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Abstract

The hydrolysis of cellulose by processive cellulases, such as exocellulase TrCel7A from

Trichoderma reesei, is typically characterized by an initial burst of high activity followed by

a slowdown, often leading to incomplete hydrolysis of the substrate. The origins of these

limitations to cellulose hydrolysis are not yet fully understood. Here, we propose a new

model for the initial phase of cellulose hydrolysis by processive cellulases, incorporating a

bound but inactive enzyme state. The model, based on ordinary differential equations,

accurately reproduces the activity burst and the subsequent slowdown of the cellulose

hydrolysis and describes the experimental data equally well or better than the previously

suggested model. We also derive steady‐state expressions that can be used to describe

the pseudo‐steady state reached after the initial activity burst. Importantly, we show that

the new model predicts the existence of an optimal enzyme‐substrate affinity at which

the pseudo‐steady state hydrolysis rate is maximized. The model further allows the

calculation of glucose production rate from the first cut in the processive run and

reproduces the second activity burst commonly observed upon new enzyme addition.

These results are expected to be applicable also to other processive enzymes.
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1 | INTRODUCTION

The biological degradation of biopolymers, such as polysaccharides,

proteins, and nucleic acids involves processively acting hydrolases.

Processivity means that after binding the substrate, the enzyme remains

attached to it and performs multiple rounds of catalysis before

dissociating again (Breyer & Matthews, 2001). Processive hydrolysis is

particularly important in enzymatic degradation of cellulose (Payne

et al., 2015). The cellobiohydrolase TrCel7A from Trichoderma reesei is

the main component of industrial cellulase systems and is essential for

the degradation of crystalline cellulose (Nakamura et al., 2014; Payne

et al., 2015; Praestgaard et al., 2011).

An important role in deciphering the mechanism of cellulose

hydrolysis is played by mathematical modeling (Bansal, Hall, Realff, Lee,

& Bommarius, 2009; Jeoh, Cardona, Karuna, Mudinoor, & Nill, 2017),

including both the models based on ordinary differential equations

(Bommarius et al., 2008; Griggs, Stickel, & Lischeske, 2012; Praestgaard

et al., 2011) and on particle‐based simulations (Eibinger, Zahel, Ganner,

Plank, & Nidetzky, 2016; Shang, Chang, & Chu, 2013; Shang & Chu, 2014;

Warden, Little, & Haritos, 2011).

A key obstacle for an efficient utilization of lignocellulosic biomass

is the substrate recalcitrance, manifested by, among other effects, a

rapid slowdown of the enzymatic deconstruction of cellulose within

minutes after the initial activity burst phase at low cellulose

conversion (Cruys‐Bagger et al., 2012; Murphy et al., 2012; Praest-

gaard et al., 2011). The origin of the activity burst has been attributed

to either the heterogeneous nature of the substrate and the changes

of the substrate morphology in the course of hydrolysis (Beckham
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et al., 2011; Ganner et al., 2012; Grethlein, 1985; Peciulyte, Karlström,

Larsson, & Olsson, 2015), or to the enzyme‐related phenomena, such

as inactivation of cellulases due to irreversible nonproductive binding

onto the cellulose (Cruys‐Bagger et al., 2012, 2016; Kostylev &Wilson,

2013; Kurašin, Kuusk, Kuusk, Sørlie & Väljamäe, 2015). Although

experimental evidence from studies employing either pre‐steady‐state
measurements (Cruys‐Bagger et al., 2012; Olsen, Kari, Borch &Westh,

2017) or time‐resolved high‐resolution visualization techniques

(Igarashi et al., 2011; Nakamura et al., 2014) provided significant

insights regarding the quantitative understanding of cellobiohydrolase

action, many fundamental questions still remain open.

The burst kinetics observed in the first‐cut product release in

cellulose hydrolysis (Kipper, Väljamäe & Johansson, 2005) has led to

mechanistic models of the hydrolysis burst based on the idea of the

enzyme becoming reversibly blocked while processively hydrolyzing

the cellulose chain (obstacle model; Jalak & Väljamäe, 2010).

Praestgaard et al. (2011) published an analytical model for the initial

burst phase of processive cellulose hydrolysis employing the obstacle

concept and used it to describe the experimentally observed

hydrolysis of amorphous cellulose by the cellobiohydrolase Cel7A.

The model has been applied in analysis of cellulose hydrolysis in

several subsequent studies (Cruys‐Bagger et al., 2012; Cruys‐Bagger,
Elmerdahl, Praestgaard, Borch, & Westh, 2013; Cruys‐Bagger,
Tatsumi, Ren, Borch, & Westh, 2013; Kari et al., 2014; Sørensen

et al., 2015, 2017).

The model (Figure 1) assumes that the cellulase molecule

attaches to the cellulose chain (rate constant k1) and processively

hydrolyzes the cellulose (rate constant k2) with the possibility of

detachment from the cellulose at any time (rate constant k3). After

performing at most n hydrolysis steps the enzyme detaches (rate

constant k3).

