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Abstract

Background: RAD51 135G.C can modify promoter activity and the penetrance of BRCA1/2 mutations, which plays vital
roles in the etiology of various cancer. To date, previous published data on the association between RAD51 135G.C
polymorphism and cancer risk remained controversial. Recent meta-analysis only analyzed RAD51 135G.C polymorphism
with breast cancer risk, but the results were also inconsistent.

Methods: A meta-analysis based on 39 case-control studies was performed to investigate the association between cancer
susceptibility and RAD51 135G.C. Odds ratios (OR) with 95% confidence intervals (CIs) were used to assess the association
in different inheritance models. Heterogeneity among studies was tested and sensitivity analysis was applied.

Results: Overall, no significant association was found between RAD51 135G.C polymorphism and cancer susceptibility in
any genetic model. In further stratified analysis, significantly elevated breast cancer risk was observed in BRCA2 mutation
carriers (recessive model: OR = 4.88, 95% CI = 1.10–21.67; additive model: OR = 4.92, 95% CI = 1.11–21.83).

Conclusions: This meta-analysis suggests that RAD51 variant 135C homozygote is associated with elevated breast cancer
risk among BRCA2 mutation carriers. Moreover, our work also points out the importance of new studies for RAD51 135G.C
association in acute myeloid leukemia, especially in Caucasians, where at least some of the covariates responsible for
heterogeneity could be controlled, to obtain a more conclusive understanding about the function of the RAD51 135G.C
polymorphism in cancer development.
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Introduction

Recently, there is growing evidence that radicals such as

reactive oxidative stress produced during metabolic process play

an important role in the DNA damage which could also be caused

by UV, ionizing radiation, as well as environmental chemical

agents and then initiate human cancer [1]. Moreover, mutagens in

living environment can produce DNA adducts, DNA damage, and

DNA strand breaks [2]. If these mutagens to DNA structures are

left un-repaired, genetic changes can accumulate, which may

result in cell-cycle dysregulation, autonomous growth and

development of invasive mechanisms, leading to carcinoma [3].

In order to maintain the integrity of the genome, mammalian cells

have developed several DNA-repair mechanisms that each deal

with a specific type of DNA damage. DNA-repair genes are, like

detoxification enzymes, responsible for preventing cancer by

protecting the integrity of the genome and are therefore

considered as cancer susceptibility genes[4,5].The association

between defective DNA-repair caused by highly penetrant

mutations in DNA repair genes on the one hand, and

chromosomal instability and cancer predisposition on the other,

is well documented for rare familial cancer syndromes like

pigmentosum (XP) and ataxia telangiectasia (A–T) [5]. In contrast

to the occurrence of these rare and highly penetrant mutations, the

human genome contains a large number of low-penetrant single-

nucleotide polymorphisms (SNPs), which make up 90% of the

naturally occurring sequence variations [6,7]. An attack from

reactive oxygen species (ROS) can result in cleavage of both DNA

strands, causing DNA double-strand breaks (DSBs). Double-strand

breaks (DSB) damage, causing cell death or loss of genetic
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material, is the most injurious lesion and responsible for cancer

development.

The RAD51 gene, a homologue of recA in Escherichia coli, has

been mapped to chromosome 15q15.1 in humans [8]. It spans

.39 kb, contains 10 exons and encodes a 339 amino acid protein

(genomic accession no: NM_133487). The RAD51 gene makes a

protein also called RAD51, which is essential for the repair of

damaged DNA. The protein made by the BRCA2 gene binds to

and regulates the RAD51 protein to fix breaks in DNA [9]. These

breaks can be caused by natural or medical radiation. They also

occur when chromosomes exchange genetic material (when pieces

of chromosomes trade places) in preparation for cell division. The

BRCA2 protein transports the RAD51 protein to sites of DNA

dam age in the cell nucleus. RAD51 then binds to the damaged

DNA and encases it in a protein sheath, which is an essential first

step in the repair process. In addition to its association with

BRCA2, the RAD51 protein also interacts with the protein made

by the BRCA1 gene. By repairing DNA, these three proteins play

a role in maintaining the stability of the human genome. Changes

in RAD51 biosynthesis are usually preceded by changes in its gene

tran scrip tion and mRNA level. Gene variability could contribute

to the level of the RAD51 biosynthesis. A single nucleotide

polymorphism in the 59-untranslated region (59-UTR) of RAD51

(a G to C substitution at position 135, the G/C polymorphism) can

influence cancer risk among BRCA1/BRCA2 mutation carriers

[10,11]. In view of the potential significant role of RAD51 for

tumor development, it is important to know, whether this

polymorphism can account for the development and/or progres-

sion of cancer.

