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Abstract: Among the major mechanisms involved in tumorigenesis, DNA methylation is an important
epigenetic modification impacting both genomic stability and gene expression. Methylation
of promoter-proximal CpG islands (CGIs) and transcriptional silencing of tumor suppressors
represent the best characterized epigenetic changes in neoplastic cells. The global cancer-associated
effects of DNA hypomethylation influence chromatin architecture and reactivation of repetitive
elements. Moreover, recent analyses of cancer cell methylomes highlight the role of the DNA
hypomethylation of super-enhancer regions critically controlling the expression of key oncogenic
players. We will first summarize some basic aspects of DNA methylation in tumorigenesis, along
with the role of dysregulated DNA methyltransferases and TET (Ten-Eleven Translocation)-family
methylcytosine dioxygenases. We will then examine the potential contribution of epimutations
to causality and heritability of cancer. By reviewing some representative genes subjected to
hypermethylation-mediated silencing, we will survey their oncosuppressor functions and roles
as biomarkers in various types of cancer. Epithelial-to-mesenchymal transition (EMT) and the gain of
stem-like properties are critically involved in cancer cell dissemination, metastasis, and therapeutic
resistance. However, the driver vs passenger roles of epigenetic changes, such as DNA methylation
in EMT, are still poorly understood. Therefore, we will focus our attention on several aspects of
DNA methylation in control of EMT and metastasis suppressors, including both protein-coding and
noncoding genes.
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1. Introduction

During multistep tumor progression, both mutational and nonmutational genomic changes result
in the selection and expansion of cancer cell subclones exhibiting selective advantage in the tumor
microenvironment (TME), in both primary and secondary sites of cancer growth [1]. In addition
to genetic alterations (missense mutations, insertions, deletions, amplifications, translocations, etc.),
deranged epigenetic regulation is central to tumor development and progression. Abnormalities in
chromatin epigenetic marks include biochemical changes into the DNA backbone, histone modifications,
nucleosome rearrangements, and expression of noncoding RNAs. These modifications cooperatively
control the gene expression reprogramming in neoplastic cells, along with the multiple cell types
recruited to the TME [2].

Pioneering studies on cancer-associated epigenetic reprogramming were mainly focused on DNA
methylation, while the interactions between DNA methylation, repressive histone modifications,
recruitment of epigenetic readers and nucleosome remodeling represent relatively recent areas of
investigation [2,3].
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Herein, we will first give an overview of alterations of DNA methylation in cancer cells and then
focus on some recent findings on the role of DNA methylation in EMT and metastasis mechanisms.

2. Global DNA Hypomethylation and Site-Specific CpG Promoter Hypermethylation Are
Hallmarks of Human Cancer

Aberrant DNA methylation is the prevalent epigenetic dysregulation in cancer and consists of
both losses (DNA hypomethylation) and gains (DNA hypermethylation) of 5-methyl-cytosine within
the CpG dinucleotides. Methylome analyses have shown that, compared to the surrounding healthy
tissues, nearly every cancer type at advanced stages holds large hypomethylated regions [4], along with
the DNA hypermethylation detectable at distinct loci.

This general conclusion mainly results from comparisons between heterogenous tissue specimens
(tumor vs surrounding mucosa), rather than specific cell types. However, multiple lines of evidence
show that DNA hypomethylation further correlates with the cancer-cell-type specificity and tumor
progression stages. For example, recent works based on the murine Apcmin model of intestinal
tumorigenesis, indicate that DMRs (differentially methylated regions) contribute to the distinction
between the early epigenetic alterations occurring in adenomas, compared to the late events promoting
tumor progression. These analyses reveal a DNA methylation signature partly conserved in human
colorectal cancer [5]. Remarkably, the same model system also highlights the role of the altered DNA
methylation in mediating the neoplastic phenotype consequent to the Apc functional loss [6].

As summarized in Figure 1, global decrease in DNA methylation and site-specific DNA
hypermethylation of promoter-associated CGIs represent common features of the cancer-associated
epigenetic landscape. While the genome-wide DNA hypomethylation is associated with oncogene
activation and chromosomal instability, the CGIs hypermethylation is linked with repressive chromatin
modifications and silencing of tumor suppressor genes (TSG) [7].

The hypomethylated CpGs, which affect both transcription and genome stability, are concentrated
in very large hypomethylated domains spreading across vast regions of the cancer cell genome.
Hypomethylated blocks largely overlap with LOCKs (large organized chromatin K-modifications
marked by H3K27me3 and H3K9me2/me3) and LADs (lamina-associated domains) [8], which represent
genomic regions packaged into repressive chromatin structures extensively lost in cancer cells [9].
DNA hypomethylation mainly occurs in regions depleted of genes and enriched for cancer-specific
histone-lysine N-methyltransferase EZH2 (enhancer of zest homologue 2) binding and repressive
marks. Gene-poor domains encompassing constitutively repressed regions are recruited at the nuclear
periphery trough lamina association. The repatterning of DNA methylation and heterochromatin
structures (loss of histone methylation within LADs and LOCKs) is integrated with an extensive
reorganization of the nuclear architecture, with an impact on cancer-associated gene expression [10].

DNA hypomethylation contributes to genomic instability through mechanisms reflecting a whole
reorganization of the global genome architecture. In cancer cells, DNA hypomethylation corresponds
to hotspots of chromosomal breaks and largely overlaps with repetitive sequences localized within
centromeric, pericentromeric, and subtelomeric chromosomal regions, thus resulting in the reactivation
of repeat elements. Reactivation of centromeric satellite repeats (microsatellites) and dormant repeat
elements, such as the long interspersed nuclear elements (LINEs) is a major determinant of chromosomal
instability. Moreover, DNA hypomethylation of LINEs and other transposable elements increases
the odds of transposition to other genetic loci, thus contributing to genomic rearrangements by
retrotransposition [11].

In addition to the well-established effects of large-scale DNA hypomethylation on genome
architecture and chromosomal instability, recent analyses point to the specific function of DNA
hypomethylation of distal regulatory sites as a determinant of cancer gene dysregulation [12].
Genome-wide methylome analyses in a large number of normal and neoplastic cell types reveal
that, in addition to the profile of histone modifications, transcription factors binding and chromatin
looping, pairing between enhancers, and cognate genes can be inferred from DNA methylation data.
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Importantly, the hypomethylation of a large number of enhancers is associated with overexpression of
key subsets (based on gene ontology) of cancer-related genes [12].
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Figure 1. Scheme of aberrant DNA methylation in cancer cells. Left (orange): Locus-specific
hypermethylation of CpG island in promoter sequences leads to transcriptional inactivation of tumor
suppressor genes in cancer cells. Right (green): Global cancer-associated hypomethylation affects
both unique and repeated sequences. Hypomethylation of unique sequences participates to the
activation of oncogenes, mediated by transcriptional enhancers and LOI of imprinted genes involved
in cell growth control and tumorigenesis. Hypomethylation of tandem repeats (centromeric and
juxta-centromeric satellite DNA), interspersed repeats (Alu and LINE-1), and transposable elements
is mainly responsible for chromosomal instability and genomic rearrangements. Loss of DNA
methylation within heterochromatic regions corresponding to the LOCKs and LADs (exhibiting high
DNA methylation levels and association with nuclear membrane in nonneoplastic cells), results in
structural reorganization of large heterochromatin blocks and disorganization of the nuclear membrane.

