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Abstract. Pioglitazone is an anti‑diabetic agent used in 
the treatment of type 2 diabetes, which belongs to the thia‑
zolidinediones  (TZDs) group. TZDs target peroxisome 
proliferator‑activated receptor γ (PPARγ), which functions 
as a transcription factor of the nuclear hormone receptor. 
Pioglitazone has antitumor effects in several cancer types and 
could be a tool for drug therapy in various cancer treatments. 
Nevertheless, the molecular basis for pioglitazone‑induced 
anticancer effects in renal cancer (RC) has not yet been eluci‑
dated. Thus, the aim of the present study was to investigate the 
detailed signaling pathway underlying pioglitazone‑induced 
apoptosis in Caki cells derived from human clear cell renal 
cell carcinoma. As a result, it was demonstrated by flow 
cytometry analysis and Annexin V‑propidium iodide staining 
that pioglitazone treatment induced apoptotic cell death in 
a dose‑dependent manner in Caki cells. The protein expres‑
sion levels of cellular FLICE (FADD‑like IL‑1β‑converting 
enzyme)‑inhibitory protein (c‑FLIP)(L) and Bcl‑2, which were 
determined by western blotting, decreased after pioglitazone 
treatment in Caki cells. Flow cytometry and western blot anal‑
yses demonstrated that pioglitazone‑mediated apoptosis was 
blocked following pretreatment with the pan‑caspase inhibitor, 
z‑VAD‑fmk, indicating that pioglitazone‑induced apoptosis 
was mediated via a caspase‑dependent signaling pathway. 
However, the reactive oxygen species  (ROS) scavenger, 
N‑acetylcysteine (NAC), did not affect pioglitazone‑mediated 
apoptosis and degradation of c‑FLIP(L) and Bcl‑2 protein. 
Of note, it was found by western blot analysis that Bcl‑2 
protein expression was downregulated by the decreased 
protein stability of Bcl‑2 in pioglitazone‑treated Caki cells. In 
conclusion, these findings indicated that pioglitazone‑induced 
apoptosis is regulated through caspase‑mediated degradation 

of FLIP(L) and reduction of Bcl‑2 protein stability, suggesting 
that pioglitazone is a feasible apoptotic agent that could be 
used in the treatment of human RC.

Introduction

Pioglitazone is a type 2 anti‑diabetic agent included in the 
thiazolidinedione (TZD) class and is a ligand for synthetic 
peroxisome proliferator‑activated receptor  (PPARγ). It is 
involved in lipid and glucose metabolism and has recently 
been reported to be associated with the inhibition of numerous 
cancer cells  (1). Pioglitazone is reported to have multiple 
functions; it is anti‑invasive, anti‑inflammatory and prevents 
angiogenesis (2‑4). Previous studies have shown that piogli‑
tazone shows marked anti‑proliferative and antitumor effects 
in various types of human cancers, including cancers of 
bladder, uterus, thyroid, pancreas and breast, via inhibiting 
the signal transducer and activator of transcription 3 (STAT3), 
MEK/ERK, p38 mitogen‑activated protein kinase (MAPK) 
and JAK2/STAT3 signaling pathways, and upregulating the 
expression of AIF and death receptors (DRs) such as DR5 and 
Fas/CD95 (5‑9). Although pioglitazone induces apoptosis in 
various cancer cell lines, the detailed molecular mechanism 
underlying pioglitazone‑induced apoptosis is not understood 
in Caki cells derived from human clear cell renal cell carci‑
noma (ccRCC).

Cellular FADD‑like interleukin‑1β‑converting enzyme 
inhibitory protein  (c‑FLIP) is an important anti‑apoptotic 
protein related to cancer cell death. There are three isoforms 
of c‑FLIP, namely, c‑FLIP(L), c‑FLIP(S) and c‑FLIP(R)  (10). 
The c‑FLIP(L) shows significant structural similarities with 
caspase‑8  (10) and is associated with TNF‑related apop‑
tosis‑inducing ligand (TRAIL), Fas, TNF‑α and anticancer drug 
resistance in human malignancies (10‑12). The overexpression 
of c‑FLIP inhibits death ligand‑induced apoptosis, which may 
impart resistance to anticancer drugs (13). Moreover, c‑FLIP 
is overexpressed in a wide variety of cancers, including gastric 
cancer, colorectal cancer  (CRC), bladder urothelial cancer 
and cervical cancer (14‑17). Therefore, to specifically regulate 
the expression and activity of c‑FLIP, it is necessary to find 
a target molecule that does not interfere with caspases‑8 and 
‑10; moreover, it is necessary to downregulate c‑FLIP mRNA 
expression or to decrease protein stability via proteasomes.

