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Abstract

After slowing down the spread of the novel coronavirus COVID-19, many countries have

started to relax their confinement measures in the face of critical damage to socioeconomic

structures. At this stage, it is desirable to monitor the degree to which political measures or

social affairs have exerted influence on the spread of disease. Though it is difficult to trace

back individual transmission of infections whose incubation periods are long and highly vari-

able, estimating the average spreading rate is possible if a proper mathematical model can

be devised to analyze daily event-occurrences. To render an accurate assessment, we

have devised a state-space method for fitting a discrete-time variant of the Hawkes process

to a given dataset of daily confirmed cases. The proposed method detects changes occur-

ring in each country and assesses the impact of social events in terms of the temporally

varying reproduction number, which corresponds to the average number of cases directly

caused by a single infected case. Moreover, the proposed method can be used to predict

the possible consequences of alternative political measures. This information can serve as

a reference for behavioral guidelines that should be adopted according to the varying risk of

infection.

Author summary

Society and the media alternate between hope and despair in response to the temporary

decrease or increase of daily new COVID-19 infections. The number of cases has been

dependent on the political measures that were adopted in each country. Accordingly,

there is a strong demand for quantifying the effects of individual measures. The reproduc-

tion number, defined as the average number of cases directly caused by a single infected

case, is one of the indices of the current infectivity status. To capture the time-varying

reproduction number correctly, it is necessary to incorporate the distribution of delays,

which are widely dispersed from 2 to 14 days for the case of COVID-19. We have devel-

oped a state-space method for estimating the reproduction number solely from an avail-

able dataset of the number of daily cases. Our method automatically detects the change-
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points in the reproduction number. We apply our method to the real data and examine if

the detected changes are consistent with the times at which political measures had been

taken in each country. Furthermore, our method can be used to predict the number of

new cases in the future to examine the possible consequences of alternative political

measures.

Introduction

While the novel coronavirus COVID-19 has spread worldwide, different countries have

employed various intervention strategies, many of which were later followed by liberalized

approaches and relaxed behaviour from individuals. In this situation, it is desirable to monitor

the extent to which individual political measures have influenced the spread of the disease in

each country and predict the possible consequences of alternative measures.

A fundamental metric representing the degree of the spread of a disease is the reproduction

number, R, which is defined as the average number of cases directly caused by a single case [1,

2]. However, it is difficult to trace the concrete processes by which infections have been trans-

mitted among individual people, particularly considering the protection of private informa-

tion. Thus, a statistical analytical method is needed to infer the underlying process from the

available data consisting of the number of daily infected cases, which were obtained by imper-

fect observation and accompanied by errors.

Mathematical epidemiological studies using the ordinary differential equation (ODE) mod-

els, such as the susceptible–infectious–recovered (SIR) model, have contributed to our under-

standing of causal factor dynamics, the results of which can be used to suggest control

measures needed in given situations [3–5]. While the original study of Kermack and McKen-

drick in 1927 [6] considered the distribution of delays in the transmission of a disease, the

majority of later studies used ODEs in favor of an analytical treatment [7]. Though ODE mod-

els also assume the transmission delay, such that the SIR model represents the situation in

which delays are distributed exponentially [8], they cannot adopt the specific distribution of

delays for each disease. In the case of COVID-19, transmission delays are known to be widely

dispersed from 2 to 14 days [9–12]. To capture the time-varying reproduction number under

fluctuating circumstances, it is necessary to incorporate the delay distribution explicitly in the

analysis, as previously performed in an analysis using the semi-mechanistic Bayesian hierar-

chical model [13].

Recently, Chiang, Liu, and Mohler [14] modeled COVID-19 transmission using the

Hawkes process [15], in which the delay distribution can be explicitly adopted as a self-exciting

kernel. They combined the Hawkes process with spatial and temporal covariates, such as

demographic features and Google mobility indices, to explain the variability of the reproduc-

tion number, and to forecast future cases and deaths in the USA.

Herein, we establish a state-space method for estimating the time-varying reproduction

number by fitting a discrete-time variant of the Hawkes process. While the semi-mechanistic

Bayesian hierarchical model [13] requires manual assignment of the change-points, our

method automatically detects the change-points solely from a given series of the number of

daily cases. We first apply the method to synthetic data to confirm that the method properly

detects the change-points embedded in the simulation. Here, the proposed method is com-

pared with a conventional method in terms of performance estimation of the time-varying

reproduction ratio. Then, we apply the proposed method to real data and examine whether

the detected changes are consistent with the times at which political measures had been
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implemented in each country. The proposed method can also predict the number of new cases

in the future to examine any possible consequences of alternative political measures.

Methods

We have developed a state-space method of estimating the temporally changing reproduction

number from a given series of the number of daily new infections, by introducing a discrete-

time variant of the Hawkes process as a basic model describing the transmission of disease.