The solution of the rate equations derived from the scheme in

Figure 1 was used to fit the model to the experimental data by

adjusting the four parameters, k1, k2, k3, and n (Praestgaard et al.,

2011). Although the model predicts an activity burst shortly after

mixing the enzyme with the substrate, the fits to the data are rather

poor (Figure 5a and Supplementary Information Figure S2). The two

main shortcomings of the model, as also stated in the original

publication (Praestgaard et al., 2011), are the abrupt and steep

decrease of activity at the end of the activity burst, and the fast

convergence to the steady state (constant hydrolysis rate) following

the activity burst. In contrast to the experimental data, the time

when the maximum of the activity is reached in the model is only

weakly dependent on the substrate concentration.

A close inspection of the published model suggests that the main

reason for the deficiency of this model can be linked to the fixed

maximum number of hydrolysis steps n that the enzyme is allowed to

perform before it must detach from the cellulose chain. This can be

seen by estimating the time the enzyme needs to perform n

hydrolysis steps using the values of =n 150 and = −k 0.55 s2
1 from

the fit: the time is ∕ ≈n k 2702 s, which coincides with the time of the

abrupt activity decrease in the model (Supplementary Information

Figure S2). To improve the theoretical description of the data, the

authors modified the model to include several values of n instead of

only one (Praestgaard et al., 2011). This, however, did not lead to a

significantly better match of the model with the data. The second

shortcoming of the published model, a fast convergence to the steady

state, could be eliminated only by including an additional assumption

of irreversible enzyme inactivation in course of time.

Here we propose a minimal model for the initial phase of

cellulose hydrolysis by TrCel7A inspired by earlier experiments and a

pre‐steady‐state model by Praestgaard et al. (2011). The model

accurately reproduces the initial hydrolysis burst observed before a

significant fraction of substrate is converted, while remaining as

simple as possible, in terms of the number of kinetic parameters,

distinct reaction species, and reactions. The simple analytical solution

of the model greatly facilitates the analysis of experimental data.

Furthermore, we derive the expressions describing the steady‐state
of the presented model, and show that the model provides important

insights into the kinetics of processive cellulose hydrolysis.

2 | COMPUTATIONAL METHODS

The systems of ordinary differential equations (Equation (3)) were

solved in Matlab (MathWorks, Natick, MA) by evaluating the

eigenvalues and eigenvectors of the matrix A using the Matlab

function eig(), as described in Section 3. The published data

(Praestgaard et al., 2011) were fitted to the presented models using

the Matlab function lsqnonlin() which uses the standard least‐squares
minimization algorithm to find the optimal values of the unknown

parameters by minimizing the difference between the data and the

model.

3 | MODEL CONSTRUCTION

3.1 | Proposed model

As shown below, the weaknesses of the published model were

eliminated and a better agreement with the data was achieved by

removing the limit of maximum number n of hydrolysis steps that are

possible, and introducing an additional, transiently inactive, enzyme

state, which is effectively playing the role of the enzyme state ECN‐n

in the published model (Figure 1).

Since we are interested in describing the activity burst during the

initial phase of the cellulose hydrolysis, we make the following

assumptions (identical with those in Praestgaard et al., 2011). First,

F IGURE 1 The model of processive cellulose hydrolysis published
in Praestgaard et al. (2011). Symbols: E—free (not bound) enzyme,
CN—cellulose chain of N cellobiose units, ECN—enyzme complexed to
the cellulose chain of N units, C1—cellobiose
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the substrate concentration c0 does not change during the hydrolysis.

This follows from the observed low overall conversion during the

initial hydrolysis phase. Second, the enzyme‐binding sites on the

substrate are in excess of the enzyme. The consequence of this

assumption is that instead of the bimolecular binding rate constant ′k1

one can use a unimolecular rate constant ′=k k c1 1 0, independent of

the concentration of the bound enzyme species. This assumption has

been confirmed by experiments with varying enzyme concentration

and constant substrate concentration (Praestgaard et al., 2011).

Third, we neglect any long‐time effects, such as permanent enzyme

deactivation. This allows us to keep the model simple, but it also

means that the model cannot be expected to describe the commonly

observed slowdown of hydrolysis at very long times.

In the proposed model (Figure 2), the initially free enzyme binds

to the cellulose chain and is present either in an active state EC or in

an inactive (blocked) state ( )EC b. The enzyme in the active state is

hydrolyzing cellulose with the rate constant k7 without being

released from cellulose upon hydrolysis. The complete model allows

interconversion between all three enzyme states (E: free in solution,

EC: active bound, ( )EC b: inactive bound), described by the rate

constants k1–.

We introduce the following notation: y1 is the concentration of the

free enzyme in solution E, y2 is the concentration of the bound, active

enzyme EC, y3 is the concentration of the bound, inactive enzyme ( )EC b,

and yT is the total enzyme concentration: = + +y y y yT 1 2 3.

The reaction scheme in Figure 2 leads directly to the following

rate equations:

̇
̇
̇

= (− − ) + +

= + + (− − ) +

= + + + (− − )

y k k y k y k y
y k y k k y k y
y k y k y k k y

,

,

.