To date, a number of molecular epidemiological studies have

been done to evaluate the association between RAD51 135G.C

polymorphism and different types of cancer risk in diverse

populations [12–64]. However, the results were inconsistent or

even contradictory. Some recent meta-analysis only analyzed

RAD51 135G.C polymorphism with breast cancer risk [65–69],

but the results were also inconsistent. Gao et al. [65] found that the

CC genotype was associated with a significantly increased risk of

breast cancer when compared with the GG, CG, and CG/GG

genotypes. Subgroup analyses showed that individuals carrying the

CC genotype were associated with an elevated tumor risk in

European populations and in sporadic breast cancer. Wang et al.

[66] observed an overall significant increased breast cancer risk

(for the recessive model CC vs. GG/CG: OR = 1.35, 95%

CI = 1.05–1.74, P (heterogeneity) = 0.06). Yu et al. [67] found

that there was no evidence for a significant association between

135G.C and breast cancer risk in non-BRCA1/2 mutation. The

study of Sun et al. [68] had 17 studies, with significantly decreased

breast cancer risk being observed in the additive model

(OR = 0.995, 95% CI = 0.991–0.998) and recessive model

(OR = 0.994, 95% CI = 0.991–0.998). Zhou et al. [69] suggested

that RAD51 variant 135C homozygote was associated with

elevated breast cancer risk among BRCA2 mutation carriers.

Since then, additional several studies with a large sample size

about RAD51 135G.C polymorphism with cancer risk have not

been reported. Therefore, we performed a comprehensive meta-

analysis by including the most recent and relevant articles to

identify statistical evidence of the association between RAD51

135G.C polymorphism and risk of all cancers that have been

investigated.

Materials and Methods

Identification and eligibility of relevant studies
A comprehensive literature search was performed using the

PubMed database for relevant articles published (the last search

update was July 5, 2012) with the following key words ‘‘RAD51,’’

‘‘polymorphism,’’ and ‘‘Cancer’’ or ‘‘Carcinoma.’’ The search was

limited to human studies. In addition, studies were identified by a

manual search of the reference lists of reviews and retrieved

studies. We included all the case–control studies and cohort studies

that investigated the association between RAD51 135G.C

polymorphism and cancer risk with genotyping data. All eligible

studies were retrieved, and their bibliographies were checked for

other relevant publications. When the same sample was used in

several publications, only the most complete study was included

following careful examination.

Inclusion criteria
All human-associated studies were included if they met the

following criteria: (1) only the case–control studies or cohort

studies were considered; (2) evaluated the RAD51 135G.C

polymorphism and the risk of cancer; (3) the genotype distribution

of the polymorphism in cases and controls were described in

details and the results were expressed as odds ratio (OR) and

corresponding 95% confidence interval (95% CI). Major reasons

for exclusion of studies were as follows: (1) not for cancer research;

(2) only case population; (3) duplicate of previous publication;and

(4) the distribution of genotypes among controls are not in Hardy–

Weinberg equilibrium (P,0.01).

Data extraction
Information was carefully extracted from all eligible studies

independently by two investigators according to the inclusion

criteria listed above. The following data were collected from each

study: first author’s name, year of publication, country of origin,

ethnicity, source of controls (population-based controls and

hospital-based controls), genotyping method, sample size, and

numbers of cases and controls in the RAD51 135G.C genotypes

whenever possible. Ethnicity was categorized as ‘‘Caucasian’’,

‘‘Asian’’, and ‘‘African’’. When one study did not state which

ethnic groups was included or if it was impossible to separate

participants according to phenotype, the sample was termed as

‘‘mixed population.’’ Meanwhile, studies investigating more than

one kind of cancer were counted as individual data set only in

subgroup analyses by cancer type. We did not define any

minimum number of patients to include in this meta-analysis.

Articles that reported different ethnic groups and different

countries or locations, we considered them different study samples

for each category cited above.

Statistical analysis
Crude odds ratios (ORs) together with their corresponding 95%

CIs were used to assess the strength of association between the

RAD51 135 G.C polymorphism and the risk of cancer.