The state-space method describes the evolution of a system by a set of first-order difference

equations of state variables. The state variables can be inferred from measured data using a

recursive Bayesian estimation [16].

The rate process on a daily basis

The (original, continuous-time) Hawkes process describes a self-excitation process in terms of

the instantaneous occurrence rate λ(t) as

lðtÞ ¼ mþ R
X

tk<t

�ðt � tkÞ; ð1Þ

where μ is the spontaneous occurrence rate, and the second term represents a self-excitation

effect such that the occurrence of an event adds the probability of future events (Fig 1). R is the

reproduction number representing the average number of events induced by a single event, tk
is the occurrence time of a past (kth) event, and ϕ(t) is a kernel representing the distribution of

the transmission delays, satisfying the normalization
R1

0
�ðtÞdt ¼ 1. Events {t1, t2, . . .} are

derived randomly in time from the rate λ(t).
For the case of COVID-19, however, exact timing of infection event is not available. To deal

with the numbers of daily new cases that are practically available, we convert the original

Hawkes process Eq (1) into a discrete-time variant representing the expected number of events

on a daily basis:

lj ¼ m
0 þ
Xj� 1

i¼1

niRi�j� i; ð2Þ

where λj is the expected number of events on jth day. The first term μ0 on the right-hand-side

refers to the expected number of spontaneous occurrences on a daily basis. The second term

represents the self-excitation process, the manner in which νi events that have occurred on a

Fig 1. Schematic description of the Hawkes process Eq (1). The occurrence rate λ(t) is increased according to past

events occurred at times t = tk (k = 1, 2, . . .) with the transmission delays t − tk distributed with ϕ(t − tk). R is the

reproduction number that represents the average number of events induced by a single event.

https://doi.org/10.1371/journal.pcbi.1008679.g001
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day i exerted influence with the delay of j − i days. Here, we assume that the reproduction

number may change and represent the daily dependence as {Ri}i. ϕj−i represents a distribution

of the transmission delays d = j − i, satisfying the normalization
P1

d¼1
�d ¼ 1.

The number of events νi or ν is derived from a distribution specified with the mean rate λi
or λ. It would be natural to assume the Poisson distribution pðnjlÞ ¼ ln

n!
e� l. However, real data

are subject to erroneous observation and accordingly they tend to be over-dispersed, or the

sample variance exceeds the sample mean. Here, we incorporate over-dispersed data using the

negative binomial distribution in the following form [17]:

pðnjl; rÞ ¼
G nþ l

r

� �

Gðnþ 1ÞG l

r

� �
r

1þ r

� �n
1

1þ r

� �l
r

; ð3Þ

where ρ(> 0) represents the degree of over-dispersion, or the variance is Var(ν) = (1 + ρ)λ.

The Poisson distribution is in the limit of ρ! 0.

The COVID-19 model parameters were chosen as follows: the spontaneous occurrence of

infection is absent, μ0 = 0 because there is no spontaneous occurrence for COVID-19 except at

the initial occurrence in China. The virus is transmitted between individuals during close con-

tact, and each individual is determined to have an episode of infection. The duration between

symptom onsets of successive cases is referred to as the serial interval [18], which is slightly dif-

ferent from the incubation period [19, 20]. It is reported that the distribution of the serial inter-

vals is suitably approximated with the log-normal distribution function of the mean 4.7 days

and SD 2.9 days for COVID-19 [12]. We have adopted this distribution as the transmission

delay kernel ϕd. The distribution of transmission delays on a daily basis is given as the differ-

ence of a cumulative distribution function of the log-normal distribution, ϕd = Fd −Fd−1,

where

Fd ¼
1

2
erfc �

logd � m
ffiffiffiffiffiffiffi
2s2
p

� �

; ð4Þ

where the parameters μ and σ are given in terms of the mean m = 4.7 and the SD s = 2.9 as

m ¼ log ðm2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þm2
p

Þ and s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ð1þ s2=m2Þ

p
(Fig 2).

Fig 2. The distribution of transmission delays. A bar histogram represents the distribution of transmission delays on

a daily bases ϕd, which was converted from the log-normal distribution with the mean 4.7 days and SD 2.9 days (a

magenta line).

https://doi.org/10.1371/journal.pcbi.1008679.g002
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The system equation

To detect change-points in the reproduction number {Ri}i in Eq (2), we introduce a method of

estimating stepwise dynamics [21]. We assume that system’s state xi obeys the evolution

xi ¼ xi� 1 þ xi; ð5Þ

with the Cauchy random number ξ:

pðxjgÞ ¼
g

pðx
2
þ g2Þ

: ð6Þ

We assume that the reproduction number is given as Ri = f(xi) with the non-negative func-

tion. Here we adopted a ramp function f(x) = max(0, x).