Recent genome-wide analyses (bisulfite sequencing of 13 human samples and further validation
on almost 700 samples from TCGA (the Cancer Genome Atlas) have been focused on super-enhancer
regions, defined as clusters of transcriptional enhancers exhibiting maximal levels of histone H3K27
acetylation and BRD4 recruitment [13]. Most super-enhancers, including the cancer-associated
super-enhancers controlling the expression of key oncogenic drivers [14], exhibit altered DNA
methylation profiles associated with transcriptional silencing or overexpression of corresponding
genes [15] in both solid and hematopoietic cancers [16].

The causal links between cancer-associated enhancer hypomethylation are supported by analysis
of enhancer-associated DMRs in various tumors. In hepatic carcinogenesis, among 369 differentially
methylated enhancers, a key role is played by the recurrently hypomethylated enhancer of CEBPB
(encoding for C/EBPbeta, CCAAT/enhancer-binding protein beta), representing a major driver of global
transcriptional reprogramming in Hepatocellular carcinoma (HCC) tumor progression [17].

Hypermethylation of promoter-associated CGIs likely represents the best studied epigenetic
change in tumorigenesis. CGIs are genomic regions at least 200 bp long, with 50% GC dinucleotides
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and an observed-to-expected CpG ratio > 0.6. CGIs are flanked on both sides by (approx. 2kb-long) CGI
shores, regions of DNA with a low density of CpG dinucleotides, where most of the cancer-associated
methylation differences are detectable [8].

Hypermethylation of promoter-associated CGIs has been predominantly associated with the
transcriptional silencing of TSGs or mismatch repair genes involved in most cancer-relevant
pathways [18]. DNA methylation of CGIs results in transcriptional repression mainly by indirect
mechanisms, mediated by the recruitment of chromatin silencing factors. However, DNA methylation
can also affect transcriptional regulation in a direct fashion by inhibiting (or facilitating) the activity
of enhancer regions, which include TFBS (transcription factors binding sites) containing methylated
CpG dinucleotides. Methylation triggers the binding of methylated DNA-specific binding proteins to
CpG sites, attracting histone-modifying enzymes that, in turn, focally establish a silenced chromatin
state [19].

Cancers can be classified according to their degree of methylation, and the tumors with high
degrees of methylation represent a clinically and etiologically distinct group characterized by epigenetic
instability. Specifically, in some tumors the concurrent multiple promoter hypermethylation of
tumor-related genes across the genome is referred to as CIMP (CGI methylator phenotype) [20].
Remarkably, CIMP-associated cancers seem to have a distinct epidemiology, a distinct histology,
distinct precursor lesions, and distinct molecular features [21].

3. DNA Methyltransferases in Malignant Transformation

The cancer-associated epigenomic reprogramming, involving global DNA hypomethylation
and reorganization of heterochromatic regions and hypermethylation of promoter-associated CGIs
and CIMP, results from somatic genetic mutations and/or expression changes of various epigenetic
regulators [22]. Among DNA methylation modifiers, such as DNA methyltransferases (DNMTs) [23],
DNMT1 preferentially methylates hemimethylated CpG sites and maintains methylation following
cell division, while DNMT3A and DNMT3B, which recognize both unmethylated and hemimethylated
sites, are responsible for de novo methylation at unmethylated CpG sites. Given their functions in both
the establishment and maintenance of genomic DNA methylation [24,25] DNMT3A and DNMT3B
critically contribute to the aberrant cancer-associated methylation patterns.

5-hydroxymethylcytosine (5-hmC) is a recently identified cytosine modification, resulting from the
oxidation of 5-mC, catalyzed by the TET family of methylcytosine dioxygenases (TET1, TET2, and TET3).
TET enzymes are responsible for the successive oxidation of 5-mC to 5hmC, 5fC (5-formylcytosine), and
5caC (5-carboxylcytosine). These residues are the intermediates in the demethylation process in which
the TDG (thymine DNA glycosylase), by hydrolyzing the bond between the base and deoxyribose ring,
produces an AP (A-Pyrimidinic) site that is replaced by an unmethylated cytosine by BER (base-excision
repair) [26,27].

Mutations of DNMTs and the resulting dysregulation of genomic methylation are involved in
neoplastic transformation and tumor progression. DNMTs abnormalities are associated with a large
variety of tumors in which they cause aberrant patterns of DNA methylation [28]. Common lesions
affecting the DNMTs genes include overexpression, mutation, and deletion.

In agreement with the DNMT3A role in hematopoietic stem cell differentiation [29], DNMT3A
mutations are prevalent in lymphoid [30] and myeloid malignancies [31,32].

In a variety of tumors (esophageal squamous cell carcinoma, HCC, sporadic breast tumors, and
colon microadenomas) overexpression rather than mutation of DNMTs (DNMT1, DNMT3A, and
DNMT3B) results in hypermethylation and oncogenic activation. Heterogeneous degrees of DNMT1
overexpression are associated with primary colon cancer cells, while DNMT3B overexpression has
been related to CIMP-high colon cancer, although the overexpression of the protein not always parallels
the RNA levels [21].

More recently, the role of TET proteins in neoplastic transformation has been established by the
identification of inactivating mutations, mainly affecting TET2, in various types of cancer with a higher
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prevalence of hematological malignancies with respect to solid tumors [26,27]. Moreover, mutations of
the IDH1/2 genes, encoding the isocitric dehydrogenases metabolic enzymes, result in the accumulation
of 2-hydroxyglutarate, which inhibits the TET protein enzyme activity. The evidence that in some
tumors, such as AML (acute myeloid leukemia) TET2 and IDH mutations are mutually exclusive,
support their involvement in the same pathway. Accordingly, the TET2- and IDH-mutated clinical
samples exhibit similar DNA methylation profiles [33,34].

Despite the number of mechanistic aspects of tumor-associated DNA demethylation that deserve
further elucidation, data from model organisms supports the oncogenic function of the loss of
DNA methylation. A seminal evidence has been provided by mouse models in which a strong
hypomorphic allele or deletion of Dnmt1 causes DNA hypomethylation and genomic instability
leading to aggressive T-cell-induced tumorigenesis, associated with increased mutation rates and
aneuploidies [35]. Functional studies in mouse models of colon and prostate tumorigenesis have
suggested a tumor suppressor function for Dnmt1, whose reduction resulted in increased tumor
incidence. In addition, the lack of de novo methyltransferase activity accelerates oncogene-driven
carcinogenesis, indicating that also Dnmt3a and Dnmt3b may act as oncosuppressor genes [36].

Nevertheless, the role of maintenance methylation in tumor development is controversial,
since Dnmt1 can exert oncosuppressor or tumor promoter activity depending on the cancer cell context.
In murine models, the MYC transgene induces T-cell lymphomagenesis, while the MLL-AF9 (mixed
lineage leukemia-ALL1-fused gene from chromosome 9) chimeric oncoprotein drives AML. Loss
of Dnmt1 delays lymphomagenesis and leukemogenesis by suppressing normal hematopoiesis and
impairing tumor cell proliferation and leukemic stem cell self-renewal. Therefore, in this context,
DNMT1 may be important for tumor maintenance [36,37]. The increased DNMT1 expression, observed
in subsets of human T-cell, B-cell, and myeloid malignancies, further supports this role. Moreover,
although somatic mutations of DNMTs genes have been described in many tumors and related to
aggressiveness and therapeutic resistance, the frequency of DNMT1 somatic mutations is relatively
low (about 3% of colorectal adenocarcinoma and 1.6% of prostate cancer as well as a small subset of
cases of AML) [38–40].