Following published recommendations for quality assessment in

meta-analyses of genetic associations, we examined: choice of

genetic models (we adopted three genetic models, avoiding

assuming only one ‘‘wrong’’ genetic model). The pooled ORs

were performed for dominant model (GC+CC versus GG),

recessive model (GG+GC versus CC), additive model (GG versus

CC), respectively. Between-study heterogeneity was assessed by

calculating Q-statistic (Heterogeneity was considered statistically

significant if P,0.10) [70] and quantified using the I2 value, a

value that describes the percentage of variation across studies that
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are due to heterogeneity rather than chance, where I2 = 0%

indicates no observed heterogeneity, with 25% regarded as low,

50% as moderate, and 75% as high [71]. If results were not

heterogeneous, the pooled ORs were calculated by the fixed-effect

model (we used the Q-statistic, which represents the magnitude of

heterogeneity between-studies) [72]. Otherwise, a random-effect

model was used (when the heterogeneity between-studies were

significant) [73]. In addition to the comparison among all subjects,

we also performed stratification analyses by cancer type (if one

cancer type contained less than three individual studies, it was

combined into the ‘‘other cancers’’ group), ethnicity, BRCA1/2

mutation status, and source of controls. Lung, bladder, esopha-

geal, head and neck, and pancreatic cancers were defined as

smoking-related cancers because tobacco smoking is an established

risk factor for these cancers [74,75–77]. In addition, given the roles

of estrogens in the etiology of breast, cervical and ovarian cancers,

these cancers were defined as estrogen-related [78,79]. We

examined whether the RAD51 135G.C polymorphism was

associated with the risk of these cancers as a group as well.

Moreover, sensitivity analysis was performed, including studies

whose allele frequencies in controls exhibited significant deviation

from the Hardy–Weinberg equilibrium (HWE), given that the

deviation may denote bias. In addition, we also performed by

excluding a single study each time. Last, we also ranked studies

according to sample size, and then repeated this meta-analysis.

HWE was calculated by using the goodness-of-fit test, and

deviation was considered when P,0.01. Begg’s funnel plots [80]

and Egger’s linear regression test [81] were used to assess

publication bias. All of the calculations were performed using

STATA version 10.0 (STATA Corporation, College Station, TX).

Results

Eligible studies and meta-analysis databases
Figure 1 graphically illustrates the trial flow chart. A total of 128

articles regarding RAD51 135 G.C polymorphism with respect

to cancer were identified. After screening the titles and abstracts,

75 articles were excluded because they were review articles, case

reports, other polymorphisms of RAD51, or irrelevant to the

current study. In addition, genotype distributions in the controls of

all the eligible studies were in agreement with HWE except for

four studies [45,50,58,64]. Last, of these studies, 13 publications

[12,13,15,22,27,28,30,33,34,41,53,55,59] were excluded because

of their populations overlapped with another six included studies

[20,29,39,42,50,62]. The study of Webb et al. [17] including

different case–control groups were considered as four separate

studies each. Hence, as summarized in Table 1, 36 publications

including 39 studies were selected among the meta-analysis,

including 19,068 cases and 22,630 controls. Among the 39 studies,

five studies were included in the dominant model only because

they provided the genotypes of GC+CC versus GG as a whole. Of

these, there were 20 hospital-based studies and 10 population-

based studies. There were 14 breast cancer studies, 7 acute

myeloid leukemia studies, 6 ovarian cancer studies, and 12 studies

with the ‘‘other cancers’’. Twenty-four of 39 studies were

conducted in Caucasians and six studies were conducted in

Asians. The remained nine studies were populations with mixed

ethnicity. In addition, there were 21 estrogen-related cancers

studies and 3 smoking-related cancers studies. All of the cases were

pathologically confirmed.

Quantitative synthesis
There was a wide variation in the C-allele frequency of the

RAD51 135G.C polymorphism among the controls across

different ethnicities. For Asian populations, the C-allele frequency

was 14.06% (95% CI = 11.46%–18.18%), which was significantly

higher than that in Caucasians (8.34%, 95% CI = 7.33%–18.04%,

P,0.001). The evaluations of the association of RAD51 135G.C

polymorphism with cancer risk are shown in Table 2. Overall, no

significant association was found between RAD51 135G.C

polymorphism and cancer susceptibility in any genetic model

(dominant model: OR = 1.06, 95% CI = 0.96–1.08, P value of

heterogeneity test [Ph],0.001, I2 = 61.4%; recessive model:

OR = 1.35, 95% CI = 0.89–2.03, Ph,0.001, I2 = 80.8%; additive

model: OR = 1.46, 95% CI = 0.94–2.27, Ph,0.001, I2 = 72.8%).