1 1 6 1 2 2 5 3

2 1 1 2 3 2 4 3

3 6 1 3 2 4 5 3

(1)

Since the total amount of enzyme yT is conserved, we can simplify the

equations by substituting for = − −y y y y y:3 3 T 1 2, which leads to

̇
̇
= − ( + + ) + ( − )

= + ( − ) − ( + + )

y k y k k k y k k y
y k y k k y k k k y

,

.
1 5 T 1 6 5 1 2 5 2

2 4 T 1 4 1 2 3 4 2
(2)

This set of equations can be written using a matrix form:

̇ = +y b Ay, (3)

where the vectors b and y and the matrix A are defined as

⎛
⎝

⎞
⎠( ) ( )= =

− − − + −

+ − − − −
=b A y

k y
k y

k k k k k
k k k k k

y
y, , .5 T

4 T

1 6 5 2 5

1 4 2 3 4

1

2
(4)

The linear ordinary differential equation (3) has the solution:

= ( − ) +−y V V y y ye ,Dt 1
0 ss ss (5)

whereV is the matrix of eigenvectors of A (ordered columnwise), D is

a diagonal matrix with the eigenvalues of A on the diagonal, −V 1 is the

inverse matrix of V , y0 are the initial concentrations of the enzyme

species (we assume that initially all the enzyme is in the state E), and

yss are the steady‐state concentration values:

⎛
⎝

⎞
⎠

= = − −y y A b
y
0

, .1
0

T
ss (6)

The solution given by Equation (5) is analytical; the concentra-

tions are sums of two exponential terms plus a constant value (the

steady‐state value). The eigenvalues and eigenvectors of A can be

directly calculated in Matlab or a similar software. Equation (5) can

be therefore conveniently used to fit the experimental data.

The time‐dependent rate of hydrolysis ˙ ( )c tp , which can be directly

compared with the experimental data, is calculated from the solution of

F IGURE 2 The proposed model of processive cellulose hydrolysis
with three enzyme states. Symbols: E—free enzyme, EC—active
bound enzyme, ( )EC b—inactive bound enzyme, C—cellulose chain,

and C1—cellobiose

F IGURE 3 The four‐rate models that produce good fits to the
experimental data (Figure 5). The models are derived from the full
model (Figure 2) by keeping only four of the six reactions

interconverting the three enzyme species. The models form two
pairs: (Ab, Ba) and (Aa, Bb); the models within each pair are
equivalent from the point of view of available data, that is, they
produce equal fits and cannot be distinguished from each other

F IGURE 4 The proposed model of processive cellulose hydrolysis
incorporating the assumption that the first hydrolysis cut in the
processive run (EC′ → EC) produces glucose instead of cellobiose.
The EC′ is the active enzyme state before performing any hydrolysis
step, EC is the active enzyme after performing at least one hydrolysis
step, G stands for glucose; other symbols as in Figure 2
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the model as ˙ ( ) = ( )c t k y tp 7 2 . It should be stressed that the solution ( )y ti is

independent of the hydrolysis rate constant k7, since it is determined

only by the transitions between the three enzyme states which are not

coupled to the hydrolysis reaction. A direct consequence is that the

solution covers also the situations when the hydrolysis is very slow

compared to the time the enzyme stays in the active state, that is, even

when the enzyme processivity is negligible.

The full model has seven parameters: …k k1 7. This is a rather large

number, and it can hardly be expected that the fits to the data can

uniquely determine all seven parameters. Therefore, simplified

variations of this model with the dominant reactions retained and

the less significant reactions removed (the corresponding rates were

set to zero) were considered. As described in detail in Supplementary

Information, models containing four of the six possible reactions

interconverting the enzyme species (the “four‐rate” models) repre-

sent the minimal models for the description of the data considered in

this study. These models contain five kinetic parameters: the four

interconversion rate constants (out of the six: k1–k6) and the

hydrolysis rate constant k7. Of these, four models, denoted Ab, Aa,

Ba, and Bb (Figure 3), yielded the best fits to the data, as described in

the following section.

Because of the limited experimental data—in this case, a set of

time‐dependent hydrolysis rates determined for several substrate

concentrations—it is not always possible to distinguish between

different models because they lead to exactly the same predic-

tions, only with modified parameters and scaling factors. We call

such models equivalent and describe their relationships and

transformations in more detail in the Supplementary Information.

It turns out that the models in Figure 3 form two groups of

equivalent models: the model Ab is equivalent to Ba, and the

model Aa is equivalent to Bb. This means, for example, that

parameters of the fitted Ab model (k k k k k, , , ,1 2 3 4 7) can be

transformed to the parameters of the Ba model (k k k k k, , , ,1 2 4 6 7)

producing the same fit, that is, the same time evolution of the

hydrolysis rate.

