed gene IL1R1 shows down-regulation in 208 

47% (Fig. 2B). In contrast, the house-keeping gene GAPDH displayed a minimal degree 209 

of changes (with very few exceptions) across all the comparisons (Fig. 2C). The plots 210 

can be directly exported as a JPEG format file for further presentation. Of note, users 211 

can also click on each data point to access the original GEO submission for easy 212 

access and further analysis of the experimental details of certain data sets. 213 

 214 

Besides transcriptomes, the analysis page also presents ER binding sites (as 215 

determined by ER ChIP-seq) with the corresponding intensities within -/+ 200 kb range 216 

of the transcriptional start site (TSS) of each gene. The plot shows a combination of 32 217 

uniformly processed ER ChIP-seq data sets in either full medium or E2-treated 218 

condition and can be filtered based on users’ defined condition. This feature is 219 

exemplified by the ER proximal binding landscape of GREB1 gene which shows 954 220 

peaks as a positive control (Fig. 2D), while only 13 binding sites were detected at the 221 

heterochromatin-enriched gene HBB serving as negative control (Fig. 2E). 222 

 223 
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In addition to the visualization module, we also provide a gene-list query function shown 224 

in the “Statistics” page that can be found on the home page. This module is based upon 225 

calculation of the percentile rank of each gene after merging 146 comparisons from 226 

RNA-seq and microarray. Users can define specific cut-offs for 1) trend and intensity as 227 

a percentage of up- or down-regulation among all genes and 2) inter-data set 228 

consistency as a percentage of all comparisons. The output shows all genes fitting the 229 

cut-offs from the highest to lowest consistency (Fig. 2F) and can be customized based 230 

upon the desired conditions and contexts. Importantly, users can plot the pattern of 231 

individual gene regulation across all the selected comparisons (Fig. 2G). 232 

 233 

 234 

Inter-dataset concordance of estrogen-induced transcriptomics 235 

Given that most studies on ER rely on results gained from a single data set, we used 236 

EstroGene to address variation amongst different studies and assessed the 237 

concordance from experiments using the same conditions. For this analysis, we focused 238 

on RNA-seq and ChIP-seq data as they are the most abundant types of profiling. 239 

 240 

We selected four independent RNA-seq experiments in MCF7 cells with each having aa 241 

very similar design of 24 hours of 10 nM E2 exposure and at least two biological 242 

replicates(28-31). Principle component analysis (PCA) revealed the greatest difference 243 

to be technical and associated with the individual dataset (Fig. 3A, left panel). This was 244 

to be expected as some minor technical variations in cell culture, hormone deprivation 245 

and sequencing platform were noted (Supplementary Table S2). This difference was 246 

mostly eliminated by batch effect correction, which showed the major variation to be 247 

alterations in the E2-induced transcriptome (Fig. 3A, Right panel). Of note, dataset R5 248 

showed a greater difference in the E2-regulated transcriptome possibly due to the 249 

longer duration of hormone deprivation (168 hours) compared to the others (72 hours). 250 

This was also in line with numbers of differentially expressing genes (DEGs) computed 251 

under four different fold change thresholds (Fig. 3B). The number of replicates used in 252 

the analysis did not correlate with the number of DEGs.  253 

 254 
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The intersection of up- and down-regulated DEGs from four data sets (|log2FC|>1, 255 

padj<0.05) showed that greater than 70% of DEGs were unique to one experiment, 256 

whereas only ~3% genes were regulated in all four data sets (Fig. 3C and 3D, 257 

Supplementary Table S3). We classified the DEGs into four classes based upon the 258 

number of data sets they shared and compared the fold change regulation 259 

(Supplementary Table S3). The consistency of both up- and down-regulation of genes 260 

was strongly correlated with the degree of E2-regulation (Fig. 3E), with moderately or 261 

weakly E2-regulated genes being uniquely regulated in individual experiments. In 262 

addition, comparison of the enrichment of E2-induced genes in hallmark signatures 263 

showed considerable variation for most of the pathways except the well-characterized 264 

estrogen response signatures and proliferation-related signatures (Fig. 3F). For 265 

instance, the cholesterol homeostasis signature enrichment showed either a modest 266 

increase or decrease after E2 stimulation in two of the comparisons. Of note, data set 267 

R6 showed a more distinct pathway alteration pattern compared to the other three, 268 

which might be partially owning to the use of fetal calf serum rather than fetal bovine 269 

serum in maintenance and hormone deprivation. In summary, we demonstrate that 270 

strong transcriptomic changes are reproduced across multiple data sets, but moderate-271 

to-weak E2-induced changes are often inconsistent between different data sets and 272 

thus caution may be needed when interpreting results from a single experiment or data 273 

set. 274 

 275 

Inter-dataset concordance of estrogen-induced ER genomic binding  276 

We investigated the similarity of E2-regulated ER chromatin binding profiles among four 277 

different ER ChIP-seq data sets generated from MCF7 cells treated with 10 nM E2 for 278 

45 minutes after 48 or 72 hours of hormone deprivation(32-35). Importantly, the same 279 

ER antibody (Santa Cruz sc543) was utilized in all experiments to pull down ER 280 

(Supplementary Table S4). Like transcriptomic data processing, all raw sequencing files 281 

were aligned, and peaks were called using an identical pipeline. We also examined the 282 

quality parameters (e.g., percentage of reads within peaks and percentage of reads 283 

within Blacklist regions) of derived peaks to examine technical variation (Supplementary 284 

Table S5). The number of peaks in the vehicle groups showed a large variation ranging 285 
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from 332 (C42) to 23,189 (C42) (Supplementary Table S5). This difference may in part 286 

be due to a shorter hormone deprivation duration (48 hours) in C42 which shows the 287 

largest number of baseline ER binding. As expected, E2 stimulation resulted in a 1.6-to-288 

27.5-fold gain of ER binding (Supplementary Table S5).  289 

 290 

PCA revealed divergence among E2-treated samples whereas control samples mostly 291 

clustered together (Fig. 4A). Since three out of four data sets did not include replicates, 292 

we used an occupancy-based strategy to identify differential ER peaks (i.e., directly 293 

comparing control and E2 peaks). We observed 25,109 (C22), 20,260 (C33), 15,153 294 

