
Introduction

Thiamylal sodium is a short-acting barbiturate used primar-
ily for anesthesia induction and also in the management of 
intracranial hypertension [1]. Thiamylal-induced arterial vaso-
dilation and myocardial depression are generally relatively mild 
[2]. Barbiturates are used in alkaline solutions (pH 10.5–11.5) 
in many clinical settings, and following their venous injection, 
have been reported to cause phlebitis or thrombophlebitis [3]. 
However, there is no previously reported study on the effects of 
barbiturates on the inflammation response, or injury and prolif-
eration of vascular smooth muscle cells (VSMCs).

In this study, we first screened clinical-grade thiamylal so-
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dium solution (TSS: Citosol)-responsive inflammatory related 
genes in a rat VSMC cell line using microarray analysis. Endog-
enous proinflammatory cytokines, including interleukin (IL)-1α, 
have been reported to promote a proliferative and proinflam-
matory phenotype in human VSMCs [4]. Inflammation and the 
proliferation of VSMCs, as well as cytokine secretion after vas-
cular injury, contribute to the pathogenesis of atherosclerosis or 
in-stent restenosis, which can result in vessel bypass graft failure 
[5,6]. After an initial injury, growth factors and cytokines pro-
mote VSMC proliferation, migration, and extracellular matrix 
protein deposition [7]. We thus examined whether TSS could 
increase proinflammatory cytokine secretion from VSMCs and 
promote cell proliferation.

Materials and Methods

Materials

Dulbecco’s modified Eagle’s medium (DMEM) was pur-
chased from Gibco BRL (Grand Island, NY, USA). Fetal bovine 
serum (FBS) was purchased from JRH Biosciences Inc. (Lenexa, 
KS, USA). Bovine serum albumin (BSA) was purchased from 
Sigma Chemical Co. (St. Louis, MO, USA). TSS (Citosol) was 
purchased from Kyorin Pharmaceutical Co. (Tokyo, Japan). 
Enzyme-linked immunosorbent assay (ELISA) kits for rat IL-1α 
and IL-6 were purchased from R&D Systems, Inc. (Minneapolis, 
MN, USA) and BioSource International (Camarillo, CA, USA), 
respectively. The Water Soluble Tetrazolium-1 (WST) Cell Pro-
liferation Assay System was purchased from Takara Bio (Shiga, 
Japan). All other chemical reagents, including sodium carbon-
ate, were purchased from Wako Pure Chemicals (Osaka, Japan) 
unless otherwise stated.

Cell culture

Rat VSMCs (American Type Culture Collection, USA) were 

maintained in low-glucose DMEM supplemented with 5% FBS 
at 37oC in a humidified atmosphere of 95% air and 5% CO2. 
VSMCs were grown to confluence, then cultured for an addi-
tional 2 days in DMEM with 0.1% BSA prior to experimental 
use.

Microarray analysis

Rat VSMCs were treated with TSS for 3 h and total RNA 
was prepared using the acid guanidinium thiocyanate-phenol-
chloroform (AGPC) extraction method. Affymetrix GeneChip 
(Santa Clara, CA, USA) expression analysis, including sample 
preparation, hybridization and data analysis, was performed as 
described previously [8].

Quantitative reverse transcription polymerase chain 
reaction (qRT-PCR)

Total RNA samples from VSMCs treated with different con-
centrations of TSS or sodium carbonate were prepared using the 
AGPC extraction method with ISOGEN (Nippon Gene, Tokyo, 
Japan) according to the manufacturer’s instructions. Total RNA 
(0.4 µg) was reverse-transcribed using Moloney murine leuke-
mia virus RT (ReverTra Ace-α kit; Toyobo, Osaka, Japan). IL 
and toll-like receptor (TLR) mRNA levels were measured using 
the SYBR-green (Toyobo) RT-PCR method and normalized to 
hypoxanthine phosphoribosyltransferase 1 (Hprt1) expression 
(n = 4) [9]. The primer sequences used in this study are listed in 
Table 1. An ABI Prism 7500 Sequence Detection System (Applied 
Biosystems, Foster City, CA, USA) was used for detecting gene 
expression. Values are expressed as a percent of control culture 
(100%).