B‑cell lymphoma 2 (Bcl‑2) belongs to the Bcl‑2 family and 
can be classified as an anti‑ or pro‑apoptotic protein. Bcl‑2 
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and Bcl‑xL are well‑known anti‑apoptotic proteins, whereas 
Bax and Bak are widely used as pro‑apoptotic proteins (18). 
Anti‑apoptotic Bcl‑2 family proteins maintain the mitochon‑
drial membrane, whereas pro‑apoptotic Bcl‑2 family proteins 
increase mitochondrial outer membrane permeabilization 
(MOMP), which is associated with the induction of apop‑
tosis (19‑21). Bcl‑2 plays a critical role in cancer cell death. 
Until now, the most effective strategy for targeting the Bcl‑2 
family has been to use the BH3 mimetic molecules  (22). 
Bcl‑2 overexpression is an important mechanism in cancer 
cells to become resistant to cancer treatment. Overexpression 
of Bcl‑2 is common in many types of human cancers, such 
as gastric cancer and breast cancer (23‑25). Thus, targeting 
Bcl‑2 may be an important strategy to treat cancers.

In the present study, we found that pioglitazone induces 
apoptosis in human ccRCC Caki cells by activating 
the caspase‑dependent apoptotic signaling pathway via 
downregulating c‑FLIP(L) and reducing Bcl‑2 protein 
stability.

Materials and methods

Cell culture media and reagents. Human ccRCC Caki 
cells were obtained from the American Type Culture 
Collection (cat. no. HTB‑46; ATCC). Caki cells were main‑
tained in Dulbecco's modified Eagle's medium (DMEM; 
cat. no. LM 001‑05; Welgene) containing 10% fetal bovine 
serum (FBS; cat. no. S001‑07; Welgene) and 1% antibiotic 
antimycotic  (AA) solution (cat. no. LS 203‑01, Welgene). 
Human normal kidney HK-2 cells were purchased from the 
Korean Cell Line Bank (cat. no. 22190). HK2 cells were 
maintained in Roswell Park Memorial Institute (RPMI)‑1640 
(cat. no. LM 011‑01; Welgene) medium supplemented with 
10% FBS and 1% AA solution. Cells were incubated at 37˚C 
under 5%  CO2 environment. The compound z‑VAD‑fmk 
(cat.  no.  627610) was purchased from Calbiochem. 
Pioglitazone (cat.  no.  E6910), N‑acetylcysteine (NAC; 
cat. no. A7250) and cycloheximide (CHX; cat. no. C1988) 
were purchased from Sigma‑Aldrich.

Cell viability assay. Cell viability assays were performed 
using a Welcount Cell Viability Assay Kit (cat. no. TR055‑01; 
WelGene) to determine cell viability. Caki cells were seeded 
(0.25x105  cells/well) in two  96‑well  plates containing 
DMEM supplemented with 10% FBS. The cells were treated 
with pioglitazone for 24 h and then incubated with the XTT 
reagent for 2 h in dark at room temperature. Absorbance was 
measured at 450 nm using a microplate spectrophotometer 
(Thermo Labsystems) at 450/690 nm.