4. The Role of Epimutations in Tumorigenesis and Heritability of Cancer

Epigenetic aberrations represent an emerging mechanism that plays a pivotal role in carcinogenesis.
The term epimutation [41] describes the altered epigenetic marks that, similar to genetic mutations,
result in transcriptional silencing of active genes or activation of silent genes, thus affecting every stage
of tumorigenesis.

Epimutations include primary epimutations (such as promoter methylation) where no DNA
alterations are detected, and secondary epimutations, occurring in concert with (and caused by) a
local cis-acting DNA alterations [42]. Inheritable epimutations occur at the parental germline level and
are often linked to cis-acting genetic mutations. Epimutations due to germline variants are widely
distributed in all normal somatic tissues. Constitutional epimutations are epigenetic abnormalities
arising in early stages of embryonic development and result in a mosaic of both mitotically and
meiotically heritable changes. Somatic (de novo) epimutations accumulate in somatic cells in response
to environmental stresses and/or ageing. In cancer-affected individuals, epigenetic abnormalities can
be selectively found in tumor cells or detected in preneoplastic lesions as well in macroscopically
normal tissues adjacent to or within the same organ as the tumor site. The detection of cancer-related
somatic epitypes in normal tissues strongly suggests that some epigenetic alterations are acquired
prior to carcinogenesis. Somatic epitypes have also been observed in cancer-free individuals and
associated with ageing [42]. Environmental factors, including DNA damaging agents, such as ROS
(reactive oxygen species), are implicated in these mechanisms. In particular, oxidative damage can
target various complexes containing DNA methyltransferases along with the histone deacetylase SIRT1
and Polycomb members (histone methyltransferases) to the promoter-associated CGIs [43].
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Somatic epimutations can participate to cancer initiation or contribute to cancer progression by
activating oncogenes and prometastatic genes and/or by inactivating growth-inhibitory genes or key
TSGs. Silencing of TSGs by de novo aberrant promoter DNA hypermethylation is an early oncogenic
event that contributes to clonal expansion of the preneoplastic cell populations and precedes the onset
of malignant growth. Epigenetic abnormalities can also represent secondary consequence of neoplastic
transformation due to somatic genetic mutations hitting some epigenetic regulator(s). Germline and
constitutional epimutations can precede and predispose to cancer development and/or represent a
tumor-initiating event. Therefore, constitutional and germline epimutations provide an alternative
mechanism to genetic mutation for cancer predisposition and inheritability, thus contributing to the
individual cancer susceptibility. However, evidence linking epimutations to cancer risk has been
reported for a limited number of genes [42].

Observational studies in cancer-affected families point to the possible role of intergenerational
inheritability of constitutional epimutation in human tumorigenesis. Loss of imprinting (LOI) in Wilms’
tumors represents a seminal example of constitutional epimutation. LOI refers to the altered methylation
states leading to either biallelic expression or complete silencing of the genes that are normally expressed
monoallelically in a parent-of-origin-specific manner. A paradigmatic example is the dysregulated
H19-IGF2 genomic imprinting in Wilms’ tumor. Abnormal methylation of the imprinting control region
(ICR) on the maternal allele leads to LOI of the H19-ICR locus. The consequently reduced expression
of the maternally expressed noncoding transcript H19 allows the activation of IGF2. Therefore, H19
works as a tumor suppressor, by preventing the biallelic expression of IGF2 [44].

5. DNA Methylation in the Control of Tumor Suppressor Genes

The tumor suppressor genes silenced by aberrant promoter hypermethylation encode a wide range
of protein products, including cell cycle inhibitors (INK4A/p16 and Rb), DNA repair factors, detoxifying
enzymes (GSTP1, glutathione S-transferase Pi 1), angiogenesis inhibitors (VHL, Von Hippel–Lindau
tumor suppressor and THBS1, thrombospondin 1), cell–cell adhesion receptors (CDH1, cadherin-1),
metalloprotease inhibitors (TIMP3, tissue inhibitor of metalloproteinases 3), and many others [45,46].
Moreover, in addition to protein-coding genes, DNA hypermethylation is critically implicated in
transcriptional downregulation of noncoding RNAs, such as miRNAs (see below).

In agreement with the Knudson two-hit hypothesis [47], hypermethylation of promoter regions
often represents the second hit, responsible for the loss of the second allele and consequent inactivation
of a wide range of TSGs. A prototype example is represented by the promoter hypermethylation of the
CDKN2A (cyclin-dependent kinase inhibitor 2A) gene, encoding the INK4A/p16 cell cycle inhibitor,
blocking the CDK4/6 activity. CDKN2A promoter hypermethylation is responsible for the inactivation of
the wild-type allele in CRC cells in which the other allele has been lost by deletion. INK4A methylation
and loss of p16 expression is an early event in breast and lung cancer (NSCLC, non-small-cell lung
carcinoma). Accordingly, in breast cancer specimens, INK4a promoter hypermethylation is detectable
even in histologically normal human mammary epithelia [48]. Inactivation of the second allele of the
tumor suppressor gene RB1 in human retinoblastoma represents another key example of promoter
hypermethylation as the second hit. Similar mechanisms affect various TSGs in tumors associated
with familial cancer syndromes caused by heterozygous germline mutations [49].

The major TSGs implicated in DNA repair mechanisms include MLH1 (mutL homolog-1), MSH2
(mutS homolog 2), MGMT (O6-methylguanine-DNA methyltransferase), and BRCA1/2 (breast cancer
gene 1 and 2) [18].

MLH1 promoter hypermethylation and epigenetic silencing is implicated in different types of
cancers characterized by mismatch repair (MMR) deficiency, which causes insertions or deletions
in repeated sequences. Microsatellite instability (MSI) is detected in 90% of hereditary form and
10–15% of sporadic CRCs (colorectal cancers). HNPCC (hereditary nonpolyposis colorectal cancer) or
Lynch syndrome is mainly due to germline pathogenic variant in MLH1 or MSH2 mismatch-repair
genes [50], except for a subset of patients in which CRC predisposition is transmitted by constitutional
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epimutations affecting the promoter of MLH1 [51]. Nevertheless, compared to germline genetic
mutations, low-level constitutional MLH1 methylation occurs quite rarely in hereditary forms (Lynch
syndrome) and cancer risk associated with the epigenetic mosaicism needs to be ascertained. In contrast,
MLH1 hypermethylation is highly frequent in sporadic CRC with MSI. Therefore, methylated MLH1
can represent a specific marker for sporadic MSI tumors, which can be used to select patients for
genetic testing for Lynch syndrome [51].

While methylation of the promoter region of the MSH2 mismatch-repair gene is very frequent
and associated with relapse in multiple cancers, constitutional MSH2 epimutation in families with
Lynch syndrome is a rare event [52]. Remarkably, MSH2 methylation in colon mucosa and stemming
CRC cells has been found associated with a deletion in an upstream gene (encoding EpCAM, epithelial
cellular adhesion molecule) [53].