(C42) and 1,690 (C34) gained ER peaks with E2 treatment, whereas less than 70 peaks 295 

were lost (Fig. 4B). Notably, despite the discrepancy in the number of gained ER peaks, 296 

the peaks showed a similar distribution of genomic features such as promoter and distal 297 

intergenic regions (Supplementary Fig. S1A), suggesting that there was not a genomic 298 

location bias associated with the biological variation. Like the transcriptomic analysis, 299 

intersecting gained ER peaks across the four datasets showed limited consistency: 300 

approximately 60% of peaks were only exclusively present in a single data set  while 301 

merely 1.3% peaks (N=519) were shared in all four data sets while, again highlighting 302 

the high degree of inter-dataset discordance (Fig. 4C and 4D).  303 

 304 

We annotated all E2-induced ER peaks based upon the number of data sets they were 305 

found in where “peak set 4” represents consistently gained ER peaks in all four datasets, 306 

and “peak set 1” stands for those only found in a single dataset. A motif scan 307 

demonstrated that highly consistent gained ER peaks (peak set 4) were more likely to 308 

be enriched in ER motifs (77.6% in peak set 4) compared to those low-consistent 309 

gained ER peaks (27.3% in peak set 1) (Fig. 4E). Analysis of peak intensity also 310 

showed that consistent peaks in general exhibited stronger binding intensity upon E2 311 

stimulation, whereas no differences was noted at baseline level (Fig. 4F). Integrating 312 

with publicly available epigenetic profiling from MCF7 cells in full medium or E2-313 

stimulated conditions, peak set 4 was enriched in more active higher accessibility 314 

chromatin (Fig. 4G) as shown by increased H3K27ac and decreased H3K9me3 marks 315 
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(Fig 4H). Finally consistent peaks were associated with increasing occupancy at 316 

promoter regions and decreasing occupancy at distal intergenic regions (Fig. 4I).  317 

 318 

Annotation of genes associated with the ER ChIP-seq data sets revealed that the 319 

number of genes reached a plateau if we chose 50kb or a longer peak flank distance for 320 

the annotation (Supplementary Fig. S1B) (i.e., annotating genes from upstream and 321 

downstream of a certain distance from each peak). We thus used 50kb as the 322 

annotation distance for downstream comparison. When integrated with expression fold 323 

changes of the four RNA-seq data sets analyzed above, the genes associated with the 324 

gained ER peaks shared in all four data sets displayed significantly greater levels of 325 

mRNA induction compared to genes induced in the three other peak sets (Fig. 4J). In 326 

addition, highly consistent ER peaks are more likely to harbor ER binding sites also 327 

found in other other peak categories (Fig. 4K). Taken together, our analysis showed that 328 

highly consistent E2-induced ER binding sites among different data sets represent a 329 

subset of peaks with stronger E2-inducibility due to more direct ER binding potential and 330 

more accessible chromatin, and links to more pronounced transcriptional alterations 331 

because of a higher degree of promoter distribution and cooperativity with more other 332 

ER binding events.  333 

 334 

Our inter-data set comparison of transcriptomic and cistromic regulation uncovered a 335 

high level of dissimilarity across different experiments, and only biological effects with 336 

the greatest effect sizes were conserved. To interrogate inter-data set consistency, we 337 

identified gene expression changes across 66 RNA-seq and 80 microarray experiments 338 

based upon the E2-induced fold change in gene expression. We derived the percentile 339 

of gene expression change for each individual gene normalized to all genes expression 340 

changes within each experiment, and filtered out genes that were detected in less than 341 

80% of experiments (Supplementary Fig. S2A). First, each gene’s fold change 342 

percentile showed a positive correlation between the two platforms (Supplementary Fig. 343 

S2B), indicating that the vast majority of genes do not bear platform-based bias. We 344 

next derived consistency-to-inducibility maps consisting of 12,429 genes across 146 345 

comparisons (Supplementary Fig. S2C). In line with our inter-data sets analysis above, 346 
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highly inducible, or repressible genes were overall more consistently regulated across 347 

different experiments. This was exemplified by canonical estrogen induction (GREB1) or 348 

repression (BCAS1). In contrast, housekeeping genes such as ACTB exhibited a 349 

random distribution (Supplementary Fig. S2D). We identified 65 up- and 22 down-350 

regulated genes that were enriched in top 10% percentile of altered genes and 351 

consistent across at least 50% of comparisons (Supplementary Fig. S2E). Most of these 352 

genes have previously been documented as estrogen regulated, however a few genes, 353 

such as HEY2 and RAB27B, have not previously been reported as estrogen regulated 354 

(Supplementary Fig. S2E). Of note, both up- and down-regulated gene sets retain their 355 

own regulatory co-factors (e.g., MED12 as unique co-activator and EP400 as a unique 356 

co-repressor) besides ESR1/FOXA1/GATA3 as the shared nexus (Supplementary Fig. 357 

S2F). Furthermore, active histone modification marks such as H3K27ac and H3K4me3 358 

were more enriched in E2-repressed genes loci (Supplementary Fig. S2G). 359 

 360 

Refining early and late estrogen response transcriptomic signatures 361 

Transcriptomic signatures of ER action have been key to understanding endocrine 362 

therapy and resistance in breast cancer. MSigDB contains two widely-cited estrogen 363 

response signatures in the Hallmark collection, representing an early and late 364 

response(36,37). Notably, 1) both signatures were derived from only four microarray 365 

experiments and this also included an ER negative cell line MDA-MB-231 with ectopic 366 

ESR1 overexpression; 2) only estrogen-induced but not repressed genes were included; 367 

3) 49.5% of the genes overlap between the two signatures. Therefore, we set out to 368 

utilize the EstroGene database to derive a more representative estrogen response 369 

signature. 370 

 371 

Among the 146 merged transcriptomic data sets, 27 different time points were 372 

annotated spanning from 5 minutes to 600 hours of estrogen stimulation. We separated 373 

all the comparisons into three signatures of duration: EstroGene_Early (< 6 hours, 374 

n=58), EstroGene_Mid (6-24 hours, n=44) and EstroGene_Late (> 24 hours, n=44) (Fig. 375 

5A). Up- and down-regulated genes present in the top 10th percentile of regulated 376 

genes in each individual study, and consistently present across at least 50% of studies 377 
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at each time period, were extracted from each signature (early, mid, and late) and 378 

intersected accordingly (Supplementary Fig. S3A). We identified 165, 59 and 136 genes 379 

representing early, mid, and late estrogen response signatures respectively (Fig. 5B 380 

and Supplementary Table S6). Intriguingly, nearly half of early response genes showed 381 

sustained estrogen regulation in the mid and late response signatures, and most mid 382 

response genes were sustained in the late response signature, hinting that more stable 383 

gene regulation might dominate after 24 hours of E2 exposure. Moreover, an early 384 

treatment duration triggered more activated than repressed genes and vice versa for 385 

late treatment duration, implicating that E2-inducible and repressible genes may entail 386 

distinct temporal regulation. We compared our EstroGene-derived estrogen response 387 

signatures with those from MSigDB. The early signatures exhibited 50% overlap 388 

whereas only 23.3% genes were found in the late signature (Supplementary Fig. S3B). 389 

Surprisingly, 3 genes (ID2, ELF3 and AQP3) that are induced by E2 in the MSigDB 390 

signatures were identified as E2-repressed genes in our analysis (Supplementary Fig. 391 

S3C). Markedly, the Hallmark late signature but not the EstroGene mid or late 392 

signatures were prognostic for patients with ER+ breast cancer in METABRIC cohort, 393 

while both early response signatures remain prognostic (Supplementary Fig. S3D).  394 