Flow cytometry analysis. Approximately 0.4x106 cells were 
suspended in 100 µl cold PBS (cat. no. 70011044; Thermo Fisher 
Scientific, Inc.) and 200 µl 95% ethanol (cat. no. 1.00983.1011; 
Merck) was added while the sample was being vortexed. The 
cells were incubated at 4˚C for 2 h, washed with PBS and 
resuspended in 250 µl of 1.12% sodium citrate buffer (pH 8.4) 
with 10 mg/ml RNase A (cat. no. R4875; Sigma‑Aldrich). The 
cells were further incubated at 37˚C for 40 min. Cellular DNA 
was stained by incubating the cells with 250 µl propidium 
iodide (PI) (cat. no. P4170; Sigma) at 37˚C for 20 min. The 

stained cells were analyzed by fluorescence‑activated cell 
sorting (FACS) using a BD FACSCanto II flow cytometer 
(BD Biosciences).

Annexin V‑PI staining. Annexin V‑FITC (cat. no. 556547; 
BD Biosciences) and PI were used for distinguishing cell death 
mode. Pioglitazone‑treated cells were washed twice in cold 
PBS and resuspended in binding buffer at a concentration of 
2x106/ml. This suspended cells (100 µl) were stained with 5 µl 
of Annexin V‑FITC and 10 µl PI. The cells were incubated for 
15 min in the dark at room temperature. After the addition of 
400 µl of binding buffer to each tube, the cells were measured 
by flow cytometry on a FACSCanto II (BD Biosciences).

Western blot analysis. Whole‑cell lysates were prepared by 
suspending 0.45x106 cells in 30‑50 µl lysis buffer consisting 
of 15 mM ethylene glycol tetraacetic acid (EGTA), 137 mM 
NaCl, 15 mM MgCl2, 0.1 mM sodium orthovanadate, 25 mM 
MOPS, 100  µM phenylmethanesulfonyl fluoride  (PMSF), 
0.1% Triton X‑100 and 20 µM leupeptin (pH 7.2). The cells 
were disrupted by sonication, followed by protein extraction 
by incubating the samples at 4˚C for 30 min. Total protein in 
the lysates was quantified using the bicinchoninic acid (BCA) 
assay kit (cat.  no.  23225; Thermo  Fisher Scientific, Inc.) 
according to the manufacturer's instructions. The proteins 
(40‑60  µg) were separated using 10‑12%  SDS PAGE gel 
and electrotransferred onto nitrocellulose membranes 
(GE  Healthcare). Target proteins were detected using 
Immobilon Western Chemiluminescent HRP Substrate solu‑
tion (cat. no. WBULS0100, Millipore). The expressed proteins 
were visualized using the Image Quant LAS 4000 imaging 
system (GE  Healthcare). Anti‑PARP antibody (1:1,000; 
cat. no. 9542) was purchased from Cell Signaling Technology. 
Anti‑caspase‑3 antibody (1:2,000; cat.  no. ADI‑AAP‑113) 
and anti‑c‑FLIP (1:700; cat. no. ALX‑804‑961‑0100) anti‑
body were purchased from Enzo Life Sciences. Anti‑Bcl‑2 
antibody  (1:700; cat.  no.  sc‑7832), anti‑Mcl‑1 (1:1,000; 
cat. no. sc‑12756), c‑IAP2 (1:1,000; cat. no. sc‑517317) and 
anti‑β‑actin antibody (1:3,000; cat. no. sc‑47778) were supplied 
by Santa Cruz Biotechnology, Inc. and anti‑XIAP (1:5,000; 
cat. no. 610717) antibody was obtained from BD Biosciences.

RNA isolation and RT‑PCR. Bcl‑2 mRNA expression was 
quantified via RT‑PCR. Total RNA was extracted from whole 
cells using EasyBlue reagent (cat. no. 17061; Life Technologies). 
The cDNA was prepared using M‑MLV Reverse Transcriptase 
(cat. no. 18057018; Thermo Fisher Scientific, Inc.) according 
to the manufacturer's instructions. Total cellular RNA was 
reverse‑transcribed using random primers and amplified using 
PCR. GAPDH was used as an mRNA loading control. The 
sequences of primers used for the amplification of Bcl‑2 and 
GAPDH were as follows: Bcl‑2, (forward) 5'‑GCC​TTC​TTT​
GAG​TTC​GGT​GG‑3' and (reverse) 5'‑ATC​TCC​CGG​TTG​
ACG​CTC​T‑3'; GAPDH: (forward) 5'‑AGG​TCG​GAG​TCA​
ACG​GAT​TTG‑3' and (reverse) 5'‑GTG​ATG​GCA​TGG​ACT​
GTG‑GT‑3' and the PCR cycling conditions were as follows: 
for Bcl‑2: 95˚C for 5 min, followed by 42 cycles of 95˚C for 
45 sec, 53˚C for 30 sec and 72˚C for 30 sec; for GAPDH: 95˚C 
for 5 min, followed by 25 cycles of 94˚C for 30 sec, 57˚C for 
45 sec and 72˚C for 40 sec. The PCR products were analyzed 
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by 1.5%  agarose gel electrophoresis and visualized with 
10% ethidium bromide using a gel system (cat. no. WGD30, 
Daihan).

