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ABSTRACT

The emergence of massively parallel sequencing
technology has revolutionized microbial profiling,
allowing the unprecedented comparison of micro-
bial diversity across time and space in a wide
range of host-associated and environmental eco-
systems. Although the high-throughput nature of
such methods enables the detection of low-
frequency bacteria, these advances come at the
cost of sequencing read length, limiting the phylo-
genetic resolution possible by current methods.
Here, we present a generic approach for integrating
short reads from large genomic regions, thus
enabling phylogenetic resolution far exceeding
current methods. The approach is based on a
mapping to a statistical model that is later solved
as a constrained optimization problem. We demon-
strate the utility of this method by analyzing human
saliva and Drosophila samples, using Illumina
single-end sequencing of a 750 bp amplicon of the
16S rRNA gene. Phylogenetic resolution is signifi-
cantly extended while reducing the number of
falsely detected bacteria, as compared with
standard single-region Roche 454 Pyrosequencing.
Our approach can be seamlessly applied to simul-
taneous sequencing of multiple genes providing a
higher resolution view of the composition and
activity of complex microbial communities.

INTRODUCTION

Microorganisms comprise the majority of living organisms
on our planet, both in terms of biomass (1) and species
diversity [estimated between 107 and 109 species (2)].
Elucidating the composition of microbial communities is
important for understanding ecological systems in nature
as well as for pathological scenarios in the clinic.
Owing to the difficulty of culturing microbial species

under laboratory conditions (2–4), comprehensive charac-
terization of community structure often relies on
conserved marker genes, such as the 16S ribosomal
RNA gene (16S). Current methods focus on sequencing
a few variable 16S regions flanked by highly conserved
domains enabling selective isolation of the relevant
regions using ‘universal’ polymerase chain reaction
(PCR) primers (Figure 1A). Millions of 16S sequences
have been deposited in the past decade into databases
such as Greengenes (5), SILVA (6) and RDP (7), which
integrate data from a large number of projects. These, in
turn, allow phylogenetic analysis and microbial profiling,
namely the identification of bacteria in a sample and their
frequency.
The recent introduction of Massively Parallel Sequencing

(MPS), also commonly known as Next-Generation
Sequencing (8,9), and its combination with DNA barcoding
for sample multiplexing (10) have greatly increased the
yield of bacterial community analysis [reviewed in (11)].
These improvements have enabled large-scale studies
involving hundreds of different individuals (12) or time
points (13). In a typical MPS-based experiment, a short
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● short amplicon (~400-500 nt).

● single end long read (~400nt).

● throughput: 1e4 reads.

● filtering chimeric and low quality reads.

● group reads.

● score > threshold.

● reconstruct from counting.

● short amplicon (~400-500 nt).

● paired end reads (~100-150nt each).

● throughput: 1e6 reads.
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● filtering chimeric and low quality reads.

● reconstruct from algebraic representation.

● long amplicon

● single end short reads (~50-100nt).

● throughput: 1e6 reads.

our method: Illumina short reads
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Figure 1. Overview of COMPASS for 16S rRNA microbial profiling. (A) Local conservation along the 16S rRNA gene using E. coli 16S sequence as
reference: The fraction of bacterial database sequences matching the E. coli 15-mer sequence is shown as function of the position along the gene.
Commonly used variable regions are marked by blue arrows. Data are based on the Greengenes database (5) containing 455 055 sequences. (B)
Integrating evidence from a larger region increases species resolution. We used the highly conserved sequence E339 to test the gain in resolution
achieved by extending the amplicon. We aligned the �400 000 sequences that contain this primer (out of the full 16S database of �450 000
sequences), and counted the number of unique sequences as a function of the amplicon length (left). For example, using the first 200 nt results
in only �100 000 unique sequences. We can then count how many (full length) sequences share the same first 200 bp and calculate different statistics,
e.g. the average or median groups’ sizes etc. Quantiles of the group size distribution versus the region length are presented in the right panel, showing
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segment covering one or two variable regions of the 16S is
amplified and sequenced. The length of the segment is�300
or 400 bases (out of the entire �1500 bases of the 16S gene)
depending on the use of Illumina paired-end or Roche 454
machines, respectively.

The identity and frequency of bacteria in a sample are
determined by assigning reads to known 16S database se-
quences via sequence homology such as RDP classifica-
tion (14), or by clustering reads with similarity >97–99%
(15). Both database assignment and clustering are aimed
at reducing the effect of false-positive sequences due to
sample preparation (PCR-based) errors and MPS read
errors. We refer to profiling based on MPS of one or
two variable regions followed by read mapping or cluster-
ing as the ‘Single Region Framework’ (SRF).

The large number of MPS reads enables an accurate
estimate of species abundance and detection of bacteria
present at low frequencies, compared with classical
Sanger sequencing. However, the reliance on one or two
short segments of the 16S limits the phylogenetic reso-
lution (i.e. the ability to distinguish between closely
related bacteria), since many different bacteria may
share an identical sequence over these short segments.
For example, the nonpathogenic Escherichia fergusonii
str. ATCC 35469 and the uropathogenic Escherichia coli
str. UTI89 share an almost identical 16S sequence, with
<0.5% base pair difference, a change too subtle to be
reliably detected by SRF.

Distinguishing between highly similar 16S sequences
therefore requires analyzing a large 16S region.
Figure 1B demonstrates how the reliance on a partial
sequence of the 16S reduces the number of uniquely
identifiable sequences, thus leading to underestimation
of the true bacterial diversity. This concern is even
more important given the fact that the 16S gene itself
is highly conserved (16), and may underestimate the
total genomic and phylogenetic differences between
bacteria (17).

Several methods have been recently suggested for ad-
dressing the limitation of phylogenetic resolution (18–20).
Fan et al. showed that stringent de novo assembly of 16S
derived reads from Roche 454 metagenomic sequencing
overcomes PCR amplification bias and detects bacteria
up to the genus level while maintaining a low level of
chimera formation. Alternatively, Miller et al. suggested
EMIRGE, an iterative read mapping approach for short
paired-end Illumina reads. By probabilistic mapping of
short reads to a candidate set of 16S sequences and
applying an expectation maximization algorithm,
EMIRGE has been shown to identify sequences present
in mixtures containing tens of species with genus level
resolution. However, both methods are currently limited
to analyzing a contiguous region of DNA. In (20), both

EMIRGE and an alternative approach, modQIIME, were
applied to analyze a 16S region of length 700–1000 bp. The
modQIIME approach uses the taxonomical assignment of
each paired-end short fragment read to identify bacteria
present in a mixture up to the species level. Recall and
precision values of EMIRGE and modQIIME varied
both across tested data sets and also depending on
whether genus or sequence level profiling was required.
An alternative approach for integrating whole genome
metagenomic reads is applied by PhylOTU (21) that
maps reads into a phylogenetic tree and estimates
pairwise distances between OTUs. While this approach
enables downstream sample analysis such as unifrac
(22), it does not provide direct classification of bacteria
in the sample.
In this article, we present Convex Optimization for

Microbial Profiling by Aggregating Short Sequence
reads (COMPASS)—a method for integrating MPS
short reads from a large genomic region or multiple
regions, enabling high-resolution microbial profiling (see
Figure 1C). Unlike de novo assembly methods, we rely on
a database of bacterial sequences and assume that se-
quences of most bacteria in the mixture are represented
in this database. Our general formulation of microbial
profiling as a linear optimization problem (Figure 2)
enables us to expand the analyzed region without the
need of longer reads. Each of the millions of reads
measured by MPS, together with all ‘absent’ reads that
were not found, set constraints that enable ‘zooming in’
on the correct species present in the mixture. Theoretical
analysis of COMPASS provides sufficient conditions on
performance in the limit of infinite number of reads, and
bounds on reconstruction error in case of finite reads (23).
By design, COMPASS is completely agnostic to chimeric
reads, and is robust to read errors. Analyzing a long
region reduces the number of false positive sequences
since differences among sequences become more signifi-
cant, hence the probability that read errors would cause
false-positive detection is decreased. In addition, while this
article presents an application of COMPASS to the 16S
case, it can be seamlessly extended to simultaneous
sequencing of multiple and not necessarily overlapping
regions of a number of genomic regions, provided a rich
enough database of known sequences is available.
We study COMPASS’s performance using extensive

simulations, where we create in silico mixtures, simulate
sequence reads and compare COMPASS’s profiling to the
‘true’ mixture. We test the performance of COMPASS
under different conditions, varying parameters such as
the mixture diversity (i.e. the number and frequencies of
species), number of reads and read length. We show
accurate performance of COMPASS under realistic scen-
arios with resolution far exceeding SRF, simply due to the