 395 

Pathway enrichment analysis showed canonical ER signaling and RNA polymerase II-396 

related transcriptional activation functions in the EstroGene_Early signature, whereas 397 

cell cycle progression was enriched in EstroGene_Mid response genes (Fig. 5C). 398 

Developmental and metabolic pathways, as well as GPCR signaling were highly 399 

enriched in EstroGene_Late response signatures (Fig. 5C). Regulatory factor prediction 400 

by Lisa(38) confirmed the ER/FOXA1/GATA3 as the central axis of gene regulation 401 

regardless of treatment duration (Fig. 5D and Supplementary Table S7). Notably, on 402 

average 5 full and 3.5 half estrogen response element (ERE) sequence were detected 403 

at the proximity (-/+ 5kb of TSS) of these E2 response genes, and they were not 404 

differentially enriched among the three classes (Supplementary Fig. S3E). Factors 405 

uniquely associated with early response genes were mainly ER cofactors as well as 406 

components of topological associated domain (e.g. CTCF, RAD21 and STAG1), 407 

consistent with previously reported E2 action on chromatin loop reprogramming(14). 408 
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Epigenetic factors such as EZH2 and SMARCC1, on the other hand, were largely 409 

enriched in mid and late response genes (Fig. 5D), in parallel with a more stable gene 410 

regulation program discerned in Fig. 5B.  411 

 412 

We examined whether the estrogen response signatures showed a difference in 413 

chromatin accessibility of target loci in baseline conditions (i.e., no E2 stimulation). 414 

Epigenetic marks increase around -/+ 2kb of the TSS of the early and mid-estrogen 415 

response genes with more prevalently open chromatin and H3K27ac and H3K4me3 416 

modifications than late response genes. This suggests that an initially active chromatin 417 

state may facilitate early gene stimulation events (Fig. 5E).  418 

 419 

We further explored the heterogeneity of E2 response Using single cell RNA-seq 420 

profiling in E2-treated MCF7 cells (18). E2 stimulation explicitly separated cells into two 421 

states (Fig. 5F). We further identified two distinct clusters in the post-treatment group 422 

(Cluster 1 and 3, circled in UMAPs) differentiated by ESR1 expression (Fig. 5G and 5H). 423 

Applying the EstroGene signatures into the data set, we found that the EstroGene_early 424 

was strongly enriched in the ESR1-high subcluster whereas mid and late signatures 425 

were predominant in the ESR1-low subpopulation.  426 

 427 

In summary, we defined three estrogen response signatures (early, mid, and late) from 428 

146 transcriptomic comparisons across 19 breast cancer cell lines. This integrated 429 

analysis uncovered that the timing of estrogen response is shaped by multiple levels of 430 

regulation, including unique time-dependent regulatory factors, epigenetic accessibility, 431 

and heterogeneity of ER expression. 432 

 433 

Identifying cell context-dependent estrogen response programs 434 

MCF7 and T47D cell lines have been used extensively as ER+ breast cancer models. 435 

However, extrapolation of this data to breast cancer is complicated by the known 436 

heterogeneity of breast cancer and potential biases arising from cell line specific results. 437 

Importantly, while EstroGene contains transcriptomic data from 19 different breast 438 

cancer cell lines, data from MCF7 and T47D account for ~50% and ~20%, respectively, 439 
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of all experiments (Fig. 6A). To characterize and describe contextual cell-line specific 440 

responses, we identified the top 10th percentile of up- and down-regulated genes in an 441 

individual study and consistent among 50% of comparisons within MCF7 or T47D 442 

experiments. For non-MCF7/T47D experiments we lowered the threshold to 40% across 443 

studies due to the larger heterogeneity in this subset (Supplementary Fig. S4A). 444 

Intersection of the three subsets yielded 89 and 96 uniquely regulated genes in MCF7 445 

and T47D, such as HCK (MCF7) and KCTD6 (T47D) (Fig. 6B, Supplementary Fig. S5B 446 

and Supplementary Table S6). We also identified 26 genes that were not regulated in 447 

MCF7 and T47D but showed E2-induction (e.g., MCM2) or E2-repression (e.g., 448 

SLC12A2) in some other cell lines (Fig. 6B and Supplementary Fig. S4B). Of note, a 449 

few targets have been reported previously as broad estrogen response targets in breast 450 

cancer such as SGK1(39) and FOS (40).  451 

 452 

We compared pathways enrichment in cell line specific estrogen response genes. 453 

Senescence, fiber formation and inflammatory-related functions were enriched in MCF7 454 

response genes whereas extracellular matrix, GPCR and development pathways were 455 

enriched in T47D response genes (Fig. 6C), highlighting the importance of cell line and 456 

genetic background in estrogen response. Mechanistically, MCF7 and T47D unique 457 

response genes were enriched for contextual regulatory factors (Fig. 6D and 458 

Supplementary Table S7) but showed equivalent levels of chromatin accessibility at 459 

each other’s open chromatin regions (Supplementary Fig. S4C), suggesting the unique 460 

gene induction program was due to context-dependent transcriptional regulomes rather 461 

than epigenetic changes.  462 

 463 

We next addressed if these signatures show distinct clinical representation. Surprisingly, 464 

we found non-MCF7/T47D E2 response signature was associated with  poor disease-465 

specific survival in METABRIC ER+ cohort, while both MCF7 and T47D-specific 466 

signatures inversely correlated with good outcomes (Fig. 6E). We also calculated 467 

signature enrichment in single-cell RNA-seq data from two ER+ patient-derived 468 

xenograft organoids (HCI-003 and HCI-011) with estradiol treatment (18). We observed 469 

divergent E2 response programs related to each signature. In the HCI-003 model, the 470 
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T47D-signature was homogenously increased whereas the MCF7-signature was only 471 

enriched in a small subpopulation. In contrast, in HCI-011, neither MCF7 nor T47D 472 

signatures were enriched, albeit there was a weak induction in the non-MCF7/T47D cell 473 

lines-derived signature (Fig. 6F). In conclusion, this analysis not only delineated MCF7 474 

and T47D cell-line specific estrogen response programs, but also validated their 475 

heterogenous representations to a specific cell type within the same tumor. 476 

 477 

Discovering a bidirectional estrogen response program 478 

Lastly, we examined plasticity of the directionality of estrogen response. Correlation of 479 

up- and down-regulation of all 12,429 genes in the merged data collection revealed a 480 

strong non-linear negative association, showing that most genes exhibited a single 481 

monodirectional regulation by estradiol (Fig. 7A). We also identified a subset of 482 

bidirectionally regulated genes (n=101) that are present in the top 10% of both up- and 483 

down-regulated targets and in at least 10% of comparisons (Fig. 7A and Supplementary 484 

Table S6), such as CYP1A1, RIPOR3 and DHRS3 (Supplementary Fig. S5A). Their 485 

divergent regulation was not associated with specific experimental conditions such as 486 