3.2 | Steady state

The proposed model implies that after the initial period the system

reaches a steady state. The dependence of the concentration of the

hydrolyzing enzyme species EC in the steady state (y2ss) on the

substrate concentration c0 (which is implicitly included in the

unimolecular rate constant ′=k k c1 1 0) has the usual hyperbolic form:

model Aa:

=
+ + ( ( + ))/( + )

k
k

y y
k

k k k k k k k
,T

1

1
2ss

5

3 5 5 2 3 3 5
(7)

model Ab:

=
+ + ( /( + ))

k
k

y y
k

k k k k k k
.1

1
2ss T

4

3 4 2 4 3 4
(8)

The steady‐state rate of the processive hydrolysis vss is directly

proportional to the steady‐state concentration of the active species

EC: =v k yss 7 2ss. This allows Equations (7) and (8) to be written in a

form analogous to the Michaelis–Menten formula with modified

parameters:

′
′=

+
v v

c
c Kss max

0

0 M

(9)

with the following effective maximum reaction rate ′vmax and the

effective Michaelis constant ′KM for the model Aa:

′ ′
′=

( + )
=

( + )

( + )
v k y

k
k k

K
k k k
k k k

,max 7 T
5

3 5
M

5 2 3

1 3 5
(10)

and for the model Ab:

′ ′
′=

( + )
=

( + )
v k y

k
k k

K
k k

k k k
, .max 7 T

4

3 4
M

4 2

1 3 4
(11)

Compared to the ideal case (Michaelis–Menten), the maximum

hydrolysis rate ′vmax is limited by the ratios ∕( + )k k k5 3 5 and ∕( + )k k k4 3 4

in the two models (Aa and Ab). These ratios are always lower than or

F IGURE 5 The fits of the published cellulose hydrolysis data. Left: the experimental temporal change of the rate of cellobiose production
(initial substrate concentration = μc 14.90 M) together with a fit to the Ab model and a published fit (published data and fits from Praestgaard
et al. (2011). Right: the published cellobiose production rates and the corresponding global fit to the Ab model. The data with the initial
substrate concentrations in the range from 1.5 to 110.9 μM are shown. The cellobiose production rate in the fits is calculated as ̇ ( ) = ( )c t k y tp 7 2

[Color figure can be viewed at wileyonlinelibrary.com]
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equal to one, and represent the maximum fractions of the enzyme in the

active state EC (reached in the limit of very high substrate concentra-

tion). In other words, they reduce the ideal maximal hydrolysis rate by

the fraction of the enzyme in the blocked state ( )EC b.

A steady‐state theory based on the published reaction scheme

shown in Figure 1 has been formulated previously (Cruys‐Bagger,
Elmerdahl, et al., 2013). There, the maximum hydrolysis rate is given

by a formula analogous to Equations (10) and (11), with a limiting

factor called ‘kinetic processivity coefficient’ β, a fraction expressing

the probability that the bound enzyme is not at the end of its n

hydrolysis steps, in the ECN‐n state (blocked, waiting to dissociate). In

other words, β is the probability, that the enzyme is actively

hydrolyzing the cellulose chain, analogously to the limiting ratio in

Equations (10) and (11). From this point of view, the steady‐state
descriptions of the published and suggested models are directly

comparable.

3.3 | Glucose production

The first hydrolysis cut in the processive run after binding of the

enzyme to the cellulose and threading the cellulose chain may result

in production of a glucose, a cellobiose, or a cellotriose molecule; the

subsequent steps are thought to produce only cellobiose (Fox, Levine,

Clark, & Blanch, 2012; Kari et al., 2017). The rate of glucose

production in the first cut can be modeled within the proposed

reaction scheme by separating the active state EC into two

populations: the molecules that are bound but have not performed

any hydrolysis yet (EC′), and the molecules that have hydrolyzed at

least one bond (EC), as shown in Figure 4.

This mechanism leads to a set of differential equations in the

form of Equation (3) with the following definitions of the vectors b

and y and the matrix A, instead of Equation (4):

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

′

= =

− − − + − + −

+ − −

− + − − − −

=

b A

y

k y

k y

k k k k k k k
k k k
k k k k k k

y

y
y

0 ,

, ,

, , 0

, ,

,

,

5 T

4 T

1 6 5 2 5 2 5

1 2 7

4 7 4 2 3 4

1

2

2

(12)

where ′y2 is the concentration of the bound, active enzyme EC′ that
has not performed any hydrolysis step yet, and y2 is the concentra-

tion of the bound, active enzyme EC that has performed at least one

hydrolysis step. The solution is given by Equations (5) and (12).

4 | RESULTS AND DISCUSSION

4.1 | Hydrolysis burst

The time‐dependent rate of cellobiose production by TrCel7A shows

strong variations during the initial hydrolysis phase, exhibiting a

distinct activity burst at high substrate concentrations (Cruys‐Bagger
et al., 2012; Praestgaard et al., 2011). We have analyzed the published

experimental data (Figure 5) using the four‐rate models presented in

Figure 3, the full model (Figure 2), and the other related models

discussed in the Supplementary Information. The analysis was

performed globally, meaning that all data sets were fitted simulta-

neously and all the common fitting parameters (rate constants) were

forced to be the same for all substrate concentrations c0, with the

exception of the unimolecular rate constant ′=k k c1 1 0, which naturally

varies between experiments with different substrate concentration c0.

The total enzyme concentration yT , needed to determine the

hydrolysis rate constant k7, was 50 nM.

The best fits were obtained with the models Ab (or, equivalently,

Ba) and Aa (Bb), with no significant difference between the two. The

parameters obtained from the fits, compared to the parameters of

the published model (Praestgaard et al., 2011), are listed in Table 1.

The fits using the other four‐rate models (Supporting Information

Figure S1) were of lower quality. The fit with the full model (Figure 2)

was not appreciably better than the fits to the models Ab/Ba or Aa/

Bb. The values of the fit parameters were, however, very close to

those of model Ab. This shows that given the available data the six

interconversion rates are redundant, and the reduced models with

four rates are sufficient to describe the data.