Figure 1. Continued
that increasing region length reduces group sizes and enhances resolution. However, even at 1000 bp, only 80% of sequences are unique, while �20%
of the sequences cannot be uniquely resolved. (C) Schematic description of two frameworks for 16S sequencing. In the SRF, Roche 454 and Illumina
paired-end sequencing are applied to a single variable region of length of �400 bp. Bacterial profiling is based on counting the unique reads aligned
to the specific database sequences. COMPASS integrates short reads originating from a larger amplicon (1200 bp of the 16S in this example).
Profiling is performed by mapping to a high-dimensional linear regression problem.
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extended sequenced region. A comparison with EMIRGE
is also provided, displaying the significant advantages of
COMPASS.
Next we describe an application of COMPASS to two

biological systems: the Drosophila gut and eggs, and
human saliva. These different biological habitats exhibit
different bacterial communities, with different species
and complexities. We applied COMPASS with Illumina
single-end sequencing of a 750 bp amplicon from the 16S
gene. For comparison, the same samples were also
sequenced by SRF via Roche 454 pyrosequencing, dis-
playing two advantages of COMPASS over SRF. First,
while high concordance is shown between COMPASS
and SRF at the latter’s finest phylogenetic resolution,
COMPASS further increases resolution, allowing
accurate higher resolution detection. Second, the
number of falsely detected bacteria was greatly reduced
compared with SRF, displaying COMPASS’s robustness
to experimental errors.
Together, our simulations and experimental results

suggest that COMPASS may serve as an important tool
in analyzing and designing MPS experiments for microbial
profiling, and enable more accurate assessment of bacter-
ial diversity and population composition.

MATERIALS AND METHODS

COMPASS—a high-resolution microbial profiling
framework

We present COMPASS in its general form and describe its
implementation to the 16S case. The COMPASS approach
comprises three steps illustrated in Figure 2:

(i) Preparation of a database of sequences from
predefined regions.

(ii) DNA Extraction, PCR amplification of the
predefined regions, fractionation and sequencing
using MPS.

(iii) Computational reconstruction of the identity and
frequency of bacteria in the sample.

(i) Preparation of a database of sequences from
predefined regions
We use available sequence databases (e.g. RDP,
Greengenes, etc.) to compile an ad hoc database of
known sequences from regions to be sequenced. These
may be multiple (consecutive or nonconsecutive) regions
of the 16S or multiple regions from several genes. Since
COMPASS can only detect bacterial sequences present in

all 16S bacterial sequences
 in database

Bacterial 16S database
(N sequences)

Input

A x y

(i) (ii)

(iii)
Output

ATGGGCGTAGCATGCAGATGGGCGTAGCATGCAG

Illumina reads
(length k nt)

frequency of bacterial
16S sequence in mix

# of occurrences of k-mer i
in sequence j

all possible k-mers

sequence j =
k-mer i k-mer h

j

h 1

1i

MXN

NX1

MX1

=

=

Aij = 

# of occurrences of k-mer i
in Illumina reads

Figure 2. Mathematical formulation of COMPASS. Illustration of COMPASS implementation for the 16S gene. COMPASS receives two inputs:
(i) a database of 16S sequences of the relevant amplified region, and (ii) MPS short reads of length k. (iii) COMPASS’s output is the identity and
frequency of the sample’s bacteria. Reconstruction is obtained by solving the set of linear equations Ax=y. Each column in the matrix A corres-
ponds to one of the N sequences in the database. Each one of the M rows of A corresponds to a specific k-mer appearing in the database, where k is
the MPS read length. The matrix elements Aij are equal to the number occurrences of k-mer i in sequence j. The reads’ vector y counts the number of
reads corresponding to each k-mer. The solution vector x (once normalized such that its sum equals 1) represents the frequency of each of the N
database bacteria; since M>N, x is obtained as the optimal solution of a regression problem.
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this ad hoc database, the leading principle in choosing the
regions is the wealth of the databases and high sequence
diversity at these regions. More specifically, since step
(ii) involves PCR amplification of the predefined regions
it should maximize the number of unique sequences over
the amplicon. For this reason, the current application of
COMPASS to the 16S used highly universal primers pre-
dicted to amplify �330 000 sequences from the original
16S database used (72% of sequences in the original
database, described in a following section), corresponding
to �231 000 unique sequences of �750 bp (covering four
variable regions V3–V6, see Figure 1A). In comparison,
primer pairs that amplify the V3 region (24) would
amplify �380 000 sequences from the same database, but
would result in only 95 000 unique sequences. Also, on the
other length extreme, although a single primer pair
designed to amplify the whole 16S gene would generate
a longer amplicon, it may suffer from the limitation of
potentially amplifying a smaller fraction of bacteria (e.g.
the primers E8-E1492 (25) amplify <10% of the sequences
in the database), and hence, we preferred the >750 bp long
region.

(ii) DNA Extraction, PCR amplification of predefined
regions and sequencing using MPS
This step follows standard protocols and yields a set of
reads that originate from the amplified regions. In the
current application of COMPASS, we used Illumina
single-end reads of length 100 nt to sequence a 750 bp
region. Specific issues regarding amplification, fraction-
ation and Illumina sequencing appear in the experimental
procedures section below.

(iii) Computational reconstruction of the identity and
frequency of bacteria in the sample
Reconstruction is based on finding ‘entries’ in the ad hoc
database compiled in step (i) that best ‘explain’ sequencing
output in step (ii). Since reads are much shorter than the
amplified region and contain errors, they often align to
multiple sequences in the database. However, each read
does provide evidence in support of the existence of the
‘correct’ bacteria in a probabilistic way. The computa-
tional reconstruction step (Figure 2) integrates the statis-
tical evidence from all reads to infer the frequency of each
sequence in the database.

For clarity purposes, we first present the naive mathem-
atical formulation ignoring practical issues such as
sequencing read errors and computational implementa-
tion, and address them later.

Definitions
We use a sequence database S of N bacterial sequences Sj,
j=1, . . . ,N [see step (i)] and a set of R MPS reads of
length k [see step (ii)]. Our goal is to use S and the R
reads to compute a solution vector x=(x1, . . . ,xN),
where xj represents the frequency of the j-th database
sequence in the mixture.

The matrix A
We create a list of all unique k-mers (i.e. sequences of
length k) that appear in S, and record the sequences to

which each k-mer belongs. This information can be repre-
sented in a matrix A, where each row corresponds to a
specific k-mer and each column corresponds to one of the
N database sequences (see Figure 2). The entry AIj repre-
sents number of occurrences of the i-th k-mer, in sequence
j. The number of rows in A, denoted M, is bounded by
NxL where L is the typical length of the sequences in the
database (L need not be equal for all bacteria).

The measurement vector y
Assuming the (unknown) bacteria in the mixture appear in
the database and that no read errors occur, each of the R
reads correspond to one of the rows in A. We, therefore,
denote sequencing results by the reads vector y, where yi
corresponds to the number of reads of k-mer i. The vector
y is sparse, namely most of its entries are zero, yet such
zero entries may be informative. Assuming high enough
coverage, the absence of reads ‘characterizing’ specific
bacteria means that these bacteria are less likely to be
part of the mixture.

Reconstruction
To find x, we aim to solve the set of linear equations
Ax= y under the constraint that the entries of x are
nonnegative, and later normalize x to have sum to 1.
Since this is an overdetermined system, namely M>>N,
we typically cannot satisfy this equation precisely and
instead we solve the following regression problem:

minx0 k Ax0 � y k2 such that x0i � 0,i ¼ 1,:::,N ð1Þ

where k k2 corresponds to the Euclidean norm. This for-
mulation implicitly assumes that reads are sampled uni-
formly from the relevant amplicon. In all natural
scenarios, only a small minority of the N sequences have
nonzero frequency, and hence x is a sparse vector.
A short overview of two theoretical results of

COMPASS appear in Supplementary Methods S1, and
described in detail in (23).
When dealing with a large database S, the matrix A

becomes too large to compute and one cannot solve this
regression problem in a straightforward manner. For
example, if N�106 and one sequences the whole 16S
gene of length �1500 bp, the number of rows in A is
�109. Another difficulty arises from read errors in which
case reads might not be mapped to any row in A and are
thus ‘lost’. We address these issues in the following two
sections.