Transfection. Caki cells were seeded onto 6‑well plates 
(0.2x106 cells/well) and incubated overnight at 37˚C. The 
cells were transfected with pcDNA 3.1 vector and pcDNA 3.1 
Bcl‑2 plasmid using Lipofectamine 2000 (cat. no. 11668‑019; 
Invitrogen; Thermo Fisher Scientific, Inc.) in Opti‑MEM 
medium (cat.  no.  31985‑070; Invitrogen; Thermo  Fisher 
Scientific, Inc.). Following transfection, the cells were 
cultured in DMEM supplemented with 20% FBS for 18 h. 
Cells were then treated with pioglitazone for 24  h and 
analyzed for Bcl‑2 expression by western blotting.

Sta t is t ica l  analys is.  Data were ana lyzed using 
one‑way ANOVA followed by post  hoc comparisons 
(Student‑Newman‑Keuls) using the Statistical Package 
for Social Sciences 8.0 (SPSS Inc.). All experiments were 
performed in triplicates. The results were expressed as the 

mean ± SD and result with P<0.05 were considered statisti‑
cally significant.

Results

Pioglitazone mediates apoptosis in human ccRCC Caki cells. 
To investigate the anticancer effect of pioglitazone on Caki cells, 
a series of experiments were performed. Caki cells were treated 
for 24 h with various concentrations of pioglitazone. As shown 
in Fig. 1A, treatment with pioglitazone considerably reduced 
cell viability. To clarify pioglitazone‑induced cell death mode, 
we performed Annexin V‑PI double staining using flow cytom‑
etry. We confirmed a dose‑dependent increase of apoptotic cells 
in pioglitazone‑treated cells (Fig. 1B). The apoptotic effect of 
pioglitazone was also identified. Pioglitazone treatment for 24 h 
caused a dose‑dependent increase in the sub‑G1 cell population 
(Fig. 1C). Additionally, pioglitazone increased the levels of 
cleaved PARP and cleaved‑caspase‑3 in treated cells (Fig. 1D). 
These results indicate that pioglitazone induces apoptosis in Caki 
cells. To examine the underlying molecular mechanism involved 