Since the equivalent models (Ab/Ba or Aa/Bb) produce equal fits,

any preference of one model to the other one in each pair can be

made only on the basis of the obtained parameter values. The most

significant difference between Type A and Type B models, as can be

seen in Table 1, is the average number of hydrolyzed units in one

processive run =n t kp 7: while n is 175 and 163 for the Ab and Aa

models, it is higher for the Ba and Bb models: 245 and 311. The value

of n is expected to be smaller than the degree of polymerization of

the cellulose chain, which has been reported as dp = 210 for the used

substrate (Zhang & Lynd, 2005). Based on this reasoning, the models

Ab and Aa appear to be preferable to the models Ba or Bb.

Furthermore, considering the steady‐state analysis shown below, the

model pair Ab/Ba describes the data slightly better than the pair Aa/

Bb. This leaves the model Ab as the most preferable description of

the data. It should be stressed, however, that the differences

between the models are rather small, and a definite conclusion

cannot be drawn at this point. To better discriminate between

different models, additional independent data should be obtained.

This could be, for example, the time‐dependent concentrations of the
unbound enzyme E and the enzyme in the blocked state ( )EC b.

Comparison of the fits to this data set using the new model

proposed here with the fits using the previously published model

(Figure 5, Supporting Information Figure S2) shows a much better

fit with the new model. The model matches the data completely in

the lower substrate concentration range. There is a small

discrepancy between the data and the fit near the maximum of

the activity burst at the highest substrate concentrations, which

can be attributed to the simplicity of the model, or to the limited

temporal resolution of the experimental method. A relevant

simplification may be, for example, the assumption of only one

type of the inactive bound state ( )EC b, while in reality it is plausible

that the hydrolysis by a bound enzyme may not be possible for

many reasons, as discussed below.
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The reason for the success of the proposed model can be linked to

the absence of the fixed chain length n to be hydrolyzed. For

the activity burst to appear, the blocked state ( )EC b is necessary. In the

published model (Praestgaard et al., 2011), the state ECN‐n plays the

role of the blocked state, because the enzyme in this state cannot

hydrolyze anymore, and can only detach from the substrate. Because

this blocked state is reached after a fixed number n of hydrolysis steps,

the activity burst exhibits an abrupt fall‐off. In the proposed model the

blocked state can be reached after any hydrolysis step, resulting in a

smooth activity burst, without a sharp fall‐off and with a prolonged

approach toward the steady state (Supporting Information Figure S2).

Interestingly, the slower approach toward the steady state means that

the model matches the data well even at longer times, and this without

including enzyme inactivation, as was necessary with the published

model (Praestgaard et al., 2011).

In the models of Type A (Ab, Aa), the free enzyme binds and

enters first the active state EC. The blocked state ( )EC b is entered

only later, which, intuitively, lowers the population of the active

state, possibly resulting in the appearance of the activity maximum.

In the models of Type B (Ba, Bb), the enzyme binds the substrate to

enter either the active or the blocked state. The appearance of the

activity maxima is less intuitive here, but may be understood in this

way: if the rate of entering the active state k1 is higher than the rate

of entering the blocked state k6, the active state may initially reach a

high level, before it is lowered again while the blocked state is being

populated and the concentrations of all three enzyme states tend to a

steady state.

The difference between the models Ab and Aa is only in the way

the blocked state is left: back to the active state on the substrate (Ab)

or dissociate from the substrate (Aa). This difference does not seem

to be particularly relevant for the overall kinetics, resulting in only

small differences in the fits with the two models. The same reasoning

applies to the difference between the models Ba and Bb.

The abstract models naturally do not contain any information about

the physical nature of the postulated blocked state. In models Aa and

Ab, the blocked state may represent a situation when the hydrolyzing

enzyme encounters an obstacle, such as another substrate structure,

another bound enzyme, or the currently hydrolyzed cellulose chain may

lead deeper into the substrate where it cannot be followed by the

enzyme anymore. Evidence suggesting such mechanism of temporary

blocking the hydrolysis has been presented before (Igarashi et al., 2011;

Jalak & Väljamäe, 2010; Kurašin & Väljamäe, 2011; Väljamäe, Sild,

Pettersson, & Johansson, 1998; Yang, Willies, & Wyman, 2006). In

models Ba and Bb, the blocked state may additionally be any binding

state where the enzyme is not hydrolyzing (yet), for example, because it

has not threaded a cellulose chain (yet), or because it is searching on the

substrate surface for the active site. Explanations of experiments based

on this mechanism have appeared in several published works (Fox et al.,

2012; Maurer, Bedbrook, & Radke, 2012; Shang et al., 2013).