Divide-and-conquer algorithm allowing scalability

To overcome the computational problems following the
huge size of A, we developed a divide-and-conquer algo-
rithm. Briefly, we randomly split the database S into
blocks of 1000 sequences and solve an optimization
problem of reduced size [Equation (1)] in each block sep-
arately using CVX, a package for specifying and solving
convex programs (26). We then collect all sequences whose
frequencies were found to be above a threshold of 0.1% in
all blocks (hence promoting a sparse solution); these form
a reduced problem S’, for which we repeat the procedure.
These iterations, which keep reducing the database size,
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are performed until the number of sequences in the
reduced database falls below the block size. We then
solve the optimization problem again and normalize the
solution to obtain the final sequence frequencies.
Since this divide-and-conquer approach provides an

approximation of the correct solution, low-frequency se-
quences in the mixture may not be selected for the next
iteration due to the random partitioning. To increase ro-
bustness with respect to detection of such low-frequency
bacteria, random splitting is repeated 10 times when size
of the database S’ is <150 000 sequences. Sequences whose
average frequency over these 10 iterations is >0.1% are
kept.
The threshold of 0.1% sets a bound on the lowest fre-

quency that is still considered ‘interesting’. In case lower
frequencies are of interest, this threshold can be reduced
together with increasing the block size. For example, in
the ‘Results’ section, we describe a case where the thresh-
old was set to 0.025% and the block size to 4000, so as to
collect low abundant bacteria. Setting a lower threshold
and increasing the block size increases run time as dis-
cussed in the Section Time and memory requirements

Incorporating read errors using COMPASS

Reads may contain errors of several types, depending on
sequencing technology. Such errors may hamper profiling
of COMPASS in two ways. First, reads that ‘originate’
from one bacterium and are subject to errors may seem
like ‘legitimate’ k-mers of a different bacterium. Second, in
the more probable scenario, errors cause reads not to be
mapped to any row in A at all, resulting in loss of infor-
mation. The former case cannot be recovered since such
reads appear errorless. However, since the total number of
reads is large, read errors that happen to create ‘legitimate’
k-mers are negligible. In the more common scenario, some
reads simply do not match any k-mer and we need to
devise a way to make use of them (note that chimeric
reads are always automatically discarded as they simply
never match any row in A).
Assuming the sequencing device error profile is known,

it is straightforward to integrate read errors into the set
of linear equations (1), by adding rows to A corresponding
to possible additional k-mers. This, however, greatly in-
creases (the already huge) size of A, hence further
increasing COMPASS’s computational complexity. We
therefore applied the following approximation: whenever
a read is not mapped to any k-mer we map it to its nearest
possible rows in A, namely all k-mers with Hamming
distance 1, and modify the vector y accordingly. This ap-
proximation effectively uses the information obtained
from reads with up to a single base substitution error,
which would otherwise be lost. The effect of applying
this procedure is shown in Supplementary Figure S8.
Given the limited effect of read errors, correction for
unmapped reads may be ignored, thus greatly decreasing
running times, without significant loss in performance.

Measuring performance using in silico simulations

Reconstruction quality depends both on correct sequence
prediction and on an accurate frequency estimate. Several

measures of similarity between microbial profiles based
on species similarity (22) or combined species similarity
and frequency (27,28) have been previously suggested.
However, we opted for an alternative measure that
provides a more intuitive score while combing sequence
and frequency similarities. We defined ‘weighted recall’
and ‘weighted precision’, which quantify false-positive
and false-negative predictions, respectively. Intuitively,
‘weighted recall’ corresponds to the probability of cor-
rectly reconstructing a randomly selected sequence from
the original mixture, with respect to both sequence and
frequency. Similarly ‘weighted precision’ corresponds to
the probability that a randomly selected sequence from
the reconstructed set is correct in its sequence and
frequency.

The first step in calculating weighted recall and preci-
sion is to go over all reconstructed bacteria and find their
most similar bacteria, in terms of Hamming distance, in
the list of (known) mixture bacteria. We then mark each
such pair of bacteria as ‘valid’ if two conditions hold:
(i) both sequences should match completely; (ii) the
relative difference between the estimated frequency and
the true simulated frequency should be <20%, or the
absolute value of their difference should be <0.002.
Based on these definitions, weighted precision (recall) is
calculated by summing the frequencies of reconstructed
(simulated) bacteria that are ‘valid’. Since ‘valid’ recon-
struction is declared only for zero mismatches between
the correct and predicted bacteria, we refer to this case
as the ‘MM 0%’ case. We also calculated weighted recall
and weighted precision when up to 2% mismatches are
allowed, and refer to this case as ‘MM 2%’.

Comparison with other methods using in silico simulations

COMPASS was compared with single region sequencing
of the 16S variable region V4 and to EMIRGE (18) using
in silico simulations (see Supplementary Methods S2 for a
description).

16S-V4 comparison
In silico PCR was applied to select all sequences from the
Greengenes database (see details in Section Database and
in silico PCR) that are amplified by the 16S-V4 universal
primers F515 and R806 (29), resulting in 133,173 unique
sequences holding 352,983 amplified sequences. The
average region length was 292 bp, and we truncated all
sequences to a length of 280 bp (deleting the 98 sequences
whose length was shorter). The 16S-V4 method was
compared with COMPASS in our toy mixture example
and in our wide scale in silico simulations. In the toy
mixture example, we provided the phylogenetic resolution
given by the 16S-V4, namely the number of 16S sequences
that share the same 280 bp of the 16S-V4. In our in silico
simulations, we estimated weighted precision and recall of
16S-V4 results in the following way. For each bacterium in
the simulated mixture, we located the group of bacteria
that share the same sequence over V4 (the group can be of
size 1 in cases the V4 region uniquely identifies the original
bacterium). We then chose the ‘reconstructed’ sequence by
randomly selecting a bacterium from each group of each

e205 Nucleic Acids Research, 2013, Vol. 41, No. 22 PAGE 6 OF 19

less than 
,
higher than 
which 
-
which 
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1070/-/DC1
e
.
less than 
smaller than 
",0,0,2
",0,0,2
",0,0,2
",0,0,2
to 
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1070/-/DC1
-
to 


of the ‘true’ bacteria. We calculated weighted precision
and recall based on the sequence similarity criterion [cri-
terion (i)] described above for COMPASS, while ignoring
the frequency criterion [criterion (ii)]. Therefore, recon-
struction results correspond to an infinite number of error-
less reads of length 280 bp.

EMIRGE comparison
We used the EMIRGE amplicon software package for
single-end reads (emirge_amplicon.py, emirge_rena-
me_fasta.py) following the guidelines specified at the
EMIRGE Web site (https://github.com/csmiller/
EMIRGE). The same bacterial mixtures tested for
COMPASS were used to create fasta files with reads that
were supplied to EMIRGE. The only difference from
COMPASS regarding the input was that we did not
include read errors in the case of EMIRGE. The
EMIRGE output, namely the list of reconstructed bacteria
and their frequencies, were then used to calculate weighted
precision and recall in the same way as for COMPASS. In
addition, we calculated weighted precision and recall while
considering the reconstructed sequences [criterion (i)] and
ignoring EMIRGE reconstructed frequencies [criterion (ii)].

Time and memory requirements

Profiling time depends on the number of blocks that need
to be processed, which mostly depends on the database
size. Since COMPASS is completely parallelizable, we
get a linear speedup in the number of cores, e.g. running
using 10 cores would take half the time as running with
5 cores. Memory requirements per core are �3.5 GB
(either with or without applying read error correction).
We estimated profiling times using a Linux machine
with 6 cores having 37 GB of RAM in total. Computing
time increased significantly when read error correction
was applied. Detailed comparisons of COMPASS and
EMIRGE with respect to time and memory usage
appear in Supplementary Results SR.4.

COMPASS without correcting for read errors
A block of 1000 bacteria is solved in �6±1 s, where �4 s
are needed to create the matrix A for these 1000 bacteria,
and 2 s for solving the optimization problem over the
block (numbers refer to a single core of the Linux
machine mentioned above, running read length of
100 nt). The total profiling time was 1–2 h, using the
above 6 cores Linux machine and the Greengenes
database. Time was independent of the number of reads,
it slightly increased with increasing number of bacteria
and when decreasing the read length (the only case
where profiling took 3.5 h was for read length of 35 nt).

COMPASS with correcting for read errors
Correcting for read errors significantly increase
COMPASS run times. Our default conditions (a mixture
of 200 bacteria sequenced by 106 reads of length 100 nt)
takes �11 h to profile. Increasing read length to 200 nt or
increasing the number of bacteria to 1000 increased
running time to 24 and 35 h, respectively. Given the
limited effect of read errors, the correction procedure for
unmapped reads may be ignored, without significant loss

in performance (see Supplementary Figure S8). This
would dramatically reduce running times. However, in
case sequencing results contain a large number of read
errors and correction is required, one can simply use a
larger number of CPUs to reduce run time.