E2 treatment duration or cell line context (Supplementary Fig. S5B).  487 

 488 

Examining cistromic and epigenetic profiles from MCF7 cells, bidirectional response 489 

genes harbored weaker ER binding and lower levels of active histone marks such as 490 

H3K4me3 and H3K27ac at their proximity (-/+ 2kb of TSS) compared to strong 491 

monodirectional response genes (Fig. 7B). Nevertheless, surrounding chromatin 492 

accessibility was not different between the two groups of genes (Fig. 7B). Using single 493 

cell RNA-seq profiling in E2-treated MCF7 cells analyzed in previous Fig. 5F (18), we 494 

found homogenous and strong enrichment of monodirectional gene signature in E2-495 

treated cells compared vehicle-treated cells, but a bidirectional gene signature was not 496 

different between treatments (Supplementary Fig. S5C), likely due to a large number of 497 

genes which were not uniformly regulated. When examining specific genes, we 498 

observed that some bidirectional genes (e.g., ASPM and CLSTN2) were induced in a 499 

subset of cells while monodirectional genes such as GREB1 and CXCL12 consistently 500 

showing induction across all cells (Fig. 7C). Taken together, this analysis demonstrates 501 
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that these bidirectional genes are generally transcriptionally inert and show a 502 

heterogeneous response in subpopulations of cells upon E2 exposure, indicating other 503 

cell specific factors that may be required for their regulation. 504 

 505 

To test whether the bidirectional response is caused by specific ER regulatory co-506 

factors possessing bivalent regulatory potential we utilized Lisa(38) and predicted 72 507 

and 23 significantly enriched factors associated with mono- and bidirectional genes 508 

respectively (Fig. 7D). As expected, canonical factors involved in ER action such as ER, 509 

FOXA1 and GATA3 were enriched in both genes sets. Only five factors were uniquely 510 

enriched in bidirectional genes and involved pathways of NF-kB (IRX5), NOTCH 511 

(MAML3), MAPK (TCF21) signaling and SWI/SNF (SMARCA4) chromatin remodeler 512 

(Fig. 7D). Pathway enrichment analysis highlighted immune-related (e.g., cytokine 513 

signaling and interferon signaling) and MAPK pathway-relevant functions associated 514 

with these bidirectional genes (Fig. 7E). In contrast, estrogen-dependent signaling and 515 

RNA polymerase II functionals were characterized as features of monodirectional genes 516 

(Fig. 7E).  517 

 518 

Estrogen response is a prominent feature of the ER+ luminal subtype of breast cancer. 519 

Using TCGA(41) and METABRIC(42) we compared the enrichment of mono- and 520 

bidirectional genes across PAM50 subtypes. While monodirectional genes were 521 

specifically enriched in LumA and LumB breast tumors, the bidirectional genes were not 522 

enriched in any specific PAM50 subtype but showed a slight enrichment in the normal 523 

subtype (Fig. 7F). In addition, monodirectional genes, but not bidirectional genes, were 524 

associated with prognosis in ER+ breast cancer (Supplementary Fig. S5D). Given that 525 

the pathway and TF prediction pointed to immune-related functions of these 526 

bidirectional targets, we their role in modulating immune response rather than the 527 

classic hormone-related phenotypes in breast cancer. Accordingly, we identified a 528 

strong positive correlation of predicted immune infiltration score exclusively with 529 

bidirectional genes among ER+ breast cancers in both TCGA and METABRIC cohort.  530 

 531 
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We reasoned that a subset of breast cancer cells may use the bidirectional 532 

transcriptional program as a unique stress response strategy to escape the immune 533 

surveillance. To test this hypothesis, we examined the BIOKEY cohort of single cell 534 

RNA-seq profiling in 15 intra-patient paired treatment naïve or anti-PD1 treatment ER+ 535 

breast cancer biopsies (43). Bidirectional genes were enriched in anti-PD1 treated 536 

cancers compared to pre-treatment pairs in 4/15 patients. Taking a representative 537 

patient (P17) as an example, UMAP illustrated a clear separation of all the pre- and on-538 

treatment cells (Supplementary Fig. S5E) and we further extracted and re-clustered 539 

cancer cells by corresponding epithelial markers (Supplementary Fig. S5F, G and Fig. 540 

7H). A monodirectional gene signature was enriched in both time points and closely 541 

linked to ESR1 expression (Fig. 7J and 7I), whereas bidirectional genes were highly 542 

selected in on-treatment samples regardless of ER levels (Fig. 7K). This can be 543 

exemplified by genes such as GNF15 and MAFB which were previously characterized 544 

for their immune suppressive roles in cancers(44,45) (Fig. 7L).  545 

 546 

In summary, our meta-analysis identified a subset of bidirectional genes that retain both 547 

E2-inducible and repressible plasticity in breast cancer. Compared to top 548 

monodirectional regulatory counterparts, these genes show lower transcriptional 549 

inducibility, higher levels of response heterogeneity and may require unique factors for 550 

their activation. Bidirectional genes are not associated with luminal identity but rather 551 

tightly linked to immune escape particularly under immune therapy in a subpopulation of 552 

patients (Supplementary Fig. S5H). 553 

  554 
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Discussion 555 

The rapid growth of multi-omic cancer data poses an unprecedentedly rich resource but 556 

comes with various challenges including integration into a unified and comprehensive 557 

platform. Although several databases have preprocessed and incorporated publicly 558 

available data sets and constructed web browsers (22,23), such as Transcriptomine 559 

which focuses on nuclear receptor biology with associated metadata (24,25), no 560 

previous databases have focused on the estrogen receptor in breast cancer and 561 

merged more than one type of genome-wide platform for a high-dimensional overview. 562 

Here, we present EstroGene, a public knowledgebase, providing standardized and 563 

integrated transcriptomic and cistromic data analysis to characterize ER activation in 564 

breast cancer cells. EstroGene features curation of many E2 stimulation experiments 565 

across an extensive panel of breast cancer cell lines, E2 dose and durations with 566 

detailed experimental information abstracted from original publications. A dedicated web 567 

browser enables researchers to quickly evaluate E2 regulation of on an individual gene 568 

under defined experimental conditions and statistical cut-offs with both expression and 569 

ER proximity binding information indicating cross-data set consistency. Overall, the 570 

extensive number of datasets and methodological details we have collected allow an 571 

unprecedented opportunity to dissect the technical and biological variation in ER action.  572 