Cell proliferation assay

VSMCs were plated in 96-well plates in DMEM. The culture 

Table 1. Primer Sequences Used for Real-time qPCR

Forward primer Reverse primer

Hprt1 TCCTCATGGACTGATTATGGACA TAATCCAGCAGGTCAGCAAAGA
IL-1α GAAGACAAGCCTGTGTTGCTGAA AGGTCGGTCTCACTACCTGTGATG
IL-1β CCCTGAACTCAACTGTGAAATAGCA CCCAAGTCAAGGGCTTGGAA
IL-1Ra TGGAGATGACACCAAGCTCCAG GTCTCGGAGCGGATGAAGGTAA
IL-6 TGGATGAGCTGAACTGTACCC GCTTGCCAAGGATTGTGAGT
TLR2 GGCCACAGGACTCAAGAGCA AGAGGCCTATCACAGCCATCAAG
TLR3 AGGTATTGAACCTGCAACACAATGA CCCAAGTTCCCAACTTTGTAGATGA
TLR4 CTCACAACTTCAGTGGCTGGATTTA GTCTCCACAGCCACCAGATTCTC
TLR5 CCACCAAGGACTGCGATGAA TTTGTGACTATGAGGGTGATGACGA
TLR6 AGTGCACCAGGGTTCCAGATG TTAAGGCCAGGGTGCAAACAA

Hprt1: hypoxanthine phosphoribosyltransferase 1, IL: interleukin, TLR: toll-like receptor.
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medium was replaced the following day with fresh medium 
containing different concentrations of TSS and the VSMCs 
were cultured for a further 24 h. Proliferation was measured us-
ing the WST-1 assay (n = 10) [10]. Briefly, premixed WST-1 re-
agent (10 µl) was added to each well and VSMCs were incubated 
for 4 h. Sample absorbance, compared with a background blank 
control, was measured at 450 nm using a microplate reader ac-
cording to the manufacturer’s instructions.

Quantification of rat IL-6 by ELISA

Based on our previous preliminary data to detect a signifi-
cant increase in IL-6 protein level [11], VSMCs were stimulated 
with TSS for 24 h. VSMC culture supernatants were collected 
and centrifuged (12000 rpm, 1 min). Supernatants were stored 
at −80oC until later use in assays. ELISA was carried out to 
determine IL-6 protein expression levels according to the manu-
facturer’s instructions (n = 8).

Ex vivo stimulation of rat aorta

Nine-week-old Sprague Dawley rats were purchased from 
Kyudo Co. (Saga, Japan). Animal handling was supervised by 
the Institutional Animal Experiment Committee. Rats were 
euthanized under deep anesthesia with pentobarbital and ket-
amine. The thoracic-aorta was excised and the adventitia was 
removed. The aorta was cut into small pieces and about 5 g (wet 
weight) of tissue was stimulated with or without 30 µM TSS in 
500 µl DMEM supplemented with 0.1% BSA for 24 h in 12-well 
plates [11]. Supernatants were collected and centrifuged (12,000 
rpm, 1 min) prior to being stored at −80oC until further use in 
assays to measure IL-1α or IL-6 production by ELISA (n = 5). 
The IL-6 concentration in the supernatant was normalized with 
the wet weight of the aortic segment.

Measurement of cell viability

Confluent VSMCs were serum-starved for 24 h prior to treat-
ment with TSS. After 24 h incubation, attached cells were har-
vested with trypsin-EDTA. Cells in the medium were collected 
by centrifugation and then stained with 0.4% trypan blue. Num-
bers of total and dead cells were counted using a hemocytometer 
(n = 8) [12]. Values are expressed as a percent of control culture 
(100%).