COMPASS—effect of block size
Detecting low abundance bacteria requires setting a lower
COMPASS threshold while increasing the block size.
When using a block of 4000 bacteria, it takes �17 s to
build the matrix, while solving the optimization problem
takes �3 s (memory did not vary significantly). Hence, in
case detection of lower abundance bacteria is needed, it
may be beneficial to apply faster k-mer counting algo-
rithms such as JELLYFISH (30).

Database and in silico PCR

The 16S sequences were downloaded from Greengenes
(current_prokMSA_unaligned.fasta, version dated 2010),
containing 455 055 unique 16S sequences. We aimed at se-
lecting primers that would maximize the number of unique
sequences over the amplicon. In silico PCR was used to
search for sequences that could possibly be amplified by a
given pair of primers, by identifying perfect match of the
primers within database sequences and calculating the
product’s length. Several combinations of known primers
[e.g. (24)] were tested and selected primers’ sequences and
amplicon length histogram appear in Supplementary
Figure S9. The reduced number of unique sequences with
respect to the full 16S database results from the fact that
not all sequences have the primers’ binding region and,
more importantly, that many potentially amplified se-
quences share the same sequence over the specific
amplicon (i.e. phylogenetic resolution is limited). The
primers selected for Illumina sequencing produce an
amplicon of �750 bp (covering variable regions V3–V6)
and correspond to 231 299 unique sequences. The primers
used for the Roche 454 sequencing produce an amplicon of
�450 bp (covering variable regions V3–V4) and correspond
to 176 674 unique sequences. We used the same forward
primer for Illumina and Roche 454 to allow further com-
parison between SRF and COMPASS. We refer to the
Illumina case as the ‘750 database’, while the Roche 454
database is termed ‘350 database’ since analysis of the
Roche 454 data used only the first 350 bp to decrease the
effect of read errors.

Experimental procedures

Drosophila samples

Larvae (L1 and L2). h-Gal4 males flies were crossed to
UAS-neoGFP females for 3 days [described in (31)], the
progenies of this cross (h-Gal4;UAS-neoGFP flies) were
developed in standard 25� 95mm Drosophila vials (cat#
51–0500, Biologix) containing 15ml of fly food (http://
flystocks.bio.indiana.edu/Fly_Work/media-recipes/).
Sample L1 was supplemented with G418 (400 ml/ml,
GIBCO). Ten guts of third instar larvae were dissected
from each sample and pooled together. DNA was ex-
tracted using a chemagic DNA bacteria Kit (Chemagen).
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Eggs (E1 and E2). About 300 h-Gal4;UAS-neoGFP adult
flies that were developed in a food with or without G418
(E1 and E2, respectively), and were allowed to lay eggs for
2 h on agar plates. These 0–2 h-old embryos were collected
and DNA was extracted from �200 eggs of each sample as
above.

Human saliva samples
1ml of saliva was collected from one female and one male
adult (34 years) in two consecutive days. DNA was ex-
tracted as above.

Single-region Roche 454 sequencing

Sequencing
Samples were amplified by PCR (E339–789), all amplicon
products from different samples were mixed in equal con-
centrations, purified and then sequenced by a Roche
titanium 454 machine. The Illumina amplicon, of length
750 nt, includes the Roche 454 amplicon as its first 450 nt.
Preprocessing the reads included truncating reads to a
length of 350 nt and keeping only those for which the
Phred quality score was >25 in at least 80% of their
bases. After preprocessing, the number of reads per
sample ranged from �104 to 3� 104.

Analysis
Analysis was performed by two methods. First, reads were
mapped to the ‘350 database’ using BLAST, marking
reads for which similarity was >98%. Bacterial abundance
was estimated by the fraction of reads that were mapped
to each sequence in the database, and thus we refer to this
method as ‘454-BLAST’. In the second analysis method,
we applied MG-RAST (32). Apart from strain-level clas-
sification, which is too coarse and does not allow for direct
comparison with COMPASS, MG-RAST provides for
each read the best hit in the database according on its
internal pipeline (MG-RAST also enables selecting
Greengenes as its baseline database). Hence, bacterial
abundance was estimated by the fraction of reads that
were mapped to the best hit. There were cases in which
MG-RAST similarity search provided multiple same-
scoring hits to the same read. However, in all of these
cases, these multiple classifications still corresponded to
the same entry in the ‘350 database’, and hence, no clas-
sification ambiguities occurred.

COMPASS using Illumina sequencing

Sequencing
DNA was PCR amplified using 16S rRNA universal
primers whose product was �750 bp long for most
bacteria in the database (see Supplementary Figure S9).
PCR was performed in 96-well plate such that each sample
had eight reactions that were mixed together immediately
following PCR. Samples were then cleaned on column
(Promega, Fitchburg, WI) and concentration was
measured using NanoDrop (NanoDrop Technologies,
Wilmington, DE). All samples were diluted to 50 ng/ml
and a volume of 100 ml. Samples were then sonicated
(Bioruptor, Diagenode, Philadelphia, PA) between 80
and 100 cycles (30/30 s on/off), resulting in length

distribution in the range of 100–300 bp (see
Supplementary Figure S10). Subsequently, samples went
through standard Illumina library preparation including
barcode ligation, and were sequenced on a single lane of
an Illumina HiSeq 2000 sequencer using 100 nt reads.

Analysis
Reads for which the Phred quality score was >30 in at
least 80% of their bases were kept, resulting in 2�106–
2�107 reads per sample. Since coverage along the
amplicon was not uniform, we first normalized the
number reads before applying COMPASS (see normaliza-
tion issues below).

Data normalization and a COMPASS Algorithm
modification for Illumina reads

According to our experimental protocol, Illumina data
showed several biases, including unequal nucleotide cover-
age along the sequence. Different coverage is observed at
different positions along the sequence due to nonuniform
fractionation of the 16S DNA and systematic Illumina
biases in amplifying different DNA regions, even when
sequencing a single bacterium. For example, for reads
originating from both the forward and reverse strands in
Drosophila sample L1, Supplementary Figure S11A shows
high coverage variability as a function of position along
the 16S sequence (the mean per-nucleotide coverage varies
�1.8-fold across the sequenced region). We refer to this as
‘global’ coverage-variability pattern. In addition, high
‘local’ variability is observed, namely coverage varies sig-
nificantly even between adjacent locations. This contra-
dicts the COMPASS implicit assumption that the
number of reads of each k-mer of a specific bacterium
linearly depend on its frequency. Violation of this assump-
tion results in increased noise and potential degradation in
performance. To deal with unequal coverage, we per-
formed both preprocessing and postprocessing steps
described below.

Preprocessing reads
We performed two normalization steps addressing local
and global variability patterns on the raw Illumina reads
before applying the COMPASS algorithm.

1. Illumina reads preprocessing overcoming local
coverage bias
We split each read to shorter overlapping reads. More spe-
cifically, a read of length 100 nt was converted into 11 con-
tiguous reads of length 90, which were mapped to 11
starting points, hence averaging out coverage variability
on the single nucleotide level. This normalization step
comes at the expense of slightly shorter reads, but this
small decrease is predicted to hardly impact COMPASS
performance (see Figure 3 panel B). Supplementary
Figure S11B presents the read coverage following local
noise normalization in sample Supplementary Figure S1.

2. Illumina reads preprocessing overcoming global
coverage bias
Following averaging out of the local bias, long-range
position-dependant variability in read coverage is still
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apparent (Supplementary Figure S11B). To reduce this
effect, the global coverage profile was independently
calculated for forward and reverse reads by taking the
mean coverage over a sliding window of length 20nt.
Each read was mapped to the vector y, although its
original weight was divided by the value in Supplementary
Figure S11B at the read’s average location. The resulting
coverage appears in Supplementary Figure S11C.

Postprocessing—modifying the COMPASS
optimization problem
Although preprocessing greatly reduced the position-
dependent coverage variability, coverage is still nonuni-
form as evident from the outliers in Supplementary
Figure S11C. To further reduce their effect, we modified

the COMPASS algorithm. The original COMPASS algo-
rithm minimizes the L2 norm of the solution. While being
computationally feasible, the L2 norm is sensitive to
unequal coverage, thus may introduce false positives. In
case of low-coverage, L2 norm tends to ‘divide’ the reads
among several low-frequency sequences (i.e. database
entries), rather than keeping a single high-frequency
sequence. To reduce this effect, we performed a postpro-
cessing step using the list of COMPASS-inferred se-
quences. The sequences found in the last COMPASS
iteration were solved again while changing the optimiza-
tion criterion to minimizing the L1 norm:

min x0 k ~Ax0 � y k1 such that x0i � 0,i ¼ 1, . . . ,N
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Figure 3. Extensive simulations—performance as a function of several parameters Panels (A–C) present weighted recall and precision as a function
of different variables. Unless stated otherwise, parameters are as follows: each simulation contained 200 bacteria, randomly selected from the (full
length) 16S database, with relative frequencies following a power law distribution (1/x). The read length was 100 nt, and 106 reads were simulated,
and were subject to read errors. The blue and red lines denote weighted recall and precision, respectively; a solid line refers to the case in which
complete sequence identity is required, while a dashed line refers to the case where up to 2% differences in sequence are acceptable. Frequencies can
differ by <20% or the absolute value of their difference should be <0.002. Data present average and one standard deviation over 100 simulations of
each scenario. (A) Effect of number of reads, with read number changed from 106 down to 104, and other parameters as above. (B) Effect of read
length, with read length varying between 35 and 200, and other parameters as above. (C) Effect of number of bacteria in the original mixture. Here
for each number of bacteria n, all bacterial frequencies are set to 1/n. Other parameters are as above.
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where ~A is the matrix based on the COMPASS-inferred
sequences. Since the number of such sequences is small,
the reads’ average location in Supplementary Figure S11B
can be directly incorporated into the matrix rather than
normalizing the read vector y. This L1 minimization
postprocessing step prunes the results and reduces the
number of false positives in the list of inferred sequences.