 573 

In this study, we provide a highly practical tool, but also performed rigorous inter-data 574 

set comparisons to highlight reproducibility between studies. Both RNA-seq and ChIP-575 

seq cross-data set analysis revealed large differences between independent data sets, 576 

and notably the overlap only included genes with strong and robust E2-induction. Pre-577 

existing biological variation between cell lines likely play a major role in the 578 

inconsistency and lack of reproducibility between data sets. For example, a previous 579 

study using FISH identified significantly different genomic abnormalities in MCF7 cells 580 

lines from three independent institutions (46). Technical differences may also affect 581 

response. Our cross-data set analysis suggests that a longer hormone deprivation 582 

before estrogen stimulation results in stronger response to E2. Notably, our previous 583 

study revealed that components of charcoal-stripped serum vary between different 584 

manufacturers or batches, which may cause differential strengths of E2 response(47). 585 
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Finally, through hand abstraction of publications associated with public datasets, we 586 

found that key experimental details were sometimes missing such as cell line source 587 

and passage number. In addition, the method for hormone deprivation varies between 588 

studies in terms of duration and serum types (bovine vs. calf serum), which may induce 589 

additional technical variations that reduce reproducibility. This is largely in line with the 590 

challenges confronted by The Reproducibility Project, where 70% of experiments 591 

required asking authors for key reagents from the original sources(48,49). Thus, a 592 

standardized framework for experimental documentation and a reference from a 593 

centralized cell line data base such as Cellosaurus(50) is required to improve rigor and 594 

reproducibility. For instance, the cell passage number documentation may need a more 595 

uniformed recording manner in order to make it comparable across different laboratories. 596 

The EstroGene database provides the most comprehensive insight into reproducibility 597 

of studies examining ER action in breast cancer cell lines. 598 

 599 

Estrogen response gene signatures have proven invaluable in the study of ER action in 600 

breast cancer transcriptomic datasets. Previously established early and late estrogen 601 

response signatures from MSigDB have been extensively cited in greater than 5,000 602 

studies(36). However, studies applying these signatures rarely differentiated the 603 

biological indications between early and late ER response, partially owning to the lack of 604 

temporal specificity. Here, we derived more representative estrogen response 605 

signatures using the EstroGene database, which originated from 146 transcriptomic 606 

profiling comparisons (vs. 4 from MSigDB), 19 breast cancer cell lines (vs. 2 from 607 

MSigDB), 27 different time points (vs. 3 from MSigDB) and consisted of both activated 608 

and repressed genes (vs. activated genes only from MsigDB). Our prognostic analysis 609 

clearly reveals that only early, but not mid or late response signatures are prognostic for 610 

ER+ breast cancer patients, which yields different conclusion from the Hallmark 611 

signatures. It is plausible that endocrine therapy prominently blocks early response 612 

programs which is sufficient to suppress hormone-mediated cell growth. We hereby 613 

encourage future studies to include both Hallmark and EstroGene signatures for the 614 

analysis for a more robust and comprehensive interpretation. We identified that different 615 

rates of E2 response relate to chromatin accessible states, temporal specific TFs, and 616 
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heterogeneity of ER expression. For example, the prediction of EZH2 as a unique late 617 

response gene regulator suggests that some of these genes may be indirectly induced 618 

via alteration of H3K27 methylation, or recruitment of REA at the corresponding 619 

genomic region, rather than direct ER-mediated transactivation, consistent of several 620 

earlier studies(51,52). In all, the EstroGene response signatures represent a more 621 

diverse array of ER response. 622 

 623 

ER can trigger both transcriptional activation and repression by recruiting different 624 

cofactors(53,54). However, the plasticity of regulation upon individual genes has not 625 

been extensively explored. By merging and mining 146 E2-stimulated transcriptomic 626 

differences in multiple contexts, we unexpectedly identified a subset of genes that 627 

present as both the top E2-activated and repressed genes in different experiments. 628 

Notably, the estrogenic effects on some of these “bidirectional” targets were reported as 629 

unidirectional, as they came from a single study whereas we re-define this using meta-630 

analysis. An example is the cytochrome P450-encoding gene CYP1A1, which was 631 

reported as an estrogen-repressed gene via enhanced DNA methylation following 632 

recruitment of DNMT3 in multiple breast cancer cell lines(55). The EstroGene 633 

databases shows that CYP1A1 is E2-induced in a subcollection of experiments. The 634 

mechanism behind this bivalent regulation is largely understudied and warrants future 635 

investigation. It is plausible that context-dependent and dual-function transcription 636 

factors cooperate with ER to induce divergent effects depending upon cell state and 637 

external cues. IRX5, a predicted TFs enriched in these bidirectional genes, controls 638 

downstream NF-kB signaling (56). This could either escalate or alleviate ER signaling 639 

via distinct mechanisms in different cell populations or strains depending upon culture 640 

medium component and expression levels or ER or its cofactors. Another TF factor 641 

SMARCA4, the core ATPase of the SWI/SNF complex, is enriched in bidirectional 642 

genes and may attenuate gene expression by decreasing chromatin accessibility(57) 643 

while ER might simultaneously potentiates transcription of these genes. By mining 644 

single-cell RNA-seq profiling of series biopsies from an anti-PD-1 treated breast cancer 645 

cohort, we further found that the E2 response plasticity might be used by cancer cells to 646 

facilitate their escape from immune surveillance, while it may not affect endocrine 647 
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therapy outcomes. For example, the induction of GDF15 with anti-PD-1 exposure could 648 

largely cause immune suppression via CD44-mediated suppression of dendritic cells 649 

maturation(58) and blockade of cytotoxic T cell recruitment(59) . This is consistent with 650 

a previous report describing the role of ER signaling in suppressing cancer immune 651 

response(60). Due to the limited sample analyzed here, the clinical association will need 652 

to be strengthened in a larger cohort in the future. 653 

 654 

The EstroGene database shows that MCF7 and T47D cells account for 70% of publicly 655 

available E2-regualted data sets. This raises a concern about the bias of models and 656 

generalized interpretability of findings. Consistent with this, we interrogated cell specific 657 

effects which may be mediated by context-dependent transcriptional factors. For 658 

example, unique upregulation of FOS in MCF7 could trigger a secondary transcriptional 659 

cascade via Jun/Fos signaling. In parallel, CHD8, a required epigenetic factor to 660 

activate progesterone receptor-dependent enhancers(61), is exclusively enriched in PR 661 

positive T47D cell lines. Consistent with this, our previous work introducing 662 

constitutively activated estrogen receptor mutations into MCF7 and T47D cell lines 663 

revealed divergent transcriptomic reprogramming and context-dependent metastatic 664 

phenotypes (62,63). Our results also suggested that the association of E2 response 665 

signature enrichment degree and patient survival outcome with endocrine therapy are 666 

context-dependent. Some E2 response genes within non-MCF7/T47D cell line may also 667 

propagate other essential steps of tumor progression such as immune escape and 668 

metastatic spread and hence correlates to poorer survival outcome. The contextual E2 669 

response gene modules produced here offers a useful resource helping researchers to 670 

potentially avoid selection of biased targets for in-depth characterizations. The growing 671 

utility of new generation breast cancer models such as patient-derived organoids is 672 

indispensable to preserve the heterogenous nature of breast cancer in the future(64). 673 

However, in vitro culture can still introduce undesired variabilities that impact the 674 

physiologic relevance of the findings and thus in vivo validation is of utmost importance. 675 