Figure 1. Pioglitazone mediates apoptosis in Caki cells. (A) Caki cells were treated with various concentrations of pioglitazone (0, 20, 40, 60, 80 and 100 µM) 
for 24 h. Cell viability was measured using the XTT assay kit. (B) Caki cells were treated with pioglitazone for 24 h, collected and stained with Annexin V 
and PI. Cell death was determined by flow cytometry. Each value corresponds to the percentage of cells in each quadrant (Q1, necrotic cells; Q2, late 
apoptotic cells; Q3, living cells; Q4, early apoptotic cells). (C) Caki cells were treated with pioglitazone for 24 h. Apoptosis was analyzed by flow cytometry. 
Representative FACS histograms are presented in the upper panel and cumulative data in the lower panel. (D) The cells were cultured with the indicated 
concentrations of pioglitazone. PARP, cleaved‑caspase‑3 and β‑actin protein expression levels were determined using western blotting. (E) Caki cells were 
treated with pioglitazone for 24 h. The expression levels of c‑FLIP(L), Bcl‑2, Bcl‑xL, Mcl‑1, XIAP, c‑IAP2 and β‑actin proteins were detected by western 
blot analysis. β‑actin was used as a control for protein loading. Arrows indicate cleaved forms of caspase‑3. The data were obtained from three independent 
experiments. Data are expressed as the mean ± SD (n=3). *P<0.05 vs. non‑treated cells. FACS, Fluorescence‑activated cell sorting; PI, propidium iodide; PARP, 
poly (ADP‑ribose) polymerase; c‑FLIP, cellular FLICE (FADD‑like IL‑1β‑converting enzyme)‑inhibitory protein; Bcl‑2, B cell lymphoma 2; Bcl‑xL, B cell 
lymphoma‑extra large; Mcl‑1, myeloid cell leukemia‑1; XIAP, X‑linked inhibitor of apoptosis protein; c‑IAP, cellular inhibitor of apoptosis protein.
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in pioglitazone‑mediated apoptosis, the expression levels of 
apoptotic‑regulatory proteins were confirmed by western 
blotting. As shown in Fig. 1E, c‑FLIP(L) and Bcl‑2 expression 
levels moderately or markedly decreased in pioglitazone‑treated 
Caki cells. However, Bcl‑xL, Mcl‑1, XIAP and c‑IAP2 protein 
levels were not affected. Taken together, these findings indicate 
that pioglitazone induces apoptosis and inhibits the expression 
of c‑FLIP(L) and Bcl‑2 in Caki cells.

Pioglitazone‑induced apoptosis is markedly blocked by 
a caspase‑dependent pathway in Caki cells. To deter‑
mine whether the caspase‑dependent pathway plays a key 
role in pioglitazone‑induced apoptosis, the pan‑caspase 
inhibitor, z‑VAD‑fmk was used. As shown in Fig. 2A, the 
pioglitazone‑induced apoptosis was significantly blocked 
by pretreatment with z‑VAD‑fmk. Furthermore, treat‑
ment with z‑VAD‑fmk inhibited the cleavage of PARP and 
cleaved‑caspase‑3, and recovered c‑FLIP(L), but not Bcl‑2 
expression (Fig.  2B). These findings indicate that piogli‑
tazone‑mediated apoptosis in Caki cells is regulated by a 
caspase‑dependent pathway via downregulation of c‑FLIP(L).

Pioglitazone‑mediated apoptosis is not associated with 
ROS. Studies have shown that ROS can modulate apoptosis 
by regulating the expression levels of pro‑apoptotic proteins, 
such as caspases or anti‑apoptotic proteins such as c‑FLIP 

and Bcl‑2 (26). We investigated whether ROS plays a role in 
pioglitazone‑induced apoptosis. Caki cells were pretreated 
with NAC for 1 h and incubated with pioglitazone for 24 h. 
Pretreatment with NAC failed to inhibit pioglitazone‑mediated 
apoptosis (Fig. 3A). Additionally, NAC did not affect PARP 
cleavage, caspase activation, c‑FLIP(L) and Bcl‑2 expression 
levels in pioglitazone‑treated cells (Fig. 3B). Therefore, these 
results indicate that pioglitazone‑mediated apoptosis is not 
associated with ROS.

Downregulation of c‑FLIP(L) contributes to pioglitazone-
mediated apoptosis. We examined whether downregulation 
of c‑FLIP(L) by pioglitazone‑induced apoptosis in Caki cells 
overexpressing c‑FLIP(L). Overexpression of c‑FLIP(L) signifi‑
cantly decreased pioglitazone‑induced apoptosis, whereas 
treatment with pioglitazone induced significant apoptosis in 
Caki/vector cells (Fig. 4A). Expression of cleaved PARP and 
cleaved‑caspase‑3 induced by pioglitazone treatment was also 
significantly inhibited by overexpression of c‑FLIP(L) (Fig. 4B). 
Therefore, these findings indicate that the downregulation 
of c‑FLIP(L) contributes to pioglitazone‑mediated apoptosis. 
To confirm the functional role of downregulated Bcl‑2 in 
pioglitazone‑treated cells, Caki cells engineered for Bcl‑2 
overexpression were used. As shown in Fig. 4C, overexpres‑
sion of Bcl‑2 was not associated with pioglitazone‑mediated 
apoptosis. Expression of cleaved PARP and caspase‑3 induced 