Sanger sequencing and validation

Primers used
Using in silico PCR we designed Wolbachia- and
Acetobacter-specific primers. The Wolbachia primers
(forward: TGATCAGCCACACTGGAACT, reverse: A
AGTCCCCAGCATTACCTGA) potentially amplify 98

bacteria having a product size of �800 bp. Three 454-
BLAST predicted bacterial groups (EU137480.1,
EU137491.1 and EU137473.1 in Figure 4) were not
amplified by these Sanger primers. As for Acetobacter,
the primers (forward: GAGCTGCATTTGATACGTGC,
reverse: CACTGTCACCGCCATTGTAG) amplify 60
bacteria having a product of �600 bp.

Analyzing the Sanger chromatogram
We used an automatic peak detection algorithm to locate
and evaluate peaks in the chromatogram. A minor peak
was declared when its value was >3% of the correspond-
ing major peak (see Supplementary Figure S6 for a
cartoon). Since the primers were designed to amplify
highly similar bacteria, the number of multi-peak
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Figure 4. Comparison between algorithms. Comparison between COMPASS, EMIRGE and 16S-V4 sequencing. Weighted precision and recall
(panels A and B, respectively) as a function of the maximal allowed sequence mismatch. Simulated mixtures correspond to the default setting.
Black, red and blue lines display the mean and standard deviation of 100 simulations using EMIRGE, 16S-V4 and COMPASS, respectively,
performed over the same mixtures. Weighted precision and recall for COMPASS also enforce the frequency criterion, as opposed to the case of
EMIRGE and 16S-V4. The EMIRGE simulations did not contain read errors. The 16-V4 simulations were performed over an infinite number of
errorless reads.
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locations is limited, and in most cases only a single minor
peak was detected. The length of the Sanger sequence and
its starting point were manually set.

Mismatch detection
We created a list of all bacterial sequences that are poten-
tially amplified by the corresponding primer pair, and
locally aligned each of them to the Sanger sequence. A
‘Sanger-validated’ sequence was declared whenever the
bacterial sequence matched the nucleotide corresponding
to either major or minor peaks along the chromatogram.
We counted three numbers for each bacterial sequence s—
the total number of mismatches between s and the Sanger
sequence, and the number of mismatches over the inter-
section between the Sanger sequence and the Roche 454
or Illumina amplicons. Supplementary Figure S7A–D
presents the mismatch locations for all potentially
amplified bacteria in the Wolbachia an Acetobacter cases.

Data and software

An implementation of COMPASS is available at https://
github.com/NoamShental/COMPASS. Roche 454 data
for Drosophila and saliva experiments can be downloaded
from the MG-RAST Web site at http://metagenomics.anl.
gov/linkin.cgi?project=4932. Profiling results files for
454-BLAST, MG-RAST and COMPASS appear as
Supplementary Data sets S1–S5. In addition MG-RAST
read classification files appear as Supplementary Data sets
S6–S9. Illumina data for Drosophila and saliva experi-
ments can be downloaded from the MG-RAST Web site

http://metagenomics.anl.gov/linkin.cgi?project=5237.
Read data were subject to preprocessing overcoming local
coverage bias (step 1).

RESULTS

Simulation of a toy mixture

To demonstrate the added value of COMPASS in
providing improved phylogenetic resolution and accurate
frequency estimates we first constructed a simulated in
silico toy mixture. The mixture comprised 10 bacteria of
the human gut model community bacteria used by Faith
et al. (33), to which we added another bacterium whose
16S sequence is only 11 bp different from one of these
bacteria. Frequencies assigned to each sequence were
taken from the measurements of Walker et al. (34).
We simulated 106 short Illumina-like reads of length

100 nt (with read errors) covering the full length 16S
gene and applied COMPASS. To demonstrate the im-
provement in phylogenetic resolution compared with
SRF, we also provide the results based on the 16S
variable region V4 (referred to as 16S-V4) using an
infinite number of errorless reads. Table 1 presents the
names of simulated bacteria and their frequencies
together with COMPASS and 16S-V4 results.

COMPASS
Table 1 displays the names of COMPASS-reconstructed
sequences and their frequencies, when the equality symbol
corresponds to a correct reconstruction, i.e. zero

Table 1. Simulated toy mixture results

Toy mixture COMPASS 16S-V4

Sequence name Simulated
frequency
(%)

COMPASS reconstructed
sequences

COMPASS
frequency (%)

Number of
sequences
sharing the
same 16S-V4

Median
similarity
over whole
16S

Minimal
similarity
over whole
16S

Eubacterium rectale ATCC 33656 14.17 = 12.73 1321 0.89 0.78
Collinsella aerofaciens ATCC 25986 11.71 = 11.53 356 0.89 0.74
Blautia hydrogenotrophica DSM 10507 11.58 = 11.15 5 0.89 0.88
Desulfovibrio piger GOR1 10.21 = 9.84 6 0.88 0.88
Clostridium symbiosum ATCC 14940 9.44 = 9.63 1 1 1
Escherichia coli str. K-12 substr. MG1655 8.14 = 7.21 1539 0.88 0.71
Marvinbryantia formatexigens DSM 14469 7.88 = 8.14 2 0.95 0.95
Bacteroides ovatus ATCC 8483 7.88 = 7.6 100 0.88 0.86
Bacteroides thetaiotaomicron VPI-5482 6.73 = 6.45 369 0.88 0.8
Bacteroides caccae ATCC 43185 6.35 = 5.73 488 0.89 0.82
Bacteroides sp. str. D1 5.9 = 5.51 100 0.89 0.87

Human fecal clone JTU_G_10_09 0.1
Metagenomic gut microbiome

healthy human stool clone EB35
0.13

Pervasive effects antibiotic on
human gut microbiota deep
sequencing fecal clone B3_148

0.11

Human fecal clone SJTU_G_07_07 0.11
Human fecal clone 014B-H5 0.12

Toy mixture sequences and their frequency appear on the left panel. The middle panel corresponds to COMPASS reconstructed sequence names and
their frequencies. The equality sign (‘=’) stands for an exact match, namely complete identity between the full 16S gene sequence of simulated and
reconstructed bacteria. The right panel displays the number of Greengenes sequences that share the same V4 region for each simulated bacterium.
We also provide the median and mean similarities between the simulated sequence and the other sequences that share its V4 region. The mixture’s
sequences appear in Supplementary Table S3 and in Data set 10.
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mismatches between the full 16S gene sequences of the
simulated and reconstructed bacteria. COMPASS success-
fully identified the 11 bacteria in the mixture as the top 11
most frequent sequences while providing highly accurate
frequency estimates. This includes correct detection of the
two highly similar bacteria Bacteroides ovatus ATCC 8483
and Bacteroides sp. str. D1 that differ by 11 bp along their
16S genes. In addition, COMPASS detected five false-
positive bacteria whose total predicted frequency by
COMPASS was <0.6%.