 676 

In conclusion, the EstroGene database is a user-friendly platform for analysis and 677 

visualization of ER regulated gene expression. We intend to extend this platform to 678 
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include further data sets such as ATAC-seq and Hi-C for more extensive mechanistic 679 

insight. We also plan to incorporate data sets from breast cancer models harboring 680 

clinically relevant estrogen receptor variants such as hotspot mutations and fusions and 681 

with anti-ER agent’s treatments to yield consensus of ER regulomes associated with 682 

endocrine resistance. We also expect to continue to ingest and process further datasets 683 

into the EstroGene browser with continuous crowdsourcing from the research 684 

community. We hope the EstroGene database will ultimately support global cancer 685 

research and beyond. 686 

 687 
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Materials and Methods 689 

Data curation and documentation 690 

To obtain a harmonized estrogen receptor related base in breast cancer, we established 691 

a standardized curation model with three main steps. First, we conducted a literature 692 

search from the Gene Expression Omnibus (GEO database) using the combination of 693 

“estrogen” or “E2” or “estradiol” plus “breast cancer” plus the name a specific type of 694 

sequencing technology (e.g., “RNA-seq” or “RNA-sequencing”) towards publications 695 

released earlier than January 2022. Secondly, we manually reviewed these articles, 696 

only literatures conducting E2 stimulation experiments on human breast cancer cell 697 

lines were incorporated into EstroGene database. We curated details of publications 698 

and experimental designs including cell models, E2 dose, duration, control type, 699 

culturing medium, hormone deprivation methods, estradiol product and dissolvent 700 

information, library preparation method and NGS sequencing platforms. All the relevant 701 

information is summarized in Supplementary Table S1. An additional proof reading was 702 

performed by an independent researcher from our team to ensure the accuracy of our 703 

documentation. In addition, we posted our platform and the metadata table of all the 704 

curations online via Twitter in October 2022 for continuous crowdsourcing with proper 705 

instructions for new data set notification. Data curation does not involve any bias 706 

reduction techniques.  707 

 708 

Webserver construction and implementation 709 

The EstroGene database Application uses MySQL (https://www.mysql.com/) and Django 710 

(https://www.djangoproject.com/) Framework to manage request from frontend webpage. The 711 

front end utilizes Javascript to dynamically render the webpage. In particular, 712 

jQuery https://jquery.com/) and Ajax (https://developer.mozilla.org/en-713 

US/docs/Web/Guide/AJAX) are deployed to support the core features of the EstroGene 714 

database. jQuery is a fast, small, and feature-rich JavaScript library that makes it easy to 715 

manipulate the Document Object Model (DOM), handle events, and perform HTTP requests 716 

from Ajax calls. It is designed to simplify the process of writing JavaScript code and makes it 717 

easier to work with web pages. Additionally, CharJS (https://www.chartjs.org/) is also used to 718 

enable interactive charts and visualization. 719 

 720 
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Transcriptomic data process and analysis 721 

For RNA-seq data sets, we uniformly downloaded 375 raw fastq files from the 722 

corresponding data sets from GEO with the SRR accession numbers. We used Salmon 723 

v0.14.1(65) to align the reads to hg38 reference genome (Genecode.v29) and genes 724 

counts export using Tximport assignment on EnsDB.Hsapienes.v86. Genes with 725 

constantly 0 counts were removed and DESeq2(66) was used to compute Log2Fold 726 

Change and adjust p values of each gene between control and E2 stimulated samples. 727 

For specific data sets lacking replicates, we generated Log2 fold change of each gene 728 

by subtracting TMM normalized Log2(CPM+1) values of controls from the 729 

corresponding stimulated samples.  730 

 731 

For microarray data sets, we collected the raw array files from GEO database and 732 

normalized the data with different packages according to the platform. Affy(67) and 733 

oligo(68) packages were used to process Affymetrix-based microarray data following 734 

RMA normalizations. For illumina-based microarray data, lumi(69) package was used 735 

for data normalization. For data generated based on Agilent platform, loess 736 

normalization was performed directly on preprocessed data were downloaded from 737 

GEO. Different version of probe ID were converted to gene ID using BioMart(70) 738 

package. Probes representing the same gene were merged by averaging the 739 

normalized intensity. Limma(71) was used to compute differential expressing genes for 740 

data sets including biological replicates. For experiments without replicates, log2 fold 741 

changes were calculated by subtracting the control values from the matched E2 treated 742 

samples.  743 

 744 

For clinical sample analysis, TCGA RNAseq reads were reprocessed using Salmon 745 

v0.14.1(65) and Log2 (TPM+1) values were used. For the METABRIC data set, 746 

normalized probe intensity values were obtained from Synapse under license to AVL. 747 

For genes with multiple probes, probes with the highest inter-quartile range (IQR) were 748 

selected to represent the gene. Batch effects of the four RNA-seq experiments(28-31) 749 

(GSE73663, GSE51403, GSE56066 and GSE78167) were removed using 750 

“removeBatchEffect” function of  “limma(71)” package. Gene set variation analysis was 751 
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performed using “GSVA” package(72). Survival comparisons were processed using 752 

“survival” and “survminer” packages(73) using Cox Proportional-Hazards model and 753 

log-rank test. Data visualizations were performed using “ggpubr(74)” “fmsb(75)” and 754 

“VennDiagram(76)”. Gene set enrichment analysis was performed using the 755 

“investigation” function from the MSigDB webserver using the REACTOME gene set 756 

collection with FDR below 0.05.  757 

 758 

For single-cell RNA-seq data analysis, raw read counts matrix and metadata were 759 

downloaded from http://biokey.lambrechtslab.org./ for the BIOKEY cohort(43) and 760 

GSE154873 for E2 stimulated scRNA-seq of MCF7, HCI-003 and HCI-011 models(18). 761 

Seurat objects were created using Seurat (version 4) package for further analysis(77). 762 

Genes with detected expression in less than 3 cells, as well as cells expressing less 763 

than 500 genes or containing more than 20% mitochondrial genes were removed, 764 

resulting in 6,439 (MCF7), 1,615 (HCI-003), 13,470 (HCI-011) and 3,258 cancer cells 765 

out of 6,391 total cells from patient#17 for the BiOKEY cohort. Mitochondrial genes and 766 

cell cycle scores were regressed out before principal component analysis, and a shared 767 

nearest neighbor optimization-based clustering method was used for identifying cell 768 

clusters. VISION package was used to assign enrichment scores of each signature to 769 

each single cell(78). Log normalized counts values genes or VISION score were 770 

visualized using “FeaturePlot” function. 771 

 772 

ChIP-seq data process and analysis 773 

ChIP-seq raw fastq files were downloaded from GEO with corresponding SRR 774 

accession numbers. Reads were aligned to hg19 genome assembly using Bowtie 2.0 775 