Statistical analysis

Normality of the data was assessed with the Shapiro-Wilk 
test. A t-test was used to compare between two groups. Evalu-
ation of differences between multiple groups was performed 

using one-way analysis of variance (ANOVA) and Fisher’s post 
hoc test, as appropriate. All analyses were performed using JMP 
Pro software (ver. 11; SAS Institute Inc., Cary, NC, USA). Data 
are presented as means ± standard error of the mean (SEM). A 
probability value of P < 0.05 with a 95% confidence interval was 
considered to indicate a statistically significant difference.

Results

Microarray analysis

Following TSS-responsive gene screening in rat VSMCs using 
a microarray, TSS was found to enhance expression of several 
genes involved in inflammation (Table 2).

TSS enhances inflammatory response in VSMCs

Exposure of VMSCs to TSS at a dose of 100 µM resulted in 
upregulation of IL-1α mRNA (3,262.9% ± 1,195.0% vs. Control 
(100%), P = 0.005; Fig. 1A). However, TSS at doses of 3, 10, 30, 
and 100 µM resulted in downregulation of IL-1β mRNA (15.9% 
± 4.1% vs. Control, P = 0.045; 4.2% ± 4.1%, P = 0.022; 17.2% ± 
9.2%, P = 0.049; 4.5% ± 2.8%, P = 0.023, respectively; Fig 1B) 
in a dose-dependent manner (Figs. 1A and 1B). A similar trend 
was observed for IL-6 mRNA (443.1% ± 61.2% vs. Control, P < 
0.001 at 100 µM; Fig. 1C).

Receptor-mediated activation of VSMCs can contribute to 
increased inflammatory responses; thus, we next investigated 
TLR expression patterns. VSMCs stimulated by TSS at doses of 
30 and 100 µM showed a mild but significant increase in TLR4 
mRNA expression in a dose-dependent manner (134.5% ± 5.7% 
vs. Control, P = 0.001; 163.5% ± 7.9%, P < 0.001, respectively; 
Fig. 2A). Although TLR5 mRNA showed a tendency to increase, 
the difference was not significant (P = 0.152 at 100 µM; Fig. 2B). 
Finally, levels of TLR2, TLR3, and TLR6 mRNA expression were 
very low and did not change markedly.

Table 2. Microarray Analyses of Endogenous Gene Expression in VSMCs 
Treated with Thiamylal Sodium Solution (TSS) Versus Vehicle Controls

Gene Fold-change*

Chemokine (C-X3-C motif) ligand 1 (Cx3cl1)
Interleukin 1 receptor antagonist (IL-1Ra)
Interleukin 6 (IL-6)
Interleukin 16 (IL-16)
Interleukin 1 receptor type I (IL-1R1)

2.02
1.74
1.60
1.46
1.33

*Ratios represent the fold-activation of gene expression in cells treated 
with TSS for 3 h versus vehicle controls.
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TSs increases IL-6 production In Vitro and Ex Vivo

VSMCs were incubated with TSS for 24 h. TSS-induced IL-6 
production was significantly increased in a dose-dependent 

manner (Control 16.4 ± 6.5 pg/ml [range: 0.91–31.85 pg/ml]; 
TSS [10 µM] 119.2 ± 28.4 pg/ml [range: 51.9–186.4 pg/ml], P 
= 0.145; TSS [30 µM] 194.8 ± 78.1 pg/ml [range: 10.1–379.6 
pg/ml], P = 0.015; Fig. 3A). To confirm that proinflammatory 
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Fig. 1. Upregulation of proinflammatory cytokine expression by 
thiamylal sodium solution (TSS) in vascular smooth muscle cells 
(VSMCs). VSMCs were incubated with TSS at various concentrations 
for 3 h (n = 4). Expression levels of each mRNA transcript were deter-
mined by qRT-PCR and normalized to hypoxanthine phosphori bo syl-
transferase 1 (Hprt1) mRNA expression levels. Values are expressed 
as a percentage of the control culture (100%); *P < 0.05, †P < 0.01 vs. 
controls. All data are shown as the mean ± SEM.
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Fig. 2. Upregulation of toll-like receptor expression by TSS in VSMCs. VSMCs were incubated with TSS at various concentrations for 3 h (n = 4). 
Expression levels of toll-like receptors were determined as described in the Fig. 1 legend. *P < 0.05, †P < 0.01 vs. controls. All data are shown as the 
mean ± SEM.
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cytokines were produced from blood vessels, a segment of rat 
aorta without adventitia was stimulated ex vivo with TSS for 24 
h. IL-6 production from rat aorta was increased by TSS stimula-
tion (Control 551.2 ± 43.5 pg/ml/g [range: 430.3–802.4 pg/ml] 
vs. TSS 1,405 ± 43.5 pg/ml/g [range: 802.4–2,009.0 pg/ml], P = 
0.005; Fig. 3B). IL-1α production in the medium was undetect-
able under these conditions (data not shown). These ex vivo 
results are consistent with those obtained during the in vitro 
experiments.