The application of the proposed model to the data from

Praestgaard et al. (2011) yielded kinetic parameters that are compar-

able to those provided by the published model (Table 1) and agree with

some other published data. There are, however, numerous reports of

generally higher rate constants and lower processivity values. For

example, the detachment rate constant k2 of ~ −0.003 s 1 agrees with

values published elsewhere (Kont, Kari, Borch, Westh, & Väljamäe,

2016; Kurašin & Väljamäe, 2011), but significantly higher values (0.01–

0.02 −s 1) have also been reported (Cruys‐Bagger et al., 2012; Cruys‐
Bagger, Tatsumi, et al., 2013). The hydrolysis rate constant k7 (kcat) of

~ −0.5 s 1 is lower than most reported values, reaching up to

~ −7 s 1(Igarashi et al., 2011). The processivity value of ~n 170 from the

proposed model is somewhat larger than the value of 98 from the

model by Praestgaard et al. (2011) but considerably larger than typical

experimental processivities, lying in the range of 10–20 (Cruys‐Bagger
et al., 2012; Kurašin & Väljamäe, 2011; Nill, Karuna, & Jeoh, 2018).

However, it is important to note that the experimentally determined

TABLE 1 The parameters obtained from the fits of the models Ab, Ba, Aa, and Bb to the data in Figure 5

Parameters Units Ab Ba Aa Bb Published

∕′ =k k c1 1 0 μ− −s M1 1 0.00063 0.00040 0.00064 0.00043 0.0004 (k1)

k2
−s 1 0.0020 0.0032 0.0027 0.0035 0.0034 (k3)

k3
−s 1 0.00081 0 0.00081 0

k4
−s 1 0.0010 0.00063 0 0

k5
−s 1 0 0 0.0010 0.0010 0.0034 (k3)

k6 μ− −s M1 1 0 0.59k1 0 0.48k1

k7
−s 1 0.49 0.78 0.57a 0.84 0.55 (k2)

tp s 357 314 286 370 177

=n t kp 7 1 175 245 163a 311 98 ( =n 150)

pb – 0.29 0 0.23 0 0.40

∕ → ∞y y c,2ss T 0 – 0.57 0.36 0.65 0.44 ~0.6

Note. Explanation of the additional parameters: tp is the average duration of one processive run: ∕= ( + )t k k1p 2 3 in the Ab and Aa models and ∕=t k1p 2 in

the Ba and Bb models; =n t kp 7 is the processivity (the average number of hydrolyzed units in one processive run; ∕ ∕= ( − ( ( + )) )n k k k k k1 n
2 3 2 2 3 in the

published model; see Supplementary Information); pb is the probability of reaching the blocked state before dissociating;

∕ ∕= ( ( + )) = ( ( + ))p k k k k k kn n
b 2 2 3 cat cat off in the published model; ∕= ( + )p k k kb 3 2 3 in the proposed models Aa and Ab, and =p 0b in the models Ba and Bb;

∕y y2ss T is the fraction of the enzyme in the active state (EC) in the limit of infinite substrate concentration ( → ∞c0 ). The symbols in parentheses in the last

column are the parameter names used in the corresponding publication (Praestgaard et al., 2011).
aexcluding the lowest three substrate concentrations.
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processivity, usually termed the ‘apparent processivity,’ is typically

smaller than the ‘intrinsic processivity’ defined on basis of a theoretical

model using rate constants. An intrinsic processivity of several hundred

has been estimated before Kurašin and Väljamäe (2011).

To see how the proposed model performs on data with a faster

initial kinetics, we have also analyzed similar data of the hydrolysis of

regenerated amorphous cellulose by Cel7A, but measured with a

different technique (Cruys‐Bagger et al., 2012). In this case, the fits

by the published model (which are already of good quality) are

comparable to the fits by the proposed model (Figure 6). The data set

consists of data covering a narrower substrate concentration range,

contains less data points and is more noisy than the data analyzed

above (Figure 5), making it more difficult to discriminate between

alternative models on basis of the fit quality and resulting in larger

uncertainty of the fit parameters. The fit parameters of the

two models are compared in Table 2. The hydrolysis burst in this

data set occurs on considerably shorter time scales than in the data

in Figure 5 and Supporting Information Figure S2. Consequently, the

hydrolysis rate constant =k 1.77 – −2.5 s 1 is larger, approaching

the values determined by other studies (Igarashi et al., 2011). The

processivity of ~10 is also closer to the experimentally determined

processivity (Kurašin & Väljamäe, 2011).

The two data sets analyzed in this study were obtained using

different experimental methods. The overall slower kinetics measured

with the calorimetric method could be related to the instrument time

constant of 15 s, as opposed to the time constant of the biosensor of

1 s. However, it seems unlikely that this methodological difference

alone could provide the full explanation for the observed differences in

the hydrolysis kinetics in the two data sets.

4.2 | Steady state

The experimental data suggest that after the initial burst the reaction

reaches a pseudo‐steady state, where the hydrolysis rate changes

only weakly (Figure 5). The steady‐state concentration of the active

species EC can be obtained from the fits shown in Figure 5, and its

dependence on the substrate concentration c0 can be fitted to a

hyperbolic function (Equations (7) and (8)), see Figure 7. Although the

fits of the two models (Aa and Ab) to the kinetic data (Figure 5) are of

equal quality, the model Ab produces a somewhat better fit to the

steady‐state data than model Aa (Figure 7). For this reason, model Ab

is slightly more preferred over model Aa.