Similarly, in hereditary CRC no germline or constitutional epimutations have been detected
so far in the MGMT gene, encoding the O-6-methylguanine-DNA methyltransferase, essential for
reversing the addition of alkyl groups to guanine residues. Therefore, its involvement in CRC
predisposition remains unexplored and warrants further research [22,54]. In some patients, MGMT
promoter methylation is found associated with a SNP localized in the first exon [55].

BRCA1, responsible for the chromosomal repair of double-strand breaks, is critically involved
in hereditary breast cancer. BRCA1 promoter methylation has been reported in 30–35% of all
triple-negative breast cancers with germline BRCA1/2 wild-type status, mainly the basal-like subtype.
BRCA1 methylation in endoderm- and mesoderm-derived normal tissues both in patients and in
cancer-free individuals supports the incidence of constitutional epimutations (reviewed in [22]).
In some cases, epigenetic silencing of BRCA1 is found associated with a dominantly inherited 5’-UTR
variant [56].

Genome-wide DNA sequencing and methylome analyses made available by international
consortia (such as the TCGA project), confirm the much higher frequency of tumor-associated
epigenetic changes compared to genetic mutations. The number of genes silenced by cancer-associated
promoter hypermethylation has dramatically increased during the years, reaching almost 10% of
the CGI-containing promoters. Therefore, genome-wide CGIs methylation profiling, in addition
to providing novel biomarkers for diagnosis and prognostic predictions, is a valuable tool for the
identification of novel oncosuppressor genes. For example, analyses of MLH1 and CDKN2A(p16)
methylation combined with the CIMP status exhibit clinical and prognostic value in colorectal
cancer [57].

In addition to CRC, MLH1 promoter methylation is a well-established biomarker for multiple
solid tumors, including esophageal, NSCL, gastric, bladder, and papillary thyroid cancer. In CRC,
methylated MLH1 is one of the major epigenetic biomarkers along with other genes involved in the tumor
progression and metastasis, such as CDKN2A/p16(INK4A), CDKN2A/p14(ARF), MGMT, TIMP, THBS1
3, and THSD1 (thrombospondin type 1 domain containing 1), identified in genome-wide screening for
methylation-silenced genes, along with meta-analysis of clinical data. CDKN2A hypermethylation
correlates with tumor progression, metastasis, and overall survival, thus representing a promising
diagnostic and prognostic biomarker in HNSCC (head and neck squamous cell carcinoma) [58].

In addition to the well-known tumor suppressors, novel genes have emerged as candidate TSGs
and novel biomarkers. For example, aberrant methylation and silencing of neuropeptides and GPCRs,
including galanin and galanin receptors (GALR1 and GALR2) [59], tachykinin-1 and tachykinin receptor
(TACR1) [60], and somatostatin and somatostatin receptor (SST and SSTR1) [61] are common in HNSCC.
SST hypermethylation is also detectable in esophageal, gastric, colon, and renal cancer in which the
prognostic power of GALR1 and GALR2 epigenetic modifications is further confirmed [62]. Among the
tumor-specific epigenetic signatures, analyses of four methylation-silenced genes in a large series of
patients of laryngeal and hypopharyngeal cancer shows that hypermethylation in promoter regions of
MGMT (90%), DAPK (death-associated protein kinase) (91%) and CDH1 (E-cadherin) (81%) (but not
p16) is a frequent event, although not predictive of mortality or second primary cancer [63].
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The prognostic relevance of the above-mentioned epigenetic biomarkers is further highlighted by
their predictive role in the responses to chemotherapeutic treatments. MLH1 hypermethylation confers
resistance to multiple chemotherapeutic drugs in ovarian and colorectal cancer. In human gliomas,
MGMT downregulation correlates with poor prognosis but also with drug-responsiveness. Accordingly
MGMT promoter methylation is associated with sensitivity to alkylating agents (temozolomide) [64].
Similarly, the methylation-mediated silencing of BRCA genes predicts sensitivity to PARP inhibitors,
which are highly effective in the treatment of BRCA-positive breast and ovarian cancers (reviewed
in [65]).

Recent strategies rely on the genome-wide methylation profiling aimed at the identification of
novel prognostic signatures. This is crucial for discriminating the prospectively localized from the
tumors at high risk for metastatic progression.

Representative examples include breast and prostate cancer. Genome-wide DNA methylation
profiles have been generated from almost 300 tumor tissue specimens and validated in independent
datasets and in large numbers of samples from TCGA. These studies have provided a prognostic
signature based on methylation changes of 15 CGIs, which correlates with survival of patients diagnosed
with invasive breast tumors or DCIS (ductal carcinoma in situ) [66]. Similarly, in prostate cancer, eight
differentially methylated CGIs, which allow to distinguish the metastatic-lethal from nonrecurrent
tumors, have been identified by methylome analysis of surgical specimens from large cohorts of
prostate cancer patients followed up for at least 5 years [67].

Among the innovative protocols aimed at minimally invasive cancer diagnosis, the
immunoprecipitation-based cfMeDIP-seq (cell-free methylated DNA immuno-precipitation sequencing)
allows to perform cost-effective methylome analyses on small amounts of circulating cfDNA (cell-free
DNA). Thus, the large-scale DNA methylation changes allow the detection and classification of several
tumor types in patients with early-stage disease [68].

6. DNA Methylation in EMT and Metastasis Mechanisms

Metastatic colonization is a complex process, resulting from multiple sequential steps: cells
detachment from primary tumor, tissue invasion, intravasation, survival in blood or lymphatic stream,
extravasation, and formation of micro-metastases that eventually progress to clinically apparent
metastases (Figure 2).

According to the current model of parallel progression of primary tumors and metastasis [69],
based on the original Stephen Paget’s “seed and soil” hypothesis [70], metastasis arises from early
disseminated tumor cells, which undergo a relatively inefficient transition from micrometastasis to
clinically evident lesions. Tumor dissemination is characterized by highly dynamic changes of cancer
cell phenotypes during the steps leading to overt metastatic growth. Despite extensive efforts aimed
at estimating the genetic heterogeneity between primary tumors and metastases, metastasis-specific
driver mutations have been rarely identified. Thus, while genetic alterations are unlikely to play major
roles in metastatic transition, the dynamic nature of the epigenetic modifications points to their key
contribution to the multistep metastasis process [71,72].

EMT, along with the reverse mechanism (MET, mesenchymal-to-epithelial transition), represents
the trans-differentiation process, which allows cancer cells to switch reversibly between epithelial
and mesenchymal phenotypes [73]. EMT depends on the reactivation of embryonic transcriptional
programs, driven by a complex interplay between EMT-inducing transcription factors (EMT-TFs) and
miRNAs [74,75]. Importantly, transition to the mesenchymal phenotype corresponds to the gain of
stem-like features, which characterize the therapeutically resistant fraction of tumor-initiating cells
(CSCs, cancer stem cells) [76].
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Among the innovative protocols aimed at minimally invasive cancer diagnosis, the 
immunoprecipitation-based cfMeDIP-seq (cell-free methylated DNA immuno-precipitation 
sequencing) allows to perform cost-effective methylome analyses on small amounts of circulating 
cfDNA (cell-free DNA). Thus, the large-scale DNA methylation changes allow the detection and 
classification of several tumor types in patients with early-stage disease [68]. 