However, there was significant heterogeneity between studies.

Hence, we then performed subgroup analysis by cancer type,

smoking-related cancer, and estrogen-related cancer, there was

still no significant association detected in all genetic models. We

further examined the association of the RAD51 135G.C

polymorphism and cancer risk according to cancer type and

ethnicity (Table 3) because there was significant heterogeneity

between studies. There was still no significant association detected

in any ethnicity. Next, the effect of RAD51 135G.C polymor-

phism was evaluated in subgroup analysis according to BRCA1/2

mutation status and breast cancer (Table 4. A significant

association was found only among BRCA2 mutation carriers

(recessive model: OR = 4.88, 95% CI = 1.10–21.67; additive

model: OR = 4.92, 95% CI = 1.11–21.83).

Test of heterogeneity and sensitivity
There was significant heterogeneity among these studies for

dominant model comparison (GC+CC versus GG: Phet,0.001),

recessive model comparison (GG+GC versus CC: Phet,0.001), and

additive model comparison (GG versus CC: Phet,0.001). Then, we

assessed the source of heterogeneity for dominant model

comparison (GC+CC versus GG) by ethnicity, cancer type, and

source of controls. We found that cancer type (P = 0.717), ethnicity

(P = 0.724), and the source of controls (P = 0.832) did not

contributed to substantial heterogeneity among the meta-analysis.

Although the sample size for cases and controls in all eligible

studies ranged from 38 to 8,512, the corresponding pooled ORs

were not qualitatively altered with or without the study of small

sample. Examining genotype frequencies in the controls, signifi-

cant deviation from HWE was detected in the four studies

[45,50,58,64]. After the inclusion of the four studies [45,50,58,64]

significantly departing from HWE, the results of RAD51 135G.C

remained practically unchanged in the overall analysis (data not

shown).

Publication bias
Both Begg’s funnel plot and Egger’s test were performed to

assess the publication bias of literatures. Fig.2 lists Begg’s funnel

plot of allele comparison for publication bias of RAD51 135G.C

(dominant model and additive model). The Egger’s test results

(P = 0.111 for dominant model, P = 0.120 for recessive model, and

P = 0.525 for additive model) and Begg’s funnel plot suggested no

evidence of publication bias, indicating that our results were

statistically robust.

Discussion

DNA repair systems have been considered to maintain genomic

integrity by countering threats posed by DNA lesions. Deficiency

in the DNA repair pathways might make these lesions unrepaired

or repaired incorrectly, eventually leading to genome instability or

mutations which may contribute directly to cancer. Thus, genetic

differences, such as single nucleotide polymorphism (SNP) may

The RAD51 135 G.C Polymorphism and Risk of Cancer
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contribute to carcinogenesis [82,83]. Previous studies have already

found certain kinds of polymorphisms in DNA repair proteins are

associated with cancer, such as XRCC3 (Thr241Met), OGG1

(Ser326Cys) and XPD (Lys751Gln) with breast cancer, XRCC2

(R188H G.A), and XRCC3 (T241M C.T) with ovarian cancer,

XPC C/A (i11) with sporadic colorectal cancer and so on.

Therefore, great interests have been aroused in the exploration of

the association of SNP of DNA repair proteins and cancer risk to

provide better prediction of cancer.