16S-V4
Table 1 presents the number of Greengenes sequences that
share the same V4 sequence as the simulated sequence,
and the median and minimal sequence similarities
between their full 16S sequences and the simulated
sequence. A larger number of such sequences and low
similarity values correspond to lower phylogenetic reso-
lution. For 10 out of 11 bacteria, 16S-V4 displays lower
phylogenetic resolution than COMPASS. Namely, while
COMPASS identified the exact full 16S gene sequence of
each of these bacteria, the 16S-V4 can only provide a
larger ‘group’ of equally likely sequences whose similarity
to the correct sequence ranges between 0.71 and 0.95 even
when using an infinite number of errorless reads. For
example, E. coli str. K-12 sub strain MG1655 belongs to
a ‘group’ of 1539 bacteria having an identical V4 region.
The median (minimal) sequence similarity along the 16S
gene between the correct sequence and the other 1538 se-
quences in the group is �0.88 (0.71) displaying reduced
phylogenetic resolution. Therefore, e.g. 16S-V4 can not
differentiate between E. coli str. K-12 substrain MG1655
and E. coli NMU-ST2 although their similarity is only
�79%.
In addition, the short sequenced region results in incor-

rect frequency estimates. For example, 16S-V4 identifies
Bacteroides ovatus ATCC 8483 and Bacteroides sp. str.
D1, which share the same V4 region, as a single low-
resolution ‘bacterium’ having frequency of �13%
instead of the correct 2 bacteria detected by COMPASS.
Their simulated frequencies were �7.9 and 5.9%, with
COMPASS-predicted frequencies being close at 7.6 and
5.5%, respectively.

COMPASS shows high accuracy in various simulated
experimental scenarios

We defined a default simulation setting and explored the
performance of COMPASS when modifying each one of
its parameters. The default setting included a mixture of
200 bacteria randomly selected from the (full length) 16S
database, with relative frequencies conforming to a power
law distribution (1/�). The number of reads was set to 106

and the read length was chosen to be 100 nt. All reads were
subject to Illumina-specific sequencing errors (see
Supplementary Methods for the error model). Figure 3
displays the performance using the default settings while
modifying the number of reads (panel A), the read length
(panel B) or the number of bacteria in the mixture
(panel C).

Accurate profiling amounts to correct identification of
the bacteria in the mixture, together with their frequency.
We aimed at providing a biologically relevant measure
that would combine sequence and frequency predictions
in an intuitive way. We defined ‘weighted recall’ and
‘weighted precision’, which quantify false-positive and
false-negative predictions, respectively. Briefly, ‘weighted
recall’ of 95% means that there is 0.95 probability that a
bacterium randomly selected from the simulated mixture
is identified by COMPASS with zero mismatches and also
its inferred frequency is close enough to its simulated fre-
quency (weighted precision quantifies false negatives in a
similar way, see ‘Materials and Methods’ section). To
allow for less stringent criterion, we also display perform-
ance in case that up to 2% (i.e. �30 nt of the �1500 bases
of the 16S) mismatch in sequence is allowed and refer to
this as the ‘MM 2%’ case, as opposed to the former ‘MM
0%’ case. Each point in the results presents the average
and standard deviation based on simulating 100 realiza-
tions of bacterial mixtures. For example, the default
setting displays a level of 93% in both weighted recall
and precision for ‘MM 0%’, while for ‘MM 2%’
weighted recall is 95% and weighted precision is 98%.

Effect of varying the number of reads
Recall and precision >90% were achieved even when
reducing the number of reads to 100 000 and 50 000 for
MM 0% and the MM 2%, respectively. This demonstrates
high fidelity reconstruction of the bacterial community
with low numbers of reads, thus enabling analysis of
many samples per lane via barcoding (i.e. multiplexing).

Effect of varying read length
Increasing read length beyond 100 nt or shortening it
down to 50–75 nt had almost no effect on performance.
Thus, current read lengths of single-end sequencing suffice
for good reconstruction, and advantages of longer or pair-
end reads or applying assembly methods to increase the
effective read length are less significant. Read lengths
<50 nt are less informative, as reads potentially appear
in many different bacteria, resulting in lower quality
profiling.

Effect of varying the number of bacteria in a mixture
To analyze the dependence of COMPASS’s performance
on the complexity of the bacterial mixture, we replaced the
power law distribution by a fixed frequency of 1/n (same
frequency for all species within the sample) and varied the
number of bacteria, n. This allows bacterial frequencies to
be higher than COMPASS’s threshold of 0.1% for up
to n=1000 (whereas in a power law distribution, most
frequencies will be lower than this threshold for
n> 200). Reconstruction error rate was almost constant
for up to n=800 bacteria, but increased substantially
for larger numbers due to the predefined threshold in
COMPASS for the frequency of ‘interesting’ bacteria
(0.1%, see ‘Materials and Methods’ section). The error
at a level for 1000 bacteria increased mainly due to
increase in weighted recall, while weighted precision
retains a level of 80%. This indicates that even in this
case, COMPASS still almost exclusively finds correct
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bacteria, although the number of missed bacteria grows.
The minimal frequency threshold (0.1%) was chosen to
enable faster running times, and can be changed in case
detection of low frequencies is required.

To display detection of low abundant bacteria, we
replaced the 0.1% threshold value by 0.025% and used
blocks of 4000 bacteria instead of 1000 bacteria in the
divide and conquer step (see Supplementary Results S1).
Repeating the case of n=1000 bacteria in panel C
resulted in �90 and 97% weighted recall and precision for
MM 0 and MM 2%, respectively. Results appear in
Supplementary Table S1. The table also presents a second
scenario of simulating 500 bacteria having a power law dis-
tribution (1/x), in which case the frequencies of >350
bacteria fall below 0.1% and the minimal frequency is
�0.03%. Using the abovementioned parameters resulted in
�90 and 97%weighted recall and precision for MM 0% and
MM 2%, respectively. Changing the parameters increased
simulation run times of each divide and conquer block by a
factor of �4 (see ‘Materials and Methods’ section).

Comparison with other methods

We compared COMPASS with EMIRGE (18) and with
SRF using 16S-V4. Weighted precision and recall were
estimated for 16S-V4 and EMIRGE using the default
simulation conditions (mixtures of 200 bacteria having
relative frequencies conforming to a power law distribu-
tion ‘sequenced’ using 106 single-end reads of length
100 nt). Figure 4 presents weighted precision and recall
of the three algorithms as a function of the required phylo-
genetic resolution, namely the maximal allowed difference
between the ‘correct’ and estimated sequences (i.e. from
MM 0% to MM 5%).

Weighted precision and recall in COMPASS were
calculated as in the former section, i.e. the inferred se-
quences and their frequencies should be close enough to
the ‘correct’ sequences and their frequencies. When
calculating weighted precision and recall for EMIRGE
and 16S-V4, we, however, did not enforce the frequencies
criterion, thus improving the measured performance (in
addition, we used an infinite number of errorless reads
for 16S-V4, and no read errors in the case of EMIRGE).
COMPASS’s results display higher recall and precision
than both EMIRGE and 16S-V4, especially when high
accuracy is required.

This gain in performance is also apparent in other scen-
arios. We used EMIRGE to profile the same mixtures used
in Figure 3 (although ignoring read errors). The EMIRGE
results, with and without enforcing the frequencies criter-
ion, appear in Supplementary Figures S1 and S2, respect-
ively (A comparison with 16S-V4 is less relevant since we
consider an infinite number of reads and assume that read
length covers the whole region). The lower performance of
EMIRGE, with respect to COMPASS probably corres-
ponds to the fact that EMIRGE was optimized for other
purposes, for example, using paired-end reads.
Additionally, COMPASS and 16S-V4 have an inherent ad-
vantage over EMIRGE under the conditions mentioned
above, since all simulated sequences were drawn from
the Greengenes database later used by the algorithms.

EMIRGE, which does not directly rely on a specific
database, tends to find novel species and therefore perform-
ance deteriorates. However, EMIRGE will probably have a
significant advantage in environments that contain many
unknown bacteria.

Experimental profiling of Fly and Human samples:
COMPASS versus SRF

We applied COMPASS to analyze the microbiota of two
biological systems: The first included four samples of the
larva and eggs of Drosophila melanogaster (referred as L1
and L2 for larva and E1 and E2 for eggs), and the second
included four samples of human saliva of two individuals
taken on two consecutive days (referred as H1 and H2 for
person #1 and H3 and H4 for person #2).
Since ground truth is not available for these experimen-

tal mixtures, we compared COMPASS using Illumina
sequencing with single-region Roche 454 Pyrosequencing
over the same samples. Following DNA extraction, we
PCR amplified and sequenced a 450 bp region by Roche
454 Pyrosequencing as an example of SRF. COMPASS
was based on a 750 bp region that was PCR amplified and
subjected to sonication before sequencing by an Illumina
HiSeq2000 using 100 nt single-end reads. The 750 bp
amplicon included the 450 bp region (aligned with the
start of the sequence), thus supporting comparison of
the two methods. Sequencing results were analyzed using
COMPASS for Illumina sequencing, with several modifi-
cations applied to the basic COMPASS algorithm to
overcome experimental biases as described in the
‘Materials and Methods’ section. For the SRF method,
the Roche 454 reads were truncated to the first 350 nt to
reduce the effect of read errors, and then analyzed by two
methods. The first method mapped each to the database
using BLAST, and thus we refer to its results as ‘454-
BLAST’. In the second method, reads were analyzed by
MG-RAST (32).
The fly and human samples display two different levels

of microbial complexity: while Drosophila samples con-
tained a rather low number of bacterial strains (�20
species with frequency >1%), human saliva samples
were more diverse (�80 bacterial species with frequency
>1%). These differences in complexity are consistent with
previous works (12,35). Results of the Drosophila experi-
ments presented in Figure 5 compare COMPASS and 454-
BLAST. The analogues comparison between MG-RAST
and COMPASS appears in Supplementary Figure S3 and
displays similar results (see Supplementary Results S2).
Results summary of the three methods appear in
Table 2. Human saliva samples appear in the
Supplementary Figure S5.