6. DNA Methylation in EMT and Metastasis Mechanisms 

Metastatic colonization is a complex process, resulting from multiple sequential steps: cells 
detachment from primary tumor, tissue invasion, intravasation, survival in blood or lymphatic 
stream, extravasation, and formation of micro-metastases that eventually progress to clinically 
apparent metastases (Figure 2). 

 
Figure 2. Scheme of the sequential steps of cancer cell dissemination from primary tumor to distant
metastases. EMT indicates the Epithelial-to-Mesenchymal Transition required for the gain of invasive
properties and anoikis resistance. MET (Mesenchymal-to-Epithelial Transition) refers to the reversion
to the epithelial phenotype at sites of metastatic tumor growth. The numbers indicate various strategies
for studying the changes of DNA methylation in the multistep metastatic process. (1) DNA methylome
and RNA expression profiling in metastatic tissues vs primary tumor specimens; (2) liquid biopsy:
DNA methylome analysis in circulating tumor DNA (in cfDNA extracted from blood samples);
(3) liquid biopsy: enrichment by microfluidics devices of (single vs clustered) CTCs from blood samples;
(4) detection of EMT and cancer-stem-cell markers, by FACS analyses and cell sorting; (5) DNA
methylome and RNA expression profiling in various CTC subpopulations (cancer-stem-cell assays:
in vitro colonies and spheroids formation).

Loss of the major component of adherens junctions, E-cadherin (CDH1), which is essential for the
intercellular contacts supporting epithelial integrity, represents one of the key hallmarks of EMT [77].

One of the early evidences of the CDH1 CGI hypermethylation was obtained in invasive
E-cadherin-negative variants of breast and prostate cancer cell lines [78] and subsequently confirmed in
other tumors, including oral [79] and breast [80] cancer. Furthermore, during the metastatic progression
of PTC (papillary thyroid cancer) the dynamic changes of CDH1 epigenetic silencing are functionally
related with the in vitro thyroid cancer cell invasiveness the in vivo E-cadherin downregulation in
lymph nodal metastases [81].

The well characterized CDH1 transcriptional repression by various families of EMT-inducing
transcription factors (Twist, Snail, ZEB1/2) raises the question on the relationship between EMT
transcriptional control and epigenetic modifications at the CDH1 locus. The time-dependent response
of immortalized human mammary cells to sustained EMT-inducing treatments shows that E-cadherin
transcriptional repression precedes the methylation of the CDH1 CGI [82]. The in vitro induced CDH1
silencing strongly correlates with the promoter methylation of other genes, such as ESR1 (encoding
for the estrogen receptor alpha), silenced in a subset of invasive breast cancer (TNBC, triple-negative
breast cancer). Accordingly, both CDH1 and ESR1 are represented in a signature of genes silenced by
promoter methylation, which characterizes the TNBC, basal-like, and claudin-low breast cancers [83].
These results confirm previous analyses showing that six members of the nine-genes signature
are downregulated through promoter methylation in a subset of breast cancer cell lines exhibiting
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a hyper-methylator phenotype consequent to DNMT3B overexpression. The hyper-methylator
phenotype, characterizing a distinct cluster of basal-like breast cancers, co-segregates with the worst
prognosis due to the high rate of metastases [84]. Moreover, the evidence that selected CGIs controlling
specific gene promoters (e.g., ESR1 and TWIST1) are targeted by DNA methylation in response to
microenvironmental TGF-beta favors the role of deterministic vs stochastic mechanisms, as responsible
for the epigenetic reprogramming in the phenotypically plastic cell populations undergoing EMT [82].

Mesenchymal transformation of human breast cancer cells can take place in vivo, without TGF-beta
treatment, in a mouse xenograft model of HRAS-transformed (MCF10A-derived) cell lines. In this breast
cancer progression system, increased activity of the TGF-beta-Smad2 signaling pathway is associated
with the DNA methylation-mediated silencing of a gene subset including CDH1. Along with the
mesenchymal cancer cell phenotype, inhibition of TGF-beta signaling is able to revert the methylation
status and expression of select genes by inhibiting the DNMT1 and DNMT3B binding to the CDH1 and
other promoter regions [85].

The global changes of DNA methylome in the TGF-beta induced EMT in ovarian cancer cells show
that the promoter methylation and decreased expression of EMT hallmarks, such as CDH1 and COL1A1
(Collagen Alpha-1 Chain), are paralleled by the TGF-beta-induced expression and activity of DNMTs
(1, 3A and 3B). Accordingly, the treatment with a DNMT inhibitor prevents the TGF-beta-induced
EMT [86].

Among the well-characterized EMT-inducing factors, hypoxia, as TGF-beta, results in a global
epigenetic reprogramming and changes of the DNA methylome. The hypoxia-induced EMT depends
on the demethylation of a subset of genes (with a major role played by INSIG1, insulin-induced gene 1)
by the TET1 dioxygenase, induced by hypoxia in multiple cancer cell lines. Interestingly, in addition
to its role in demethylating 5-mC, TET1 also works as a coactivator of HIF1, participating to the
transcriptional induction of the hypoxia-responsive genes [87].

In a mouse cell line, in which EMT is driven by the constitutive expression of a nonhistone
chromatin component (HMGI-C, encoded by HMGA2), the HMGI-C chromatin remodeling activity
contributes to the Cdh1 hypermethylation by recruiting Dnmt3a on the Cdh1 promoter, in addition to
upregulating the Dnmt3a expression [88].

Moreover, E-cadherin silencing is clinically relevant in stomach tumorigenesis in which
CDH1 promoter methylation represents the second hit following the CDH1 mutation, in both
hereditary [89] and sporadic [90] diffuse gastric cancer (GC). The expression of the DNMT3A isoform
b (but not DNMT3Aa) correlates with TNM stage and lymph nodal metastasis in GC patients.
Mechanistically, DNMT3Ab promotes EMT, associated with DNA hypermethylation and repressive
histone modifications (H3K9me2 and H3K27me3) by cooperating with the EMT-TF SNAIL at the CDH1
promoter in response to TGF-beta. While DNMT3Ab inhibition reduces EMT and metastasis, ectopic
DNMT3Ab affects the expression of key metastasis-related genes, encoding for extracellular proteases,
fibronectin, and tight junction components. In agreement with similar observations with DNMT3Aa in
other tumors, DNMT3Ab impacts the TGF-beta-Smad pathway, and DNMT3Ab inhibition abrogates
the TGF-beta-induced EMT [91].

In addition to E-cadherin (CDH1), several relevant metastasis suppressor genes are differentially
methylated and transcriptionally silenced in metastatic lesions with respect to primary tumors (Table 1).

The nucleoside diphosphate kinase NM23, one of the first metastasis suppressors identified in
melanoma and breast cancer, inhibits the in vitro invasiveness of multiple cancer cell types. NM23
in vivo expression inversely correlates with the methylation of one of two promoter-flanking CGIs [92].
NM23 exhibits multiple biochemical activities, including the inhibition of the MEK/ERK signaling
pathways, resulting from the NM23-mediated histidine phosphorylation of KSR1 (kinase suppressor
of Ras1), one of the scaffold factors of the RAFMEK/ERK cascade [93].
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RKIP (Raf kinase inhibitory protein) is another metastasis suppressor impinging on the proinvasive
MAPK pathway, by inhibiting the Raf-1 (but not B-Raf) kinase activity [94]. The prognostically
significant RKIP promoter hypermethylation has been characterized in breast, esophageal, gastric
carcinomas, and other cancers in which loss of RKIP expression correlates with poor prognosis. In both
in vitro and in vivo breast cancer models, re-expression of RKIP blocks multiple steps of invasion
and metastasis through a signaling cascade involving LIN28 and let-7 downstream to the MAPK
pathway. Interestingly, RKIP inhibits the invasive potential of breast cancer cells without affecting
tumor growth [95].