4.3 | Substrate affinity, processivity, and
hydrolysis rate

It has been suggested that the affinity of the enzyme to the cellulose

substrate may have nontrivial influence on the overall hydrolysis rate

(Nakamura et al., 2014). While sufficiently high affinity is necessary

for high processivity and thus efficient hydrolysis (no time is wasted

by repeated enzyme detachment and rebinding), too high affinity may

not only increase the processivity but at the same time prevent

detachment and reuse of inactively bound enzyme molecules. This

would point to an existence of optimum affinity, where the steady‐
state hydrolysis rate reaches its maximum.

Several experiments have confirmed this link between the affinity

and the steady‐state hydrolysis rate. For example, a W38A mutant of

Cel7A exhibits a lower substrate affinity and lower processivity but a

higher steady‐state hydrolysis rate (Kari et al., 2014). Similar effect

has been reported in other studies (Nakamura et al., 2014; Sørensen

et al., 2017), and also for another enzyme, the chitinase (Horn

et al., 2006).

This behavior also follows directly from the proposed model, as

explained in this section. The enzyme affinity for the substrate is

determined by the attachment and detachment rate constants, the

overall hydrolysis rate by the amount of the bound enzyme in the

active state EC. In the proposed model, there are two types of

detachment rate constants: the rate constant for the active enzyme

EC detachment from the substrate (k2), and the rate constant of

leaving the blocked state ( )EC b (k4 in the model Ab and k5 in model

Aa). These rates have an opposite effect on the steady‐state level of

F IGURE 6 The experimental rate of cellobiose production

(points) from Cruys‐Bagger et al. (2012) together with fits (curves) to
the proposed model Ab. Three substrate concentration were used:
0.25, 1, and 2 g/L [Color figure can be viewed at

wileyonlinelibrary.com]

TABLE 2 The parameters obtained from the fits of the models Ab
and Aa to the data in Figure 6

Parameters Units Ab Aa Published

∕′ =k k c1 1 0
− −s g l1 1 0.12 0.097 0.06 (kon)

k2
−s 1 × −2.6 10 12 0.0074 0.022 (koff)

k3
−s 1 0.18 0.19

k4
−s 1 0.027 0

k5
−s 1 0 0.028 0.022 (koff)

k6
− −s g l1 1 0 0

k7
−s 1 1.7 2.5 4 (kcat)

tp s 5.6 5.0 3.1

=n t kp 7 1 9.5 12.5 12.5 ( =n 13)

pb – 1.0 0.96 0.93

∕ → ∞y y c,2ss T 0 – 0.13 0.125 ~0.1

Note: The last column contains the values from the original publication

(Cruys‐Bagger et al., 2012). The parameters tp, n, pb and ∕y y2ss T are

explained in the legend to Table 1.
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the active species EC (see Equations (7) and (8)): higher concentra-

tion of EC, and therefore higher hydrolysis rate, can be achieved

either by decreasing the rate constant k2 or by increasing the rate

constant k4 (or k5).

Although these two rate constants are in general different from

each other, it is reasonable to assume that they are not independent

from each other, as they likely involve breaking of similar interactions

(unthreading of the cellulose chain, or, less specifically, disrupting

hydrophobic Trp‐pyranose interactions). Any modification of the

enzyme (mutation) is, therefore, likely to change both rate constants

in the same way: both will either increase or decrease. This relationship

can be modeled by assuming that the two rate constants change

proportionally with any enzyme modification, that is, their values will

remain in a fixed relation: =k ak4 2 (or =k ak5 2). It can then be easily

shown (from Equations (7) and (8)) that under this assumption there is

an optimal rate ∕=k k k a2 1 3 for which the steady‐state concentration

of the active enzyme EC, and therefore the hydrolytic activity, reaches

its maximum (Figure 8). Lower k2 than this optimum decreases the

concentration of EC in favor of the blocked state ( )EC b, higher k2 leads

to higher concentration of unbound enzyme E. The proposed model

thus offers an explanation for the experimentally observed lower

processivity and lower substrate affinity accompanied by a higher

steady‐state hydrolysis rate.

4.4 | Glucose production

Using the parameters of the fits to model Ab shown in Figure 5 and

the solution of the modified model that includes glucose production

in the first cut in the processive run (Figure 4), it is possible to

calculate the time‐dependent production rate of glucose (Figure 9).

Similarly to the overall hydrolysis rate, the glucose production rate

exhibits an initial burst at higher substrate concentrations. This burst,

however, peaks at very short times (between 5 and 15 s in the case

here), and the glucose production rate reaches a quasi‐steady state

much faster than the overall hydrolysis rate. In the data shown in

Figures 5 and 9, this time coincides approximately with the maximum

F IGURE 7 The relative concentrations ∕y yiss T of the three enzyme species, E ( ∕y y1ss T), EC ( ∕y y2ss T), and ( )EC b ( ∕y y3ss T) in the steady state. The
relative concentration of the active species EC is fitted to the hyperbolic dependence on the substrate concentration c0 (Equations (7) and (8));
left: model Ab and right: model Aa (yT is the total enzyme concentration) [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 8 The maximum of hydrolytic activity for correlated rate

constants k2 and k4. The hydrolytic activity is proportional to the steady‐
state concentration y2ss of the active state EC. The following rate
constants in the model Ab were used: =k k4 2, = −k 0.004 s1

1 (this

corresponds approximately to the substrate concentration 11.2μM), and

= −k 0.00081 s3
1 [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 9 The glucose production rate derived from the
proposed model Ab. The glucose production rate curves are
calculated from the parameters of the fits shown in Figure 5 using
the expression ̇ ′( ) = ( )c t k y tglu 7 2 , where ′ ( )y t2 is the concentration of

the actively bound enzyme before performing the first cut in the
processive run [Color figure can be viewed at wileyonlinelibrary.com]
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of the overall hydrolysis rate, several hundreds of seconds from the

start of the experiment.