(79), and peaks were called using MACS2.0 with q value below 0.05 (80). Quality 776 

control was conducted using ChIPQC package(81). We used DiffBind package (82) to 777 

perform principal component analysis, identify gained and lost peaks by intersect BED 778 

files. For ER ChIP-seq from C22 with two biological replicates, we first derived the 779 

consensus peaks between each group’s replicates and then overlap control and E2 780 

treatment groups. Intensity plots for binding peaks were visualized by Seqplots(83) 781 

using BigWig files and Bed files as input. Annotation of genes at peak proximity and 782 
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genomic feature distribution was conducted using ChIPseeker (84), taking the promoter 783 

region as +/- 3000 bp of the transcriptional start site (TSS) and 50kb as peak flank 784 

distance. For motif enrichment analysis, fasta sequences were extracted from each 785 

genomic interval using bedtools(85) and ERE motif enrichment was calculated using the 786 

AME module from the MEME Suite(86). For integration of other epigenetic data, pre-787 

processed BigWig files for ATAC-seq from MCF7 and T47D cells (GSE99542, 788 

GSE102441 and GSE84515)(87,88), FAIRE profiling (GSE25710)(89), ChIP-seq for 789 

H3K27ac (GSE78913)(90), H3K4me3 (GSE57436)(91) and H3K9me3 (GSE96517)(92) 790 

were downloaded from the Cistrome DB. Conversion of BED file between hg19 and 791 

hg38 reference genome was conducted using lift genome annotation function from ucsc 792 

browser (https://genome.ucsc.edu/cgi-bin/hgLiftOver) before integration. 793 

 794 

Data Availability 795 

Details of all the curated 136 data sets are summarized in Supplementary Table S1. 796 

This includes all the associated publication information, GEO accession numbers, 797 

experimental designs including cell models, E2 dose, duration, control type, culturing 798 

medium, hormone deprivation methods, estradiol product and dissolvent information, 799 

library preparation method and NGS sequencing platforms.  800 

For the inter-study concordance analysis, detailed information of four RNA-seq and four 801 

ER ChIP-seq data sets are summarized in Supplementary Table S2 and S4 respectively.  802 

RNA-seq data and clinical information from TCGA and METABRIC were obtained from 803 

the GSE62944 and Synapse software platform under accession number syn1688369, 804 

respectively.  805 

For integration of other epigenetic data, pre-processed BigWig files for ATAC-seq from 806 

MCF7 and T47D cells (GSE99542, GSE102441 and GSE84515), FAIRE profiling 807 

(GSE25710), ChIP-seq for H3K27ac (GSE78913), H3K4me3 (GSE57436) and 808 

H3K9me3 (GSE96517) were downloaded from the Cistrome DB. 809 

For single-cell RNA-seq data analysis, raw read counts matrix and metadata were 810 

downloaded from http://biokey.lambrechtslab.org./ for the BIOKEY cohort and 811 

GSE154873 for E2 stimulated scRNA-seq of MCF7, HCI-003 and HCI-011 models. 812 
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Figure Legends 1071 

Figure 1. Ingestion, annotation, and curation of sequencing data from estradiol 1072 

stimulated breast cancer cells 1073 

A. A flow chart depicting the process for establishment of the EstroGene database and 1074 

specify the embedded functions of the browser. 1075 

B to G. Stacked histogram showing the metadata separated by technologies across all 1076 

the curated data sets related to year of data set publication (B), cell line used (C), E2 1077 

treatment duration (D), E2 dose selection (E), replicates used (F), hormone deprivation 1078 

duration (G) and serum type (H). 1079 

I. Bar graph showing the percentage of RNA-seq, microarray and ChIP-seq data sets 1080 

with available detailed experimental terms. 1081 

 1082 

Figure 2. EstroGene: a multi-omic database of ER-regulated action 1083 

A to C. Screen shots from the EstroGene browser representing the transcriptomic 1084 

consistency plots from RNA-seq (Left panel) and microarray (Right panel) towards a E2-1085 

induced GREB1 (A), a E2-repressed gene IL1R1 (B) and a non-E2 regulated gene 1086 

GAPDH (C). 1087 

D and E. Screen shots from the EstroGene browser showing the ER ChIP-seq 1088 

consistency plots of the upstream and downstream 200kb of TSS towards a E2 1089 

regulated gene GREB1 (D) and non-E2 regulated gene HBB (E) as positive and 1090 

negative controls respectively. 1091 

F and G. Screen shots from the EstroGene browser showing the statistical cutoff-based 1092 

gene list query function. Examples are for the top 30 output with the thresholds of top 5 1093 

percentile of up (F) and down(G) regulated genes and consistent across at least 20% of 1094 

comparisons (Left panel). One of gene from each section (GREB1 and BLNK) is further 1095 

selected for cross-dataset tendency visualization (Right panel) 1096 

 1097 

Figure 3. Inter-dataset concordance of estrogen-induced transcriptomics 1098 

A. Principal component analysis depicting the cross-sample variation from four 1099 

independent RNA-seq experiments before (Left panel) and after (Right panel) batch 1100 

effect correction. 1101 
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B. Bar chart showing the number of up- and down-regulated differentially expressing 1102 

genes from the four RNA-seq comparisons with under four different fold change cutoffs. 1103 

C. Venn diagrams depicting the overlap of E2-induced up (Left panel) and down (Right 1104 

panel) regulated differentially expressing genes from the RNA-seq analysis using a 1105 

cutoff of |log2FC|>1 and padj<0.05. 1106 

D. Stacked plot showing the percentage of DEGs shared in one to four data sets. 1107 

E. Box plot showing average log2 fold changes from four RNA-seq experiments of each 1108 

up (Left panel) and down (Right panel) regulated genes from the four different 1109 

consistency classes. Mann Whitney U test was used. 1110 

F. Heatmap summarizing the E2-caused enrichment score differences of 50 Hallmark 1111 

gene sets across four RNA-seq experiments. 1112 

 1113 

Figure 4. Inter-dataset concordance of estrogen-induced ER genomic binding. 1114 

A. Principal component analysis depicting the ER genomic binding variations across 1115 

four different experiments. 1116 

B. Bar plot showing the number of gained and lost ER peaks from four ChIP-seq 1117 

experiments. 1118 

C. Venn diagram showing the intersection of E2-induced gained ER peaks across four 1119 

ChIP-seq experiments. 1120 

D. Stacked bar plot depicting the percentage distribution of gained ER peaks consistent 1121 

in one to four experiments. 1122 

E. Stacked plot representing the percentage of peaks containing ER motif across four 1123 

peak sets. 1124 

F to H. Intensity plot showing the binding signals from ER ChIP-seq in the presence or 1125 

absence of estrogen (F), ATAC-seq and FAIRE (G) and H3K27ac/H3K9me3 ChIP-seq 1126 

at the four gained ER peak sets with different cross-data set consistencies. ER ChIP-1127 

seq and epigenetic profiling data sets were downloaded from GSE78284, GSE25710, 1128 

GSE102441, GSE78913 and GSE96517. 1129 

I. Stacked plots showing the genomic feature distributions of the four gained ER peak 1130 

sets with different cross-data set consistencies. 1131 
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J. Box plots depicting the average log2 fold changes from four RNA-seq experiments in 1132 