Among the more recently characterized metastasis suppressors affecting the MAPK
pathway, the SHISA3 gene product inhibits the TRIM21 (tripartite motif containing 21 E3
ubiquitin-proteinigase)-dependent degradation of SGSM1 (small G-protein signaling modulator 1),
which negatively controls the MEK/ERK signaling. When SHISA3 is silenced, the increased SGSM1
polyubiquitylation and degradation abrogates one of the brakes impinging on the MAPK pathway.
Accordingly, SHISA3 is downregulated in various tumor types, including nasopharyngeal carcinoma
(NPC) in which the SHISA3 promoter hypermethylation correlates with the SHISA3 ability to suppress
the NPC in vitro invasion and in vivo lymph node metastasis [96].

The metastasis suppressor RECK encodes for a membrane glycoprotein (RECK, reversion-inducing
cysteine-rich protein with kazal motifs), which negatively regulates the ECM-degrading
metalloproteases. RECK is silenced by DNMT3b-mediated promoter methylation in lung cancer
cells in which RECK suppresses invasiveness [97] and inversely correlates with lymph node metastasis
in NSCLC [98], PDAC (pancreatic ductal adenocarcinoma) [99], osteosarcoma [100], esophageal [101],
and breast cancer [102].

Other metastasis-suppressor gene products act as transcriptional regulators. In particular, BRMS1
(breast cancer metastasis suppressor 1)—which inhibits breast (but also ovarian, melanoma, NSCLC,
and bladder) cancer, in addition to cancer metastasis without affecting in vitro and in vivo tumor
growth—participates to the mSin3 histone deacetylase transcriptional repressor complex. Interestingly,
in addition to correlating with the pathological staging in breast cancer and NSCLC [103,104],
the BRMS1 (breast cancer metastasis suppressor 1) promoter methylation represents a relevant example
of prognostic biomarker detectable by liquid biopsies in both cfDNA [104] and CTCs (circulating tumor
cells) [105].

The prognostic value of DNA methylation analysis in cfDNA has been recently applied to the
prediction of therapeutic resistance in multiple solid tumors. In addition to the ability to disseminate
and metastasize, the EMT also confers resistance to both cytotoxic and targeted therapies. Since the
DNA methylation-driven mesenchymal transition correlates with therapeutic resistance, monitoring of
DNA methylation changes in EMT genes allows to predict the tumor responsiveness and acquired
resistance to sorafenib in patients with advanced hepatocellular carcinoma [106]. The role of DNA
methylome analyses and liquid biopsies, along with the detection of EMT markers, is summarized in
Figure 2.

Table 1. Representative EMT and metastasis-suppressor protein-coding genes silenced by DNA methylation.

Protein Gene Function Cancer type Ref

E-cadherin CDH1

Calcium-dependent adhesion protein (adherens junction).

Cell-cell adhesions, motility and proliferation of epithelial cells.

Breast And Prostate [78]
Oral [79]

Breast [80,
85]

Basal-like Breast [84]
Papillary Thyroid

Carcinoma [81]

TWIST1 TWIST1

Basic helix–loop–helix transcription factor binding to E box
sequences.

Cell lineage determination and differentiation.
EMT-TF

Multiple
Adenocarcinomas [82]
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Table 1. Cont.

Protein Gene Function Cancer type Ref

NM23 NME1 Nucleoside diphosphate kinase multifunctional protein
metastasis suppressor gene. Melanoma and Breast [92]

RKIP RKIP
Member of phosphatidyl-ethanolamine-binding-protein (PEBP)

family.
Modulator of intracellular signaling pathways.

Breast, Esophageal,
and Gastric
Carcinomas

[95]

SHISA3 SHISA3
Member of a family of transmembrane adaptors modulating both

WNT and FGF signaling.
Maturation of presomitic mesoderm cells.

Nasopharyngeal
Carcinoma [96]

RECK RECK

Membrane-anchored cysteine-rich glycoprotein with
protease-inhibitor-like domains.

Negative regulator for matrix metalloproteinase-9.
Tumor invasion inhibition.

Lung Cancer [97]
NSCLC [98]

PDAC (Pancreas) [99]
Osteosarcoma [100]

Esophageal [101]
Breast [102]

BRMS1 BRMS1
Transcriptional Repressor.

Anoikis Regulator.
Metastasis Suppressor.

Breast [103]

NSCLC [104]

7. DNA Methylation in EMT and Metastasis: Roles of miRNAs

In addition to protein-coding genes, the search for metastasis suppressors has been extended to
noncoding RNAs. By correlating the methylation of CGIs and expression profiles of miRNA-containing
genes in metastatic cancer cell lines treated with demethylating drugs, several miRNAs reactivated by
promoter demethylation were identified and characterized for their in vitro and in vivo anti-invasive
and antimetastatic activity [107] (Table 2).

The interplay between the EMT-TFs and miRNAs is a major control mechanism of EMT,
invasion and metastasis. The EMT-TFs (E-cadherin repressors) are connected to miRNAs by
double-negative feedback loops in which the miRNA targets the EMT-TF, which in turn, transcriptionally
inhibits the cognate miRNA. Well-studied examples include the miR-200-ZEB1/2, miR-34a/b/c-SNAIL,
miR-15a/16-1-AP4, etc. These regulatory feedback loops are further controlled by the p53 tumor
suppressor, which, as transcriptional inducer of the three miRNA families (miR-200, miR-34 and
miR-15/16), shifts the balance towards the miRNAs, thus contributing to the maintenance of the
epithelial state [75,108].

During tumor progression, promoter hypermethylation is a major mechanism of silencing of the
miR-34 family of oncosuppressor miRNAs transcribed from two genetic loci, encoding for miR-34a
and miR-34bc [107,109–112]. In a variety of solid tumors, downregulation of miR-34 family members,
in addition to affecting primary tumor growth, is implicated in EMT and metastasis mechanisms and
represents a negative prognostic factor. The target transcripts that mediate the metastasis-suppressor
activity of miR-34 include, in addition to Snail1 [113], other key regulators of cancer cell invasion
and EMT, such as the Notch1 [113], IL6R, and Axl [114] receptors along with the Fra-1 [115,116] and
ZNF281 [117] transcription factors.