At lower substrate concentrations, the glucose production rate

reaches the steady state also within a few seconds, but without a

clear maximum. This kind of time‐dependent evolution of cellobiose

and glucose production rates has been reported for TrCel7B (Murphy

et al., 2012). Although this enzyme is classified as endoglucanase, it

has been shown to exhibit a certain degree of processivity.

The glucose in this model is produced nonprocessively, since at

most one glucose molecule is produced after the enzyme molecule

reaches the active state. Nevertheless, a burst of glucose production

can appear after the mixing of the free enzyme and the substrate at a

sufficiently high substrate concentration (Figure 9). This shows that in

the proposed model processivity is not the essential property needed

for the appearance of the hydrolysis burst. The origin of the burst can

be attributed to the existence of a third, inactive, state (here ( )EC b)

that becomes populated slower than the active state (EC), regardless

of whether the enzymatic hydrolysis is processive or not.

4.5 | Second activity burst upon enzyme addition

It has been shown several times that addition of enzyme to the reaction

mixture at a later time, after the initial hydrolysis burst has decayed,

leads to a similar activity burst (Cruys‐Bagger et al., 2012; Eriksson,

Karlsson, & Tjerneld, 2002; Murphy, Borch, McFarland, Bohlin, &

Westh, 2010, 2012; Praestgaard et al., 2011). This has been interpreted

as an evidence that the initial decrease of enzyme activity is not

primarily related to the changes of the substrate (structure, reactivity,

or density of accessible binding sites) but to the amount of the active

enzyme (Yang et al., 2006). As the hydrolysis progresses, the amount of

the active enzyme decreases at the expense of reversibly or

permanently inactivated enzyme. The proposed model predicts an

activity burst qualitatively similar to that observed experimentally

(Figure 10). This means that the existence of the nonproductive bound

state ( )EC b is sufficient for the emergence of the second activity burst

after enzyme addition, without the need to assume irreversible enzyme

inactivation.

5 | CONCLUSION

The proposed model of the initial cellulose hydrolysis achieves an

equally good (Figure 6) or a much better (Figure 5, Supporting

Information Figure S2) agreement with the experimental data than

the published model, while maintaining a similar complexity. Notably,

the new model eliminates the two shortcomings of the previous

model by implicitly incorporating a nonconstant maximum length of a

processive hydrolysis run. It should be stressed that the good match

of the model with the data is not invoked by artificially including

additional assumptions, such as irreversible enzyme inactivation. The

simple analytical solution of the model is a major advantage for both

the theoretical analysis of the model properties and the practical use

of the model in fitting experimental data.

The time‐resolved model is complemented by a steady‐state
theory, which is useful to describe the pseudo‐steady‐state reached

some time after the initial activity burst. Importantly, the analysis of

the expressions describing the steady state reveals that an optimal

enzyme‐substrate affinity exists, at which the pseudo‐steady‐state
rate of hydrolysis is maximized. The model thus provides theoretical

basis for the previous experimental findings that fine‐tuning of the

enzyme association and dissociation rates by enzyme engineering can

improve the performance of cellulases, despite decreasing their

substrate affinity and their processivity (Kari et al., 2014).

Interestingly, the modeling of the glucose production rate in the first

hydrolysis step indicates that in the proposed model processivity is not a

necessary prerequisite for the appearance of the activity burst. We

furthermore showed that the proposed model reproduces the appear-

ance of a second activity burst following the addition of more enzyme.

The proposed model reproduces several different aspects of

hydrolysis by TrCel7A that were previously observed experimentally,

and therefore has the potential to deepen the general understanding

of processive hydrolysis by cellulases. The central limiting factor

appears to be the blocked state. Its existence is supported by a range

of previous studies (Igarashi et al., 2011; Jalak & Väljamäe, 2010;

Kurašin & Väljamäe, 2011; Väljamäe et al., 1998; Yang et al., 2006).

Answering the questions regarding its nature, the possibility of its

F IGURE 10 The second activity burst upon enzyme addition as observed experimentally (Praestgaard et al., 2011; left) and as predicted by

model Ab (right) [Color figure can be viewed at wileyonlinelibrary.com]
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reduction or elimination, its dependence on the substrate origin and

pretreatment, etc., will, therefore, open new ways for enhancing

cellulose hydrolysis.

The presented results are furthermore expected to contribute to

our understanding of the kinetics of other processive hydrolytic

enzymes, such as chitinases and amylases, and, more generally, other

enzymes processively interacting with biopolymers, for example,

processive proteases (Pickart & Cohen, 2004), DNA motor enzymes,

and motor proteins processively translocating along cytoskeletal

filaments (Kinbara & Aida, 2005).
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