Figure 2. Pioglitazone‑induced apoptosis is markedly inhibited via a caspase‑dependent pathway. (A) Caki cells were treated with 100 µM pioglitazone for 
24 h in the absence or presence of z‑VAD‑fmk. The sub‑G1 cell fraction was measured by flow cytometry. Representative FACS histograms are presented in 
the upper panel and cumulative data in the lower panel. (B) Cells were pretreated with 50 µM z‑VAD‑fmk or a vehicle for 30 min and incubated with piogli‑
tazone. After 24 h, the expression levels of PARP, cleaved‑caspase‑3, c‑FLIP(L), Bcl‑2 and β‑actin proteins were detected by western blotting. β‑actin was used 
as a control for western blot analysis. Arrows indicate cleaved forms of caspase‑3. Data was obtained from three independent experiments. Data are expressed 
as the mean ± SD (n=3). *P<0.05 vs. non‑treated cells; #P<0.01 vs. pioglitazone‑treated cells. z‑VAD‑fmk, benzyloxycarbonyl‑Val‑Ala‑Asp‑fluoromethylketone; 
FACS, Fluorescence‑activated cell sorting; PARP, poly(ADP‑ribose) polymerase; c‑FLIP, cellular FLICE (FADD‑like IL‑1β‑converting enzyme)‑inhibitory 
protein; Bcl‑2, B cell lymphoma 2.
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Figure 3. Pioglitazone‑induced apoptosis is not mediated by ROS. (A) Caki cells were treated with 5 mM NAC or a vehicle for 1 h before treatment with 
100 µM pioglitazone. After 24 h, apoptosis was measured by flow cytometry. Representative FACS histograms are presented in the upper panel and cumulative 
data in the lower panel. (B) Cells were pretreated with 5 mM NAC or a solvent for 1 h and treated with pioglitazone for 24 h. The expression levels of PARP, 
cleaved‑caspase‑3, c‑FLIP(L), Bcl‑2 and β‑actin proteins were detected by western blot analysis. β‑actin was used as a loading control protein. Arrows indicate 
cleaved forms of caspase‑3. Data was representative from three independent experiments. Data are expressed as the mean ± SD (n=3). ROS, reactive oxygen 
species; NAC, N‑acetyl‑L‑cysteine; FACS, Fluorescence‑activated cell sorting; PARP, poly(ADP‑ribose) polymerase; c‑FLIP, cellular FLICE (FADD‑like 
IL‑1β‑converting enzyme)‑inhibitory protein; Bcl‑2, B cell lymphoma 2.

Figure 4. Downregulation of c‑FLIP(L) plays a critical role in pioglitazone‑mediated apoptosis. (A) Caki/vector and Caki/c‑FLIP(L) cells were treated for 24 h 
with pioglitazone (80 and 100 µM). Apoptosis was analyzed as a sub‑G1 cell fraction by FACS. (B) Caki/vector and Caki/c‑FLIP(L) cells were treated with 
80 and 100 µM pioglitazone for 24 h. Expression levels of PARP, cleaved‑caspase‑3, c‑FLIP(L) and β‑actin proteins were detected by western blot analysis. 
(C) After transient transfection with empty vector or the Bcl‑2 expression vector, the cells were treated with 100 µM pioglitazone for 24 h. The sub‑G1 cell 
fraction was measured by flow cytometry. (D) After transient transfection with an empty vector or the Bcl‑2 expression vector, the cells were treated with 
pioglitazone. After 24 h, expression levels of PARP, cleaved‑caspase‑3, Bcl‑2 and β‑actin proteins were detected by western blotting. β‑actin was used as a 
control for western blot analysis. Arrows indicate cleaved forms of caspase‑3. Data were obtained from three independent experiments. The data are expressed 
as the mean ± SD (n=3). *P<0.05 vs. pioglitazone‑treated Caki/vector cells. c‑FLIP, cellular FLICE (FADD‑like IL‑1β‑converting enzyme)‑inhibitory protein; 
FACS, Fluorescence‑activated cell sorting; PARP, poly(ADP‑ribose) polymerase; Bcl‑2, B cell lymphoma 2.
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by pioglitazone‑treated cells was not affected by overexpres‑
sion of Bcl‑2. (Fig. 4D), suggesting that the downregulation of 
Bcl‑2 was not related to pioglitazone‑induced apoptosis.