Fig. 3 towards all the up (Top panel) and down (Bottom panel) regulated genes 1133 

annotated from -/+ 50 kb of the four gained ER peak sets. Mann Whitney U test was 1134 

used. 1135 

K. Stacked plot representing the percentage of annotated genes in J with one or 1136 

multiple consistency class of gained ER peaks. 1137 

 1138 

Figure 5. Refining early and late estrogen response transcriptomic signatures. 1139 

A. Stacked histogram representing the time points of E2 treatment used in 146 1140 

transcriptomic comparisons. Three temporal courses were identified accordingly using 6 1141 

hours and 24 hours as the cutoff. 1142 

B. Heatmaps illustrating the percentage falling into the top 10% percentile of up (Left 1143 

panel) and down (Right panel) categories of all the genes from early, mid, and late E2 1144 

response signatures. Top five consistent genes of each category are labelled with gene 1145 

names. 1146 

C. Bar chart showing the significantly enriched REACTOME pathways in early, mid, and 1147 

late response genes. 1148 

D. Venn diagram showing the overlap of transcriptional factors predicted by LISA 1149 

associated with early, mid, and late response genes. 1150 

E. Intensity plot showing the signals from ChIP-seq of H3K4me3, H3K27c and ATAC-1151 

seq (no E2) on -/+ 2kb region of TSS of all early, mid, and late response genes. 1152 

Epigenetic profiling data sets were downloaded from GSE99542, GSE78913 and 1153 

GSE57436. 1154 

F and G. UMAP showing cluster assignment under resolution 0.2 for the MCF7 single 1155 

cell RNA-seq data separated by treatment (F), cluster identity (F). The post-treatment 1156 

cells are circled out. 1157 

H. Left panel: UMAP illustrating the expression of ESR1 in the UMAP from G. Right 1158 

panel: ridge plot comparing ESR1 expressional levels in cluster 1 and 3 defined in G. 1159 

I. Box plots comparing enrichment scores of early, mid, and late response signatures in 1160 

each cell from cluster 1 and 3 defined in F. Mann Whitney U test was used. 1161 

 1162 
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Figure 6. Identifying cell context-dependent estrogen response program. 1163 

A. Stacked histogram representing the cell lines used in 146 transcriptomic 1164 

comparisons.  1165 

B. Heatmaps illustrating the percentage falling into the top 10% percentile of up (Left 1166 

panel) and down (Right panel) categories of all the genes uniquely from MCF7, T47D or 1167 

non-MCF7/T47D experiments. Top five consistent genes of each category are labelled 1168 

with gene names. 1169 

C. Bar chart showing the significantly enriched REACTOME pathways in MCF7, T47D 1170 

and other cell lines uniquely E2 response genes. 1171 

D. Venn diagram depicting the overlap of transcriptional factors predicted by LISA 1172 

associated with MCF7, T47D and other cell lines uniquely E2 response genes. 1173 

E. Kaplan-Meier plots showing the disease-specific survival (DSS) (METABRIC) 1174 

comparing patients with tumors with high and low enrichment for each indicated gene 1175 

sets. High and low were defined by the upper and bottom quartiles of each subset. 1176 

Censored patients were labelled in cross symbols. Log rank test was used and hazard 1177 

ratio with 95% CI were labelled. 1178 

F. UMAP showing single cell distribution from HCI-011 (Top panel) and HCI-003 1179 

(Bottom panel) separated by treatment groups. Enrichment score of MCF7, T47D and 1180 

other cell lines unique response signatures are projected on the UMAPs accordingly.  1181 

 1182 

Figure 7. Discovering a bidirectional estrogen response program. 1183 

A. Scatter plot showing the correlation of each individual gene’s percentage falling into 1184 

top 10% up and down altered targets by fold changes among all 146 transcriptomic 1185 

comparisons. Monodirectional genes are labelled in red (up) and blue (down). 1186 

Bidirectional genes are labelled in green.   1187 

B. Intensity plot showing the signals from ChIP-seq of ER (with E2), H3K4me3, 1188 

H3K27ac and ATAC-seq on -/+ 2kb region of TSS of all monodirectional or bidirectional 1189 

genes. Epigenetic profiling data sets were downloaded from GSE78284, GSE78913, 1190 

GSE57436 and GSE102441. 1191 
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C. UMAP depicting the expressional levels of two representative monodirectional 1192 

(GREB1 and CXCL12) and bidirectional genes (ASPM and CLSTN2) are plotted on the 1193 

UMAP. Post-E2-treatment cells are circled out for illustration. 1194 

D. Venn diagram showing the overlap of regulatory factors predicted by LISA between 1195 

monodirectional and bidirectional gene sets. 1196 

E. Bar chart showing the significantly enriched REACTOME pathways in 1197 

monodirectional and bidirectional gene sets. 1198 

F. Radar plot showing the median enrichment scores of monodirectional and 1199 

bidirectional gene signatures across PAM50 subtypes in TCGA (Left panel) and 1200 

METABRIC (Right panel). 1201 

G. Scatter plot depicting the Pearson correlation between enrichment scores of 1202 

monodirectional (Right Panel) or bidirectional (Left panel) gene signatures with precited 1203 

immune infiltration scores by ESTIMATE in ER+ tumors from TCGA (Top panel) and 1204 

METABRIC (Bottom panel) cohorts. 1205 

H and I. UMAP showing cancer cell distributions (H) and ESR1 gene expression (I) from 1206 

two biopsies from an ER+ patient separated by anti-PD1 treatment status. 1207 

J and K. Top panel: UMAP showing enrichment scores for monodirectional (J), and 1208 

bidirectional (K) response genes projected on the tumor sample in H. Bottom panel: Box 1209 

plot comparing enrichment scores between pre-treatment and on-treatment cancer cells. 1210 

Mann-Whitney U test was applied for each comparison. 1211 

L. UMAP projection of GNF15 and MAFB expression in the tumor sample described in 1212 

H. 1213 

 1214 
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Data Type Technique Studies Experiments

Expressional 
Profiling

RNA-seq 25 66

Microarray 29 80

GRO-seq 10 10

Genomic 
Occupancy
Profiling

ER ChIP-seq 61 75

Chromatin 
Accessibility 
Profiling

ATAC-seq 5 6

Chromatin
Interaction
Profiling

ER ChIA-PET 1 1

Hi-C/TCC 5 8

Total 136 246

Table 1. Overall data set and data point included in the EstroGene database. 
Studies stand for independent data sets with individual GEO accession 
numbers. Experiments stand for a analytic comparison of E2 effects within one 
cell model or a single ER ChIP-seq profiling in full medium condition. Each study 
possibly contains several different experiments. 
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Figure 2. EstroGene: a multi-omic database of ER-regulated action
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Figure 5. Refining early and late estrogen response transcriptomic signatures
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Figure 6. Identifying cell context-dependent estrogen response program
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Correlation of up- and down-regulation consistency  
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Figure 7. Discovering a bidirectional estrogen response program
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