Concordance between COMPASS and SRF at the
454-BLAST finest resolution
To quantify the similarity between COMPASS and 454-
BLAST, we display the inferred sequences by the two
methods in Figure 5. Phylogenetic trees of the sequences
found by each method are shown on the top and left parts
of the figure, for 454-BLAST and COMPASS, respect-
ively. Each tree leaf is termed a ‘group’ as it may represent
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several 16S sequences that share the same sequence over
the 350 bp or 750 bp amplicon. The central matrix
compares the results of the two methods, showing the
Hamming distance between pairs of sequences (calculated
over the overlapping region). The comparison shows a
high agreement between the two methods, as evident
from the matrix, detecting the same four main clusters
of bacteria (Wolbachia, Lactobacillus, Acetobacter and
‘Other’ which comprised mostly Pseudomonas). A closer
look into the matrix shows that 22 out of the 23 sequences
found by COMPASS had counterparts found by
454-BLAST: 14 out of 23 sequences found by
COMPASS had identical counterparts in the 454-
BLAST method (namely the overlapping 350 bp region

matches completely), while the other eight sequences
differed by up to 4 nt. The COMPASS sequence that
was not found by 454-BLAST was, however, found by
MG-RAST together with all other COMPASS sequences;
454-BLAST found 39 bacteria, many of which are false
positives, as shown in the next section. A single bacterium
found by 454-BLAST, which had frequency of �0.1%,
was later validated and not found by COMPASS.

Table 2 summarizes the total abundance of each cluster
as inferred by the three methods for each sample.
Although absolute frequencies differ, probably owing to
biases caused by different primers used, the rank order is
consistent between methods—both rank order among the
different clusters within each sample, and also for each
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Figure 5. Reconstruction of Drosophila samples—COMPASS and 454-BLAST. Experimental results comparing 454-BLAST SRF and Illumina-
based COMPASS framework on four Drosophila samples, L1, L2, E1 and E2. The Roche 454 amplicon matches the first 450 bp of the 750 bp
Illumina amplicon. To decrease the effect of read errors, the 454-BLAST approach was based on the first 350 nt. COMPASS was based on the 750 bp
amplicon. On the left we show a phylogenetic tree based on sequences inferred by COMPASS (with frequency >0.1%), and a similar tree based on
the 454-BLAST is shown on top (for a description of phylogenetic tree building see Supplementary Methods S3). Database accession names are
shown on the left and below, respectively (further details appear in Supplementary Data sets S1–S2). Heatmaps along each tree display the inferred
frequency of each sequence in each sample (frequencies <0.1% are marked by ‘x’) and the displayed numbers correspond to the number of sequences
from the full 16S database that are identical on the relevant amplicon, thus representing resolution. The central matrix displays the similarity between
sequences found by 454-BLAST and COMPASS, calculated over the shared 350 bp long sequence. Complete identity in shown in black, while seven
or more mismatches appear as white. Four main clusters were found—Lactobacillus, Acetobacter, Wolbachia and ‘Other’ that were mostly
Pseudomonas. An example of the improved resolution obtained by COMPASS is highlighted by two green lines pointing to a sequence found by
both methods. The 454-BLAST solution corresponds to 266 sequences that share the 350 bp amplicon, while COMPASS allows selecting a single
sequence.
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cluster across samples. For example, both 454-BLAST,
MG-RAST and COMPASS find that the Lactobacillus
cluster has highest abundance in sample E1, with L1
next, then E2, and completely vanishes in L2.

COMPASS displays increased phylogenetic resolution
Each black entry in the matrix in Figure 5, which cor-
responds to a complete match between the methods,
also manifests COMPASS’s increased phylogenetic reso-
lution compared with SRF. The numbers next to each
leaf represent the number of sequences in the full 16S
database that share the same 350 or 750 nt amplicon for
SRF and COMPASS, respectively. The lower these
numbers are, the higher the phylogenetic resolution
provided. As shown, sequences found by COMPASS
correspond to a smaller number of full 16S sequences
compared with 454-BLAST. For example, sequence
EU537217.1 corresponds to 266 sequences sharing an
identical 350 nt region as found by 454-BLAST, while
it is uniquely identified in COMPASS (follow green
arrows in Figure 5). In all 14 complete matches
between COMPASS and 454-BLAST, COMPASS
achieved higher resolution.

COMPASS displays less false-positive detections
than SRF
In several cases, COMPASS detected a single sequence
while 454-BLAST detected several highly similar
bacteria. For example, in the case of the major
Wolbachia strain detected (AF232234.1), 454-BLAST
detected eight additional highly similar bacteria, which
were all experimentally ruled out as described in the next
section. The low number of falsely detected bacteria is a
direct outcome of the longer amplicon, as the number of
differences between the correct sequence and other highly
similar bacteria increases with the length of the amplicon.
Hence, the probability that specific read errors would
divert COMPASS from the correct bacteria is highly
reduced.

We performed a similar comparison for human saliva
samples (see Supplementary Figure S5) showing good con-
cordance between the two methods (e.g. 58 out of 82 se-
quences found by COMPASS had identical counterparts
in 454-BLAST).

Validation via Sanger sequencing

We aimed at testing the predictions set by COMPASS,
454-BLAST and MG-RAST, validating the higher reso-
lution provided by COMPASS’s predictions and the
reduction in the number of falsely detected bacteria.
Validation was performed for the Acetobacter and
Wolbachia genera over samples L1 and L2 (see Figure 6).

Overview of Sanger-based validation
We designed two specific primer pairs predicted to amplify
long regions in most sequences of the Acetobacter and
Wolbachia genera (See ‘Materials and Methods’ section).
Following PCR amplification using each of these primers,
the resulting product was sequenced using Sanger
sequencing, thus allowing efficient detection of low abun-
dance bacteria in these genera (as opposed to the more
labor-intensive cloning and sequencing approach). Since
different bacteria are present in the mixture, each chro-
matogram is expected to display more than a single peak
at some locations, as demonstrated in Supplementary
Figure S6 (the primers were designed to amplify highly
similar bacteria, and therefore the number of such loca-
tions is limited). Therefore, we collected all possible base
calls for each location along the Sanger sequence and
compared it with sequences found by 454-BLAST, MG-
RAST and COMPASS. A predicted sequence was termed
‘Sanger validated’ if its sequence matched the base calls
along the Sanger sequence. A prediction is termed a false
positive in case a sequence’s nucleotide differs from the
Sanger base calls in at least one location. For complete-
ness, we used in silico PCR to check all sequences, which
were neither detected by COMPASS nor by 454-BLAST/

Table 2. A summary of the frequencies in each sample and each method for each of the four ‘clusters’

Lactobacillus Other

Method�
Sampleß

COMPASS
over 750

454-BLAST
over 350 (%)

MG-RAST
over 350 (%)

COMPASS
over 750 (%)

454-BLAST
over 350 (%)

MG-RAST
over 350 (%)

L1 7.6% 21.1 22.3 4.6 6.5 9.0
L2 0% 0 0 7.3 10.2 15.1
E1 16.0% 33.6 34.7 1.7 2.5 3.7
E2 0.8% 3.1 3.9 1.8 3.2 5.3

Acetobacter Wolbachia

Method�
Sampleß

COMPASS
over 750 (%)

454-BLAST
over 350 (%)

MG-RAST
over 350 (%)

COMPASS
over 750 (%)

454-BLAST
over 350 (%)

MG-RAST
over 350 (%)

L1 0 0 0 87.5 68.2 65.3
L2 4.5 7.3 8.9 88.0 78.2 73.0
E1 0 0 0 82.1 61.3 59.7
E2 0 0.3 0.4 97.1 90.6 88.0

Values correspond to a summation of the relevant bacterial frequencies for each sample. Rank order is preserved over the 4 clusters within the same
sample, and over the same cluster between samples.
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MG-RAST, but may have potentially been amplified by
the relevant primer pair. None of these sequences were
‘Sanger-validated’, and hence no ‘false negatives’
occurred for both Acetobacter and Wolbachia. A cartoon
of the procedure appears in Supplementary Figure S6.