Homologous recombination repair (HRR), an important part of

DNA repair system, is involved in the repair of double strand

breaks (DSBs) [84]. Genetic polymorphisms in HRR genes, which

can lead to protein haploinsufficiency have also been associated

with cancer risk [85]. Double-strand break (DSB) damage, causing

cell death or loss of genetic material, is the most injurious lesion

and responsible for cancer development. However, it can be

repaired by several DSB repair genes such as BRCA1/2 in which

mutations have been proven to contribute to high risk of cancer in

women [86]. RAD51 is located at chromosome position 15q15.1

[87], a region that exhibits loss of heterozygosity in a large range of

cancers, including those of the lung, the colorectum, and the breast

[88]. RAD51 plays a crucial role in the HRR pathway. The

RAD51 135G.C polymorphism at position 135 in the 59 UTR

region may be related with RAD51 protein over-expression and

DNA repair increase [89–91]. RAD51, a homolog of Escherichia

coli RecA, is another important DSB repair gene and can interact

with BRCA1 and BRCA2 proteins, functioning through homol-

ogous recombination and nonhomologous end joining [92,93]. A

number of epidemiological studies have evaluated the association

between RAD51 135G.C polymorphism and cancer risk, but the

results remained inconclusive. In order to resolve this conflict, this

meta-analysis of 39 eligible studies including 19,068 cases and

22,630 controls was performed to derive a more precise estimation

of the association between RAD51 135G.C polymorphism and

risk of different types of cancer.

Overall, no significant association was found between RAD51

135G.C polymorphism and cancer susceptibility in any genetic

model. In the stratified analysis by cancer type, we did not also

find significant association among AML, breast cancer, and

ovarian cancer. Krupa et al. [55], Jakubowska et al. [46], Chang et

al. [24], Romanowicz-Makowska et al. [22], Sliwinski et al. [20],

Blasiak et al. [12], Webb et al. [17], Brooks et al. [49], Kuschel et

al. [27], Lee et al. [19], and Hu et al. [54] reported that the

RAD51 135G.C polymorphism was not associated with the risk

of breast cancer. Webb et al. [17], Dhillon [60] 2011, and

Auranen et al. [18] reported that the RAD51 135G.C

polymorphism was not associated with the risk of ovarian cancer.

Seedhouse et al. [14], Bhatla et al. [43], and Zhang et al. [56]

reported that the RAD51 135G.C polymorphism was not

associated with the risk of AML. The results of our meta-analysis

Figure 1. Study flow chart explaining the selection of the 39 eligible case–control studies included in the meta-analysis.
doi:10.1371/journal.pone.0075153.g001
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supported the negative association between RAD51 135G.C

polymorphisms and AML, breast cancer, and ovarian cancer. In

the stratified analysis by Smoking-related cancers, estrogen-related

cancers, ethnicity, and BRCA1/BRCA2 mutation status, signifi-

cant association was only observed between RAD51 135G.C and

breast cancer risk for BRCA2 mutation carriers (Table 4; recessive

Table 1. Main characteristics of all studies included in the meta-analysis.

First author/year Country Ethnicity Cancer Type Case–control SC GM

Genotype distribution (case/
control) HWE

GG GC CC

Levy-Lahad [25] 2001 Israel Caucasian Ovarian 42–90 HB PCR 38/85 4/5 NA

Wang [26] 2001 Multiple Mixed Ovarian 44–263 PB PCR-RFLP 42/238 2/25 NA

Seedhouse [14] 2004 UK Caucasian AML 2062186 NR PCR-RFLP 171/166 32/18 3/2 0.171

Wang [16] 2004 USA Caucasian Glioma 309–342 HB PCR-RFLP 265/301 40/41 4/0 0.840

Webb [17] 2005 Australia Mixed Breast 1492128 PB PCR-RFLP 121/101 24/27 4/0 0.757

Webb [17] 2005 Australia Caucasian Breast 1,2952650 PB PCR-RFLP 1100/575 188/77 7/8 0.021

Webb [17] 2005 Australia Mixed Ovarian 95–173 PB PCR-RFLP 74/141 20/32 1/0 0.765

Webb [17] 2005 Australia Caucasian Ovarian 448–953 PB PCR-RFLP 383/830 65/113 3/10 0.028

Auranen [18] 2005 Multiple Caucasian Ovarian 1,629–2,805 PB TaqMan 1419/2440 201/355 9/10 0.746

Lee [19] 2005 Korea Asian Breast 7822587 HB PCR 611/450 143/123 28/14 0.287

Sliwinski [20] 2005 Poland Caucasian Breast 150–150 NR PCR-RFLP 108/106 38/41 4/3 0.912

Dufloth [21] 2005 Brazil SA Breast 1692119 HB PCR-RFLP 144/103 24/13 1/3 0.026

Tarasov [23] 2006 Russia Caucasian Breast 151–191 NR PCR-RFLP 111/148 36/41 4/2 0.903