Pioglitazone attenuates the expression of Bcl‑2 caused 
by the reduction of protein stability. Whether the piogl‑
itazone‑induced decrease in Bcl‑2 was regulated at the 
transcriptional level was evaluated next. As shown in Fig. 5A, 
the Bcl‑2 mRNA level remained constant following treatment 
with pioglitazone, suggesting that pioglitazone‑mediated 
downregulation of Bcl‑2 protein is regulated at the 
post‑transcriptional level. To further clarify the mechanisms 
underlying the decreased Bcl‑2 expression level in piogli‑
tazone‑treated cells, a protein stability assay for Bcl‑2 was 
performed. Cells were pretreated with cycloheximide (CHX) 
for 1 h and then treated with pioglitazone for studying the 
kinetics. As shown in Fig. 5B, the protein expression level 
of Bcl‑2 reduced more rapidly with the co‑treatment of 
CHX and pioglitazone compared with CHX treatment alone. 
We also investigated whether treatment with pioglitazone 
affects the induction of apoptosis in human normal kidney 
HK‑2 cells. However, the sensitivity to apoptosis by piogli‑
tazone was markedly reduced in HK‑2 cells, compared with 

pioglitazone‑treated Caki cells (Fig. 5C and D). These results 
showed that the degradation of Bcl‑2 protein was facilitated 
by pioglitazone treatment and that pioglitazone treatment 
reduced Bcl‑2 protein stability.

Discussion

In this study, it was shown that pioglitazone exerts 
potent anticancer effects on human ccRCC Caki cells. 
Piogl itazone‑induced apoptosis was mediated by 
caspase‑dependent signaling pathways in treated cells. 
Moreover, the molecular mechanism of pioglitazone‑medi‑
ated apoptosis is ascribed to caspase‑mediated degradation 
of c‑FLIP(L) protein and reduction of Bcl‑2 protein stability.

Pioglitazone, a PPARγ agonist, is used to lower blood 
glucose levels in patients with type 2 diabetes (27). Studies have 
shown that pioglitazone may exert antitumor effects in several 
human cancer cell types, including bladder cancer, acute 
lymphocytic leukemia and glioma via inducing apoptosis and 
cell growth inhibition (28‑30). Nevertheless, it has been shown 
that diabetic patients with long‑term and high‑dose exposure 
to pioglitazone may increase the risk of bladder cancer (31). 
However, there is a conflicting study that pioglitazone treatment 

Figure 5. Downregulation of Bcl‑2 expression by pioglitazone treatment results from decreased protein stability. (A) Caki cells were treated with pioglitazone. 
After 24 h, mRNA expression of Bcl‑2 was measured via reverse transcription‑semi‑quantitative PCR. GAPDH was used as a loading control. (B) Cells were 
treated with or without 100 µM pioglitazone in the presence of 20 µg/ml CHX for the indicated duration. Western blotting was performed to determine Bcl‑2 
protein expression levels (upper panel). The Bcl‑2 density was measured using ImageJ software (middle panel). The data obtained from the western blot 
analyses of Bcl‑2 and β‑actin were used to evaluate the effect of pioglitazone on the Bcl‑2/β‑actin ratio (lower panel). β‑actin was used as a loading control 
protein. (C) HK‑2 cells were treated with the indicated concentrations of pioglitazone (0, 20, 40, 60, 80 and 100 µM) for 24 h. The morphological changes were 
examined under an inverted microscope (magnification, x200). (D) HK‑2 cells were treated with pioglitazone (0, 20, 40, 60, 80 and 100 µM) for 24 h. Apoptosis 
was determined by flow cytometry. Data were obtained from three independent experiments. The data are expressed as the mean ± SD (n=3). *P<0.05 vs. 
CHX‑treated Caki cells. GAPDH, glyceraldehyde 3‑phosphate dehydrogenase; Bcl‑2, B cell lymphoma 2; CHX, cycloheximide.