Summary of results displays reduction in falsely detected
bacteria
Results for sample L2 are summarized in Table 3 (results
for L1 were similar, and thus are omitted), displaying the
number of ‘Sanger validated’ groups (each group contains

Figure 6. Validation via Sanger sequencing—COMPASS and 454-BLAST. The left and right sides in the upper part of the figure display a zoom in
to the Wolbachia and Acetobacter regions of Figure 5 for sample L2, indicating the predicted groups by 454-BLAST and COMPASS on the columns
and rows, respectively. Validation by Sanger sequencing is shown in the lower part of the figure. Each row corresponds to a sequence found by either
COMPASS (marked blue) or by 454-BLAST (marked green). The last column presents the number of mismatches between the bacterium and the
Sanger sequence, when combining results of forward and reverse strands. Cases of nonzero mismatches indicate a wrong prediction and are marked
red. Bacteria are grouped according to Figure 5, for both COMPASS and 454-BLAST predictions, where the first bacterium in each group matches
the representative bacterium in each group. Groups for which the COMPASS bacteria are a subset of 454-BLAST bacteria appear as a single group,
where only a subset of the bacteria is marked green.
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bacteria sharing the same sequence over the 350 bp or
750 bp amplicon). Also presented are the corresponding
numbers of groups predicted by COMPASS, 454-
BLAST and MG-RAST, and the number of false-positive
bacteria. The same information appears also for individ-
ual bacteria within these groups. For Acetobacter,
COMPASS had zero falsely detected bacteria, compared
with 16 in 454-BLAST/MG-RAST, and for Wolbachia,
454-BLAST had 17 false-positive detections and MG-
RAST had 12, compared with a single case in
COMPASS (whose predicted frequency was 0.1%).

Detailed results validate increased resolution of
COMPASS predictions
Groups predicted by COMPASS and 454-BLAST appear
in Figure 6, while the analogues comparison between
MG-RAST and COMPASS appears in Figure S4 (see
Supplementary Results S3).

Validation results for each bacterium within these
groups appear in the left and right parts of Figure 6 for
Wolbachia and Acetobacter, respectively. The upper part
of the figure presents the bacteria predicted by COMPASS
and 454-BLAST, while the lower part presents validation
of these predictions. Bacteria predicted by COMPASS and
454-BLAST are marked by green and blue, respectively.
Groups for which the COMPASS bacteria are a subset of
454-BLAST bacteria appear as a single group, while only
predicted bacteria are marked green. The last column in
each table presents Sanger validation results, and the
number of mismatches between the relevant bacterium
sequence and the chromatogram (See ‘Materials and
Methods’ section).

Wolbachia (Figure 6 left)
The dominant high abundance group of sequences (W1)
contained 11 bacteria in the 454-BLAST method. Out of
these, only the three bacteria that were found by
COMPASS were ‘Sanger validated’, while the remaining
eight sequences were false positives. This demonstrates
the correctness of COMPASS predictions together with
its improved phylogenetic resolution, namely instead of
11 indistinguishable bacteria in the 454-BLAST case,

COMPASS correctly ruled out 8 bacteria. The chromato-
gram showed that mismatches between these 8 bacterial
sequences and the Sanger sequence occurred outside the
Roche 454 amplicon (See Supplementary Figure S7),
indicating that lower resolution of 454-BLAST is an
inherent result of its short amplicon.
In addition, COMPASS predicted a low abundance

(0.1%) bacterium (W2) that was found to be incorrect.
The 454-BLAST predicted the existence of five groups,
W3–W7 (total frequency of 1.3%), in addition to group
W1, which were all false positives. In both cases, these
incorrect predictions are probably due to read errors
that were mapped to bacterial sequences in the database,
since mismatches were found within the Illumina/Roche
454–amplified regions (See Supplementary Figure S7).
However, 454-BLAST found 17 incorrect bacteria, with
much higher relative abundance, compared with the
single false positive in COMPASS, suggesting that
454-BLAST is more prone to such read errors than
COMPASS.

Acetobacter (Figure 6 right)
All bacteria in all groups predicted by COMPASS were
validated, ranging from abundance of 1.8% to as low as
0.2%. Two of these groups (A1 and A4) were also pre-
dicted by 454-BLAST. However, group A1 contained 25
bacteria out of which the 18 bacteria shared by the
COMPASS method were validated and other bacteria
were found to be incorrect, which is another manifestation
of increased resolution provided by COMPASS (an add-
itional bacterium, X71863.1, which is part of this group
was not amplified by the Illumina primers, hence was not
predicted by COMPASS).
A single group (A6) was found by 454-BLAST with

frequency 0.4% and did not appear in COMPASS’s pre-
dictions. The A5 group found by the 454-BLAST, with
frequency of 0.5% and including 10 bacteria was a false
positive.
In summary, Sanger validation showed the correctness

of COMPASS’s predictions proving higher phylogenetic
resolution together while reducing the number of false-
positively detected bacteria.

Table 3. Sanger validation results summary: The total number of ‘Sanger-validated’ groups and bacteria, together with those predicted by

COMPASS, 454-BLAST and MG-RAST for Wolbachia and Acetobacter

Family Number of
Sanger-validated
groups

Number of
bacteria in
Sanger-validated
groups

Method Number of
predicted
groups

Number of
bacteria in
predicted
groups

Number of
false-positive
groups

Number of
false-positive
bacteria

Total
nonvalidated
frequency (%)

Acetobacter 5 26 COMPASS over 750 4 23 0 0 0
454-BLAST over 350 4 40 1 16 0.5
MG-RAST over 350 3 38 1 16 4.9

Wolbachia 1 3 COMPASS over 750 2 4 1 1 0.1
454-BLAST over 350 6 20 5 17 1.3
MG-RAST over 350 5 15 4 12 5.4

Also shown is the number of false-positive groups and bacteria, and the total nonvalidated frequency, namely, the sum of inferred frequencies of
groups that had nonzero mismatches with Sanger sequencing. The total nonvalidated frequency in the case of MG-RAST is higher owing to a single
group to which the method incorrectly assigns relatively high frequency for both Acetobacter and Wolbachia (see Supplementary Figure S4).
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DISCUSSION

The presented COMPASS approach provides means
for high-resolution microbial profiling. COMPASS
bridges the gap between the short read limitation of
MPS and the necessity to sequence large regions to
allow unique identification of bacterial sequences. The
large analyzed region also provides increased robustness
to experimental errors, e.g. chimeric reads and read errors,
resulting in more accurate predictions. In addition, theor-
etical analysis provides guarantees and bound on
performance.
We presented an application of COMPASS based on

the 16S rRNA gene using Illumina single-end sequencing
of eight samples and showed its extremely high concord-
ance with the SRF 454-BLAST method, while providing
an additional increased resolution and dramatically
reducing falsely detected bacteria, as further validated
via Sanger sequencing. Such accurate predictions make
COMPASS suitable in scenarios in which high-resolution
profiling is important.
Our extensive simulations have shown that COMPASS

can cope with reads as short as 50 nt and a rather small
number of reads to provide accurate high-resolution
profiling, which sets the ground for large-scale and low-
cost multiplexed profiling of many samples.
A basic assumption underlying COMPASS is that

most bacteria in the mixture are represented in the
sequence database. In case mixture bacteria do not
appear in the COMPASS working database, for
example, due to mutations in already known sequences
or due to poorly studied ecosystems, COMPASS would
provide the closest possible sequences in the database. In
that respect, COMPASS is more adequate for profiling
mixtures of rather well-studied environments, where
changes in species identities and composition may have
biological and/or clinical importance, and less for
analyzing environments that mainly contain unknown
bacteria.
A natural application for COMPASS is analyzing

RNA-seq data from bacterial populations. Since riboso-
mal RNAs constitute a large fraction of total RNA
produced, in many experimental cases a large fraction
of the reads originate from the 16S gene, even without
prior PCR amplification. Since 16S RNA-seq reads ori-
ginate from random locations along the 16S, typical SRF
methods can only use a small fraction of the reads
originating from a single region. In contrast,
COMPASS integrates all available reads and produces
a coherent snapshot of bacterial metabolic activity.
Unlike de novo assembly based methods, COMPASS
can also seamlessly integrate reads from noncontiguous
regions or multiple genes, thus can also be applied to
databases such as MLST (36) or Ribosomal MLST
(37) to further increase phylogenetic resolution. Such
multigene integration of information will remain import-
ant also in case the future MPS read length would be
larger. An application of COMPASS to whole-genome
sequencing is in principle possible, and would become
increasingly beneficial as more and more bacteria are
sequenced.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online,
including [38,39].
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