Chang [24] 2006 China Asian Breast 189–421 HB PCR 116/284 73/137 NA

Poplawski [31] 2006 Poland Caucasian Gastric 18–20 HB PCR-RFLP 8/14 10/5 0/1 0.935

Rollinson [32] 2007 UK Caucasian AML 466–936 NR TaqMan 431/817 34/115 1/4 1.000

Costa [35] 2007 Portugal Caucasian Breast 365–435 HB PCR-RFLP 216/381 45/53 4/1 0.845

Lu [36] 2007 USA Caucasian HNSCC 716–719 HB PCR-RFLP 624/622 91/96 1/1 0.393

Jakubowska [37] 2007 Poland Caucasian Ovarian 127–127 PB PCR-RFLP 104/89 23/38 NA

Figueroa [38] 2007 Spanish Caucasian Bladder 1,08521,032 HB TaqMan 932/909 147/116 6/7 0.322

Voso [40] 2007 Italy Caucasian AML 160–161 NR PCR-RFLP 125/142 33/18 2/1 0.968

Antoniou [42] 2007 Multiple Mixed Breast 4,44324,069 NR RT-PCR 3838/3485 567/565 38/17 0.747

Pharoah [29] 2007 Multiple Caucasian Breast 2,160–2,266 PB TaqMan 1911/1995 236/257 13/14 0.199

Bhatla [43] 2008 USA Mixed AML 452–646 PB PCR 374/555 73/85 5/6 0.418

Brooks [49] 2008 USA Mixed Breast 611–611 N PCR-RFLP 516/513 88/88 7/10 0.031

Werbrouck [51] 2008 Belgium Caucasian HNSCC 152–157 HB PCR-RFLP 136/134 15/23 1/0 0.848

Hu [54] 2008 China Asian Breast 71–85 NR PCR-RFLP 51/59 18/23 2/3 0.930

Jakubowska [46] 2009 Poland Caucasian Breast 1,007–1,069 PB PCR-RFLP 785/822 207/232 15/15 0.959

Zhang [56] 2009 China Asian AML 166–458 NR PCR-RFLP 117/315 47/123 2/20 0.214

Wiśniewska-Jarosińska [58] 2009 Poland Caucasian Colorectal 100–236 HB PCR-RFLP 61/169 36/44 3/23 ,0.001

Palanca [48] 2010 Spain Caucasian BC and OC 182–208 HB PCR 155/175 27/33 NA

Sliwinski [64] 2010 Poland Caucasian HNSCC 288–353 HB PCR-RFLP 138/258 145/64 5/32 ,0.001

Jara [62] 2010 Chile SA Breast 267–500 HB PCR 232/441 33/58 2/1 0.835

Krupa [63] 2011 Poland Caucasian Endometrial 30–30 HB PCR-RFLP 6/19 8/9 16/2 0.808

Krupa [61] 2011 Poland Caucasian Colorectal 100–100 HB PCR-RFLP 61/36 36/35 3/29 0.012

Dhillon [60] 2011 Australia Caucasian Prostate 116–132 HB PCR-RFLP 97/119 18/13 1/0 0.929

Liu [57] 2011 China Asian AML 105–704 HB PCR-RFLP 72/511 25/175 8/18 0.809

Romanowicz-Makowska[50] 2011 Poland Caucasian Breast 700–708 NR PCR-RFLP 130/178 74/396 496/134 0.005

Hamdy [47] 2011 Egypt African AML 50230 HB PCR-RFLP 39/26 9/3 2/1 0.184

Pasaje [44] 2011 Korea Asian Liver 285–727 HB PCR 237/569 42/150 6/8 0.864

Smolarz [39] 2011 Poland Caucasian Endometrial 240–240 HB PCR-RFLP 25/65 30/138 185/37 0.037

Gil [52] 2012 Poland Caucasian Colorectal 1332100 HB PCR-RFLP 100/73 29/27 4/0 0.675

Sobti [45] 2012 India Asian Bladder 2702252 HB PCR-RFLP 159/134 82/81 29/37 ,0.001

HNSCC head and neck squamous cell carcinoma, NR not reported, AML acute myeloid leukemia, SA South American, N nested case–control study, HWE Hardy–
Weinberg equilibrium, HB hospital-based study, PB population-based study, SC source of control, GM Genotype method.
doi:10.1371/journal.pone.0075153.t001
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model: OR = 4.88, 95% CI = 1.10–21.67; additive model:

OR = 4.92, 95% CI = 1.11–21.83). As described above, the

RAD51 gene product acts together with BRCA1 and BRCA2

proteins in homologous recombination and DSB repair. It is

reasonable to assume that RAD51 and BRCA1/2 mutations may

have interactive effects on breast cancer risk. Some previous

studies presented an association of RAD51 variant allele 135C

with an elevated breast cancer risk only in BRCA2 mutation

carrier, but not in BRCA1 mutation carriers or non-carriers or

unselected populations [15,25,26,42]. In contrast, Jakubowska et

al. [13,22] observed a significantly reduced risk of breast cancer

among Polish female carriers of RAD51 135C allele and BRCA1

founder mutations. Subgroup analysis on BRCA1/2 mutation

status in this meta-analysis, however, confirmed the former result.

In the present meta-analysis, highly heterogeneity was observed

in acute myeloid leukemia, especially in Caucasians. The reason

may be acute myeloid leukemia including the hospital-based

studies. The hospital-based studies have some biases because such

controls may contain certain benign diseases which are prone to

develop malignancy and may not be very representative of the

Table 2. Stratified analysis of RAD51 135G.C polymorphism on cancer risk.1

Variables
No. comparisons
(SZ case/control) Dominant model Recessive model Additive model

OR (95% CI) Ph/I2 OR (95% CI) Ph/I2 OR (95% CI) Ph/I2

Overall 39 (19,068/22,630) 1.06 (0.96–1.08) ,0.001/61.4% 1.35 (0.89–2.03) ,0.001/80.7% 1.46 (0.94–2.27) ,0.001/72.8%

Cancer type

AML 7 (1,605/3,121) 1.17 (0.84–1.65) 0.003/70.2% 1.12 (0.67–1.88) 0.123/40.2% 1.14 (0.68–1.92) 0.125/39.9%

Breast cancer 14 (11,709/11,291) 1.00 (0.93–1.07) 0.521/0.0% 1.27 (0.98–1.67) 0.198/24.3% 1.26 (0.97–1.65) 0.215/22.6%

Ovarian cancer 6 (2,388/4,411) 1.00 (0.86–1.15) 0.140/39.9% 1.23 (0.62–2.47) 0.348/5.3% 1.25 (0.62–2.49) 0.359/2.4%

Other cancer 12 (3,366/3,807) 2 ,0.001/79.8% 2 ,0.001/90.0% 2 ,0.001/87.3%

Smoking-related 3 (1,953/1,908) 1.06 (0.88–1.27) 0.203/37.3% 0.97 (0.37–2.50) 0.738/0.0% 0.98 (0.38–2.54) 0.765/0.0%

estrogen-related 21 (14,279/15,910) 0.99 (0.93–1.06) 0.429/2.3% 1.27 (0.99–1.63) 0.265/16.5% 1.26 (0.98–1.62) 0.287/14.5%

1All summary ORs were calculated using fixed-effects models. In the case of significant heterogeneity (indicated by *), ORs were calculated using random-effects models.
2The results were excluded due to high heterogeneity. The bold values indicate that the results are statistically significant.
doi:10.1371/journal.pone.0075153.t002

Table 3. Summary ORs (95% CI) and value of value of the heterogeneity of RAD51 135G.C polymorphism for studies according to
ethnicity and cancer type.1

Ethnicity Cancer type
No. comparisons
(SZ case/control) Dominant model Recessive model Additive model

OR (95% CI) Ph/I2 OR (95% CI) Ph/I2 OR (95% CI) Ph/I2

Caucasian AML 3 (832/1283) 2 ,0.001/88.2% 1.08 (0.34–3.35) 0.672/0.0% 1.11 (0.36–3.44) 0.606/0.0%

Breast cancer 6 (5028/4771) 1.04 (0.93–1.16) 0.195/32.1% 1.06 (0.70–1.60) 0.246/25.1% 1.06 (0.70–1.60) 0.243/25.5%

Ovarian cancer 4 (2249/3975) 1.04 (0.88–1.21) 0.308/3.8% 0.77 (0.50–1.18) 0.133/46.4% 1.13 (0.55–2.34) 0.281/14.1%

Asian Breast cancer 3 (1042/1093) 0.92 (0.72–1.16) 0.931/0.0% 1.33 (0.98–1.81) 0.785/0.0% 1.37 (0.74–2.52) 0.514/0.0%