The miR-200 family members, encoded by two miRNA clusters localized on chromosome 1
(miR-200a, miR-200b and miR-429) and chromosome 12 (miR-200c and miR-141), are highly expressed
in cancer cells with epithelial features and downregulated in phenotypically mesenchymal cells,
in which they are repressed by the EMT-TFs ZEB1 and ZEB2. Extracellular EMT-inducing cytokines,
such as TGF-beta, transcriptionally stimulate ZEB1, and/or ZEB2, thus interrupting the miR-200-ZEB1/2
negative feedback loop. Interestingly, in an in vitro EMT cell system, prolonged TGF-beta treatment
induces the DNA methylation of the five miR-200 promoter regions [118] in agreement with the reports
on the DNA hypermethylation of the miR-200 family members in the invasive variants of various
tumors [119–121]. In invasive breast cancer, hypermethylation and silencing of the miR-200 family
members is associated with EMT features, lymph nodal metastasis and loss of ER (estrogen receptor)
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and PR (progesterone receptor) expression [122,123]. Moreover, in nontumorigenic breast basal cell
lines spontaneously undergoing EMT, hypermethylation of the miR-200c-141 locus is paralleled by the
upregulation of the EMT-TFs [124]. In summary, in a large variety of cancers, DNA methylation affects
the CDH1 transcription by both direct and indirect mechanisms, mediated by hypermethylation of
the CDH1 promoter and/or DNA hypermethylation-mediated transcriptional downregulation of the
miRNAs targeting the E-cadherin repressors (EMT-TFs).

Although E-cadherin represents the best characterized target of ZEB1/2 in EMT, the miR-200-ZEB1/2
axis also controls other key genes, such as CRB3 and LGL2, involved in the control of epithelial cell
polarity. The CGI hypermethylation, along with the associated histone modifications of the two loci
encoding the five miR-200 family members, is a dynamic process, which can be reversibly triggered
by extracellular cues, such as TGF-beta. In addition, the methylation-mediated silencing of miR-200
takes place in experimental models of liver metastasis. Accordingly, in laser micro-dissected human
colorectal cancer samples miR-200 CpG hypermethylation and silencing are detectable in mesenchymal
cells (belonging to both tumor and normal stroma) [125].

Along with miR-200 and miR-34 family members, silencing of other CpG-hypermethylated
miRNAs favors the metastatic process through several proinvasive pathways. In pancreatic cancer,
hypermethylation of the miR-124 promoter region (also observed in other tumors) correlates with
tumor progression and metastasis, through mechanisms at least partially mediated by miR-124.
miR-124 targets the RAS-superfamily GTPase Rac1, a well-characterized driver of cell motility, which
in turn, drives cell migration and invasion through the MKK4-JNK-c-Jun pathway in pancreatic cancer
cells [126].

DNA methylation is the major control mechanism of genomic imprinting. The 14q32 locus
encompasses three paternally expressed protein-coding genes and a large variety of maternally
expressed noncoding genes (lncRNAs, snoRNAs, piRNAs), also including a cluster of 54 miRNAs.
In CRC cells, both genetic and pharmacological strategies reactivate the 14q32 miRNA cluster.
Drug-induced reactivation is mediated by the MEG3 (maternally expressed gene 3)-DMR regulatory
element, which controls the transcription of the 14q32 miRNAs, through mechanisms dependent on the
recruitment of CTCF (CCCTC-binding factor) to the demethylated MEG3-DMR. Ectopic re-expression
of four members of the 14q32 miRNA cluster is sufficient to inhibit liver metastasis by colorectal cancer
cells in agreement with clinical data showing the association of increased 14q32 miRNAs expression
with limited metastatic spread and better prognosis [127].

It is well established that the EMT generates cells with properties of stem cells [76]. Accordingly,
the DNA methylation-dependent epigenetic silencing of the miR-200 family members [124], along with
the similarly regulated miR-203 [128] and miR-34c [129], contributes to the gain of stem-like features
and self-renewal ability.

Table 2. Representative EMT and metastasis-suppressor noncoding genes (miRNAs) silenced by
DNA methylation.

Family miRNA Gene Functional Target Cancer Type Ref

miR-34
miR-34a
miR-34b
miR-34c

MIR34A
MIR34B/C

SNAIL

Hematological (leukemias, lymphomas)
and solid tumors (breast-, lung-, colon-,

kidney-, bladder-, and pancreatic
carcinoma)

[107]
[109]
[110]
[111]

SNAIL/c-Met/β-catenin CRC (Colorectal) [112]
SNAIL/Notch PDAC (Pancreas) [113]

IL6R/Axl NSCLC, CRC, and Breast [114]

Fra-1
CRC (Colorectal) [115]

Breast [116]
ZNF281 CRC (Colorectal) Breast CSCs [117,129]
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Table 2. Cont.

Family miRNA Gene Functional Target Cancer Type Ref

miR-200

miR-200a
miR-200b
miR-200c
miR-141
miR-429

MIR200A
MIR200B

MIR200MIR141
MIR429

ZEB1/ZEB2

Breast [118]
Breast, Prostate [119]
NSCLC (Lung) [120]

Bladder [121]
Breast [122]
Breast [123]

CSCs (Breast) [124]

miR-124
miR-124-1
miR-124-2
miR124–3

MIR124-1
MIR124-2
MIR124-3

Rac1 PDAC (Pancreas) [126]

miR-203 miR-203a
miR-203b

MIR203a
MIR203b

NEBL, NID1, OLFML3,
PPAP2B, TFPI Breast CSCs [128]

8. Roles of DNA Methylation in CTCs and CSCs (Cancer Stem Cells)

Besides being a promising new technique for early cancer diagnosis and treatment, noninvasive
liquid biopsy has strongly impacted the studies on the role of DNA methylation, EMT, and metastasis.
In particular, various methods have been developed to detect and isolate the CTCs from easy-access
small blood samples for downstream analysis. Protocols based on physical features (size- and
density-based methods), antibody-mediated capturing (immunoaffinity-based), or functional assays
(or combinations of these methods) allow real-time information on tumor staging (metastatic vs.
nonmetastatic) and the molecular profiling of CTCs.

As expected on the basis of the role played by EMT in intravasation and anoikis-resistance,
CTCs from patients affected by the major solid tumors exhibit prevalent expression of mesenchymal vs
epithelial markers [130].

CTCs isolated from breast cancer patients include cell populations predominantly expressing
mesenchymal markers but also epithelial and E/M subpopulations, coexpressing both epithelial and
mesenchymal markers) [131]. The detection of hybrid EMT features in CSCs agrees with the concept
that EMT is not an all-or-nothing phenotypic switch but a continuum of intermediate cellular states [74].

The evidence that the mesenchymal CTCs derived from breast tumors are present as both
single cells and multicellular clusters [131] agrees with the current models, suggesting that metastatic
dissemination requires the formation of multicellular clusters (or CTMs, circulating tumor microemboli),
resulting from both homotypic and heterotypic interactions with other cell types (fibroblasts, leukocytes,
and platelets) [130]. These observations are supported by single-cell profiling of CTCs, which highlights
aspects of tumor heterogeneity not revealed by analyses of circulating cfDNA [132]. The role of DNA
methylome analyses in CTCs isolated from liquid biopsies, along with the detection of EMT markers is
summarized in Figure 2.

Recently, to understand the role of CTC clusters in metastasis mechanisms, the genome-wide
methylation landscape of single CTCs and CTC clusters has been investigated in samples from both
breast cancer patients and mouse models. One major difference is represented by the methylation of
the genomic binding sites for stemness-associated transcription factors (OCT4, NANOG, SOX2, and
SIN3A), which are specifically hypomethylated (while Polycomb target genes are hypermethylated)
in CTC clusters compared to single CTCs. Moreover, the clustering of CTCs is a determinant of
methylome remodeling and hypomethylation of the stemness TFBSs (coinciding with the activation
of respective transcriptional modules). These results were obtained by the treatments with drugs
that dissociate the CTCs clusters. Accordingly, the same drugs inhibit the formation of metastasis
in mouse models and the DNA hypomethylation profile of CTCs clusters correlates with a subset of
breast cancers exhibiting shorter PFS (progression free survival) [133].