ONCOLOGY LETTERS  22:  743,  2021 7

does not increase the risk of bladder cancer in diabetic patients 
and that bladder cancer risk does not correlate with cumulative 
dose and duration of treatment, indicating that pioglitazone 
makes it much more effective and safer for glycemic control in 
diabetic patients (32). Additionally, in our system, pioglitazone 
treatment did not induce cell proliferation in bladder cancer 
T24 cells (data not shown). In this study, the antitumor effect 
of pioglitazone on Caki cells was confirmed. Consistent with 
previous studies, it was found that increasing concentrations of 
pioglitazone led to an increased in the sub‑G1 cell population.

Pioglitazone and other PPARγ agonists show anticancer 
activity against several cancer types, such as non‑small cell 
lung carcinoma, acute promyelocytic leukemia, bladder cancer, 
breast cancer, lung cancer and CRC via enhancing growth 
arrest, upregulating the expression of DNA damage‑inducible 
153  gene and PTEN, inactivating the PI3K‑Akt pathway, 
sustaining activated MAPK, modulating DR5 and c‑FLIP(L) 
expression and downregulating Bcl‑2 expression (33‑38).

Caspase activation regulates apoptotic‑regulatory 
proteins (39). However, there are conflicting reports of caspase 
involvement in apoptosis induced by PPARγ agonists in 
cancer cells. Pioglitazone‑mediated apoptosis occurs via a 
caspase‑independent pathway in bladder cancer cells (5). In 
contrast, pretreatment of PC‑3 cells with z‑VAD‑fmk inhibited 
PPARγ agonist‑mediated apoptosis, indicating the involvement 
of the caspase‑dependent pathway in prostate cancer  (40). 
It was also shown that pioglitazone‑induced apoptotic cells 
were remarkably inhibited by pretreatment with z‑VAD‑fmk. 
Thus, pioglitazone‑mediated apoptosis is regulated by the 
caspase‑dependent apoptotic pathway in Caki cells.

c‑FLIP is an important modulator of anti‑apoptotic pathway 
and is expressed in a variety of cancer cell types (41). Previous 
reports have demonstrated that PPARγ ligands modulate 
apoptosis via downregulating c‑FLIP(L) expression in cervical 
cancer cell lines (42). To determine whether the downregulation 
of c‑FLIP(L) was involved in pioglitazone‑induced apoptosis, 
c‑FLIP(L)‑overexpressing cells were established in this study. 
Our results showed that pioglitazone‑induced apoptosis was 
blocked in c‑FLIP(L)‑overexpressing cells, suggesting that 
pioglitazone‑mediated apoptosis occurred via downregulating 
c‑FLIP(L) expression.

Bcl‑2 expression is regulated at the transcriptional or 
post‑transcriptional levels (43,44). Studies have indicated that 
pioglitazone‑mediated apoptosis is regulated by suppressed 
Bcl‑2 transcription in hepatocellular carcinoma  (45). In 
contrast, we found that the degradation of Bcl‑2 protein was 
facilitated by pioglitazone treatment without affecting Bcl‑2 
mRNA expression levels. Thus, our data indicate that piogli‑
tazone‑mediated decrease in Bcl‑2 protein is regulated at the 
post‑transcriptional level.

ROS are critical regulators of apoptosis in a wide range of 
human cancer cells (46,47). It has been reported that piogli‑
tazone induces apoptosis by inducing ROS production in lung 
cancer (48). Thus, we confirmed whether pioglitazone‑mediated 
apoptosis was associated with ROS production. In our study, 
pretreatment with NAC did not affect pioglitazone‑treated 
cells, thereby providing evidence that pioglitazone‑induced 
apoptosis is independent of ROS production in Caki cells.

Collectively, our results demonstrate that piogli‑
tazone‑mediated apoptosis is facilitated by caspase‑dependent 

signaling pathways via downregulating c‑FLIP(L) expression 
and reducing Bcl‑2 protein stability in human ccRCC Caki 
cells. Therefore, based on our study outcomes, we propose that 
pioglitazone may be a potential therapeutic agent for human RC.
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