TSS attenuates cell proliferation and viability

TLR-activated VSMCs have been reported to produce IL-
1α in an autocrine manner, which contributes to proliferation 
and chemokine release by VSMCs [4]. VSMCs were cultured 
with TSS for 24 h and the effect of TSS on proliferation was 
determined. The WST-1 cell proliferation assay showed that a 
low concentration of TSS increased cell proliferation of VSMCs 
(percentage proliferation at 10 µM TSS: 124% ± 21% vs. Control 
[range: 109%–140%], P = 0.002; Fig. 4A). In contrast, the high-
est concentration of TSS inhibited VMSC proliferation (percent 
proliferation 100 µM TSS: 43% ± 2% vs. Control [range: 40%–
46%], P < 0.001).

Cell viability was assessed by trypan blue staining. TSS at 
the highest concentration significantly reduced the viability 
of VSMCs (percentage of viable cells at 30 µM TSS: 87% ± 3% 
[range: 80%–94%], P = 0.015; 100 µM TSS: 69% ± 4% [range: 
61%–77%], P < 0.001; Fig. 4B). It has been reported that VSMCs 
produce IL-1 receptor antagonist (IL-1Ra) that inhibits the 
activities of IL-1α and IL-1β and regulates both inflammatory 

responses and cell proliferation [13-15]. However, IL-Ra mRNA 
was not significantly increased by TSS stimulation (100 µM TSS: 
P = 0.521; Fig. 4C).

Effects of sodium carbonate on VSMCs

Finally, we investigated the effects of sodium carbonate on 
VSMCs. TSS contains 0.035 g of sodium carbonate per 0.5 g 
of thiamylal sodium (0.18 µM of sodium carbonate per 1 µM 
of thiamylal sodium). VSMCs were stimulated with the same 
amount of sodium carbonate contained in TSS (Fig. 1). IL-1α 
mRNA levels (1,734.0% ± 363.2% vs. Control, P = 0.019 at 5.47 
µM; 3,633.1% ± 762.8%, P < 0.001 at 18.25 µM) and IL-6 mRNA 
levels (286.9% ± 73.8% vs. Control, P = 0.046 at 1.82 µM; 291.4% 
± 25.1%, P = 0.042 at 5.47 µM; 537.5% ± 133.7%, P < 0.001 at 
18.25 µM) were significantly upregulated by sodium carbonate 
stimulation (Fig. 5). However, the increase in levels of ILs was 
considerably greater using sodium carbonate alone than with TSS 
(Fig. 1).

Discussion

In the present study, we demonstrated that TSS increased the 
expression of IL-1α and IL-6 in VSMCs. Low concentrations of 
TSS showed a positive effect on the proliferation of VSMCs. TSS 
contains a sodium carbonate additive because thiamylal sodium 
is difficult to dissolve at neutral pH. Because sodium carbonate 
produces hydroxide ions in aqueous solution, thiamylal is always 
used in strong alkaline solutions in the clinical setting. Conse-
quently, intravenous injection of barbiturates, including TSS, of-
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ten causes phlebitis or local necrosis at the injection site. In this 
study, sodium carbonate-induced IL-1α and IL-6 upregulation 
was greater than TSS-induced upregulation. These results indi-