The contrast between these findings and the key role of EMT in metastasis is only apparent if
considering the lines of evidence showing that the hybrid E/M, rather than the fully mesenchymal
phenotype, is essential for maximal tumorigenicity of TNBC cells [134]. Remarkably, the collective
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mode of invasion by the clusters of CTCs is led by a fraction of stem-like cells with the E/M hybrid
features [135]. Along with the epigenome remodeling elicited by changes of intercellular adhesion, the
same report [133] points to the relevance of the DNA hypomethylation of transcription factors binding
sites in the control of stem-like transcriptional programs in metastasizing cancer cells.

The extensive analysis of eDMRs (enhancer differentially methylated regions) in multiple datasets
representing both primary (benign and malignant) tumors shows that most methylation variation occurs
at enhancers. eDMRs analysis allows the classification of primary tumors according to the organ system
and correlates with the likelihood of metastasis. The eDMRs plasticity is associated with the prognosis
of melanoma patients. Interestingly, mimicking the melanoma bone metastasis microenvironment (by
coculture with osteoblasts) recapitulates the expression changes of the eDMRs-associated genes altered
in bone metastasis [136]. In addition, the chromatin distribution of pluripotency transcription factors,
such as SOX2 and NANOG, is higher within eDMRs than within differentially methylated CGIs or
promoters in agreement with the findings obtained in CTCs [133].

The EMT and the upregulation of pluripotency transcription factors result in the gain of
stem-like features, which characterize the CSC population, responsible for tumor initiation, metastatic
dissemination and therapeutic resistance.

Recent findings point to the key role of DNA methylation in the switch between CSCs and
non-CSCs. In CSCs, NANOG shows ubiquitous expression correlating with the hypomethylation of
two of the CGIs associated with the NANOG promoter in response to the miR-135a/DNMT1/SMYD4
axis. The switch from non-CSCs to CSCs is associated with miR-135a upregulation. miR-135a, in turn,
directly targets DNMT1, thus allowing SMYD4 to bind the unmethylated NANOG promoter and activate
its expression. Moreover, the proinflammatory cytokine TNF-alpha triggers the FOXM1 (Forkhead Box
M1)-mediated induction of miR-135a, enabling the transformation of non-CSCs (Nanog−) into CSCs
(Nanog+). Therefore, the TNF-alpha/FOXM1/miR-135a/DNMT1/SMYD4 pathway links the control of
NANOG expression to the inflammatory TME [137].

In contrast with the cancer cell stemness-associated demethylation of the NANOG promoter,
the silencing of the H1.0 (encoding the H1.0 linker histone) is required for maintenance of the
self-renewing CSCs fraction. According to single-cell gene expression and methylation analysis of the
H1F0 locus in clinical samples, compared to various TCGA datasets, in multiple tumor types H1.0 is
heterogeneously expressed in non-CSC tumor cells, while the self-renewing CSC population exhibits
the lowest levels of the protein. These changes result from differential methylation of an enhancer
region (characterized by high H3K27ac) within a CGI shore, upstream to the H1F0 promoter. The lack
of H1.0 causes the destabilization of nucleosome-DNA interactions and coordinated de-repression
of neighboring genes, resulting in the activation of transcriptional networks involved in cancer cell
self-renewal [138].

9. Concluding Remarks and Future Perspectives

We have summarized several aspects concerning the gene expression changes associated with
abnormal DNA methylation in neoplastic transformation with a focus on DNA methylation in EMT
and metastasis mechanisms.

DNA methylation represents one of the key epigenetic players, along with the recently
emerged noncoding RNAs, including the relatively well-characterized miRNAs. As above described,
the EMT-associated gene expression programs are finely tuned by multiple feedback loops involving
the major metastasis-suppressor miRNAs and several EMT-TFs.

Similarly, a novel regulatory layer is represented by the mutual regulation of miRNAs and DNA
methylation, involving the miRNA-mediated regulation of both DNMTs and methyl-CpG binding
proteins, which in turn, control the transcription of miRNA-coding genes [139]. These mechanisms
deserve future investigations in the framework of studies on DNA methylation in tumor progression
and metastasis.
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As summarized in this review, DNA methylation critically controls the expression of a wide range of
oncosuppressor and metastasis suppressors. Functional validation generally relies on the effect of global
gene reactivation by treatment with demethylating agents and/or ectopic overexpression of individual
genes. However, several recently developed methods, derived from the CRISPR-Cas9 editing tool and
based on the sequence-specific recruitment of the catalytic domain of the TET1 dioxygenase, allow the
targeted demethylation at specific sites [140]. This approach has made possible the programmable
reactivation of the promoter region of the BRCA1 tumor suppressor [141]. These strategies open novel
perspectives that will allow the fine dissection of epigenetic regulatory pathways and the design of new
therapeutic tools aimed at the selective reactivation of individual tumor suppressor genes.

The application of diagnostic and prognostic tools based on DNA methylation analyses depends
on the availability of low-cost methods for mapping DNA methylation at single-nucleotide resolution
along with genomic datasets, such as the TCGA database, which represents most tumor types in
very large cohorts of patients. The integration of genome-wide DNA methylation analyses with
expression profiling and clinical data will require increasingly powerful computational algorithms.
For example, the recently developed RESET (resource to detect epigenetically silenced and enhanced
targets in cancer) has been exploited for obtaining a pan-cancer landscape of aberrant DNA methylation,
by integrating the DNA-methylation data and cis-transcriptional changes across 6000 human tumors
from 24 cancer types [142]. By identifying the oncogenic pathways affected by epigenetic silencing and
enhancing events, these approaches will strongly contribute to be innovative therapeutical strategies.

Moreover, promising future perspectives include the studies on DNA-methylation in therapeutic
resistance. Given the role of EMT in controlling the fraction of therapeutically resistant CSCs,
it will be important to define the DNA-methylation changes implicated in the mechanisms linking
EMT, CSCs, and therapeutic resistance [143]. Accordingly, recent findings point to the role of DNA
methylation-driven EMT as a common mechanism of cross-resistance to both targeted treatments and
chemotherapy. The in vitro findings, obtained in various cancer cell types, are confirmed by clinical
findings in HCC patients in which the DNA methylation status of CGIs of EMT genes emerges as a
predictive marker of resistance to sorafenib [106].

The analyses of tumor-associated DNA methylomes in very low amounts of cfDNA is a key advantage
of liquid biopsies. This approach, however, differing from the analysis of DNA from CTCs, does not
allow us to correlate the DNA methylation changes with the cancer cell phenotypes. On the other hand,
the possibility to investigate the EMT and stem-cell markers in CTCs offers the opportunity to study the
in vivo role and prognostic correlations of the DNA methylation changes in the cell fraction implicated in
metastatic dissemination [144]. Therefore, the availability of innovative microfluidic devices and methods
for the enrichment, identification, and isolation of CTCs [145] will strongly contribute to the in vivo
studies on DNA methylation in EMT, the gain of stem-like features, and tumor dissemination.
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