Mixed Breast cancer 5 (5639/5427) 0.96 (0.86–1.06) 0.924/0.0% 1.48 (0.96–2.28) 0.120/45.3% 1.46 (0.95–2.26) 0.133/43.4%

1All summary ORs were calculated using fixed-effects models. In the case of significant heterogeneity (indicated by *), ORs were calculated using random-effects models.
2The results were excluded due to high heterogeneity. The bold values indicate that the results are statistically significant.
doi:10.1371/journal.pone.0075153.t003

Table 4. Meta-analysis of RAD51 135G.C polymorphism and breast cancer association according to BRCA1/BRCA2 mutation.

BRCA1/2
mutation status

Sample size
(case/control) Dominant model Recessive model Additive model

OR (95% CI) Ph/I2 OR (95% CI) Ph/I2 OR (95% CI) Ph/I2

BRCA1 mutation 1 (2876/2902) 0.89 (0.77–1.03) – 1.49 (0.80–2.76) – 1.46 (0.79–2.71) –

BRCA2 mutation 1 (1574/1174) 1.12 (0.89–1.41) – 4.88 (1.10–21.67) – 4.92 (1.11–21.83) –

Non BRCA1/BRCA2 mutation 3 (1853/1443) 1.11 (0.90–1.36) 0.996/0.0% 0.94 (0.40–2.19) 0.218/34.1% 0.95 (0.41–2.23) 0.220/33.4%

Mixed 12 (5711/6160) 0.99 (0.89–1.09) 0.564/0.0% 1.22 (0.96–1.56) 0.570/0.0% 1.15 (0.82–1.60) 0.492/0.0%

doi:10.1371/journal.pone.0075153.t004
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general population. Thus, the use of a proper and representative

cancer-free control subjects is very important in reducing biases in

such genotype association studies. Highly heterogeneity was also

observed in mix cancers, the reason may be the same polymor-

phisms play different roles among different cancers, because

cancer is a complicated multi-genetic disease, and different genetic

backgrounds may contribute to the discrepancy. Possible sources

of heterogeneity, such as controls source, cancer type and ethnicity

did not demonstrate the evidence of any significant variation by

meta-regression. It is possible that other limitations of recruited

studies may partially contribute to the observed heterogeneity.

And this indicates that it may be not appropriate to use an overall

estimation of the relationship between RAD51 135 G.C

polymorphism and cancer risk.

Although we have put considerable efforts and resources into

testing possible association between RAD51 135G.C polymor-

phism and cancer risk, there are still some limitations inherited

from the published studies. First, our results were based on single-

factor estimates without adjustment for other risk factors including

alcohol usage, environmental factors and other lifestyle. At lower

levels of alcohol consumption, the difference in cancer risk

between the various gene carriers was less striking. And higher

levels of alcohol consumption result in production of more

acetaldehyde which then can exert its carcinogenic effect [94].

Second, the subgroup analysis may have had insufficient statistical

power to check an association. Third, the controls were not

uniformly defined. Some studies used a healthy population as the

reference group, whereas others selected hospital patients without

organic cancer as the reference group. Therefore, non-differential

misclassification bias is possible because these studies may have

included the control groups who have different risks of developing

cancer of various organs. Our meta-analysis also has several

strengths. First, a systematic review of the association of RAD51

135G.C polymorphism with cancer risk is statistically more

powerful than any single study. Second, the quality of eligible

studies included in current meta-analysis was satisfactory and met

our inclusion criterion.

In conclusion, this meta-analysis suggests that RAD51 variant

135C homozygote is associated with elevated breast cancer risk

among BRCA2 mutation carriers. Moreover, our work also points

out the importance of new studies for RAD51 135G.C

association in acute myeloid leukemia, especially in Caucasians,

where at least some of the covariates responsible for heterogeneity

could be controlled, to obtain a more conclusive understanding

about the function of the RAD51 135G.C polymorphism in

cancer development. However, it is necessary to conduct large

sample studies using standardized unbiased genotyping methods,

homogeneous cancer patients and well-matched controls. More-

over, further studies estimating the effect of gene–gene and gene–

environment interactions may eventually lead to our better,

comprehensive understanding of the association between RAD51

135G.C polymorphism and cancer risk.
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