cate that TSS-induced proinflammatory cytokine production by 
VSMCs is likely to be caused by sodium carbonate, whereas pure 
thiamylal sodium itself has a potent anti-inflammatory effect in 
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VSMCs.
A previous study indicated that endogenous IL-1α acts as an 

autocrine growth factor for VSMCs, and its pro-proliferative ef-
fects are mediated by signaling via the type-1 IL-1 receptor [4,16]. 
IL-6 is well-known to induce the expression of C-reactive pro-
tein, which is a prognostic marker for atherosclerotic cardiovas-
cular disease [17]. Furthermore, IL-6 stimulates the proliferation 
of VSMCs [18]. These data suggest that IL-6 from blood vessels 
could be involved in local inflammatory responses that might 
accelerate atherogenesis. Furthermore, some clinical studies sug-
gest that inflammatory mediators, including oxidized low-densi-
ty lipoprotein, IL-6, and tumor necrosis factor-α, are associated 
with an increase in the relative risk of developing cardiovascular 
disease, especially ischemic heart disease [19-21]. We showed 
that TSS increased proinflammatory cytokine production from 
rat VSMCs and aortas. These findings indicate that TSS-induced 
proinflammatory cytokine production might, at least partially, 
contribute to the progression of atherosclerosis.

Clarke et al. [22] showed that necrotic VSMCs release IL-1α, 
which subsequently stimulates the surrounding viable VSMCs 
to release IL-6 and monocyte chemotactic protein (MCP)-1. In 
the present study, TSS increased the expression of IL-1α but not 
IL-1β mRNA expression. Additionally, the WST-1 assay and 
trypan blue viability test suggest that high concentrations of TSS 
reduced cell viability. Both apoptosis and necrosis can occur at 
high levels in advanced plaques in conjunction with high serum 
concentrations of inflammatory factors [23]. Considered togeth-
er, TSS might contribute to the development of VSMC necrosis 
and cause plaque build-up.

Members of the TLR family play key roles in the innate im-
mune system and are expressed in a cell type-specific manner 
[24]. TSS-stimulated VSMCs showed a significant increase in 
TLR4 mRNA expression level. Previous studies have shown that 
TLR4 is associated with VSMC proliferation [25,26]. In the pres-

ent study, TSS-induced VSMC proliferation was observed only 
at a concentration of 10 µM. At this concentration, however, IL 
levels did not significantly increase. Based on these findings, it is 
presumed that the effect of TSS on VSMC proliferation is associ-
ated primarily with TLR4 upregulation. Earlier studies indicate 
that TLR4 expression on VSMCs is linked to elevated basal se-
cretion of IL-6 [27]. TSS-induced TLR4 upregulation may play 
a partial role in the secretion of IL-6. Although TLR3 signaling 
can evoke proinflammatory and proliferative responses in hu-
man VSMCs [28], overall levels of TLR3 mRNA expression were 
very low in our study.

VSMCs can express an intracellular form of IL-1Ra that regu-
lates inflammatory responses and cell proliferation [13]. A pre-
vious study showed that the effect of transforming growth factor 
(TGF)-β1 on IL-1Ra production could be completely inhibited 
by an anti-IL-1β antibody [15]. In our study, neither IL-1Ra nor 
IL-1β expression were increased in TSS-stimulated VSMCs. IL-
1Ra induction in VSMCs might therefore be dependent on IL-
1β expression.

Clinically relevant plasma concentrations of thiamylal (2.7–5.0 
mg/kg), 2–30 min after bolus intravenous injection, are reported 
to range between 7.8 and 47.0 µM [29]. Furthermore, the initial 
concentration of thiamylal in clinical use is about 200 µM [30]. 
Thus, the concentrations of thiamylal used in our study repre-
sent pharmacologically achievable plasma concentrations. How-
ever, because of the numerous limitations of in vitro studies, in 
vivo studies are needed to confirm whether thiamylal causes the 
development of blood vessel inflammation.

In summary, we showed that TSS increased IL-1α and IL-6 
production both in vitro and ex vivo, and that low concentra-
tions of TSS increased VSMC proliferation. These effects may 
promote vascular inflammation and lead to the progression of 
atherosclerosis.
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