State inference

We constructed a state-space model for estimating the temporally changing reproduction

number Ri from a given dataset of daily confirmed cases {ν1, . . ., νT}. The basic procedure of

constructing the state-space method is similar to the one we developed for estimating exoge-

nous and endogenous factors in a chain of point events [22].

To put the model in the state-space form, we take the summation in Eq (2) over the last L
days,

lj ¼ m
0 þ
Xj� 1

i¼j� L

nif ðxiÞ�j� i; ð7Þ

and introduce a concatenated state vector,

Xi≔ðxi� 1; . . . ; xi� LÞ
T
; ð8Þ

so that the rate process (7) depends only on the current state Xi. Accordingly, the state Xi

obeys the evolution

Xi ¼ FXi� 1 þ Gxi� 1; ð9Þ

where

F ¼

1 0 . . . 0

1 0 . .
. ..

.

..

. . .
. . .

.
0

0 . . . 1 0

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

; G ¼

1

0

..

.

0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

: ð10Þ

We have chosen L = 30 in the following analysis because the transmission delay kernel ϕd is

negligible at d = 30 (Fig 2).

The posterior distribution of system’s state Xi, given a set of daily new cases until ith day

Yi≔ {ν1, . . ., νi} is obtained using Bayes’ theorem as

pðXijYiÞ ¼
pðnijXiÞpðXijYi� 1Þ

pðnijYi� 1Þ
: ð11Þ

Here, p(Xi|Yi−1) may be obtained using a system model p(Xi|Xi−1) and the posterior
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distribution on day i − 1, p(Xi−1|Yi−1), as

pðXijYi� 1Þ ¼

Z

pðXijXi� 1ÞpðXi� 1jYi� 1ÞdXi� 1: ð12Þ

Starting from the initial distribution p(X1|Y0), we iterate Eqs (11) and (12) to compute

p(Xi|Yi−1) and p(Xi|Yi) for i = 1, 2, . . ., T.

Then, we compute the distribution of system’s states {X1, . . ., XT}, given an entire set of

occurrences YT≔ {ν1, . . ., νT} with

pðXijYTÞ ¼ pðXijYiÞ

Z
pðXiþ1jYTÞpðXiþ1jXiÞ

pðXiþ1jYiÞ
dXiþ1 ð13Þ

in reverse order as i = T − 1, T − 2, . . ., 1, using the distribution functions p(Xi|Yi) and p(Xi|Yi−1),

which were obtained with Eqs (11) and (12).

We then take the median of the posterior distribution p(Xi+ 1|YT) for the estimate of the

state X̂ iþ1. The estimate of the reproduction number, R̂i, is then given by the first element of

f ðX̂ iþ1Þ. With the estimated reproduction number, we obtain the estimated total rate as

l̂ j ¼ m
0 þ
Xj� 1

i¼1

niR̂i�j� i: ð14Þ

We devised an algorithm that performs the integrations in Eqs (11), (12) and (13) numeri-

cally using a sequential Monte Carlo method [23, 24].

To avoid bias in estimating the state, which is caused by outliers in the data, we may discard

the preassigned outliers and treat them as “missing observations” [24], for which the posterior

distribution of Xi, conditional on Yi, is set to p(Xi|Yi) = p(Xi|Yi−1) without applying the Bayes-

ian update (11).

Results

Analysis of synthetic data

Firstly, we evaluated the functionality of the state-space method by applying it to synthetic

data. For this purpose, we constructed simulations of the Hawkes process mimicking prototyp-

ical evolutions in several countries. In the simulations, we took μ0 = 0 and began with a few

infections as initial seeds, mimicking those who introduced the disease into each country.

With an initial reproduction number R> 1, the daily cases initially grew exponentially. To

reproduce a variety of evolutions in different countries, we have evaluated several schedules of

the reproduction number {Ri}i.

Fig 3 depicts three prototypical cases: (A) the rapid increase is followed by a slow decrease;

(B) the rapid increase is followed by a rapid decrease, and then it started to increase again; (C)

the increase is followed by a decrease, and then another large increase. For each type of time-

varying reproduction number {Ri}i, the Hawkes process was simulated over an interval of

length T = 120 days to generate daily cases {ν1, . . ., νT}. In the simulation, the parameter of the

negative binomial distribution Eq (3) was set to ρ = 50.

Parameters of the state-space method. For each series of simulated data, we have applied

the state-space method, or performed the sequential Monte Carlo algorithm to compute the

posterior distributions of the reproduction number for each day, R̂i. Here, the over-dispersion
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Fig 3. Synthetic daily cases generated by simulating the Hawkes-type count process and the estimated

reproduction number. (A) Rapid increase followed by a slow decrease. (B) Increase followed by a rapid decrease, and

then an increase. (C) Slow increase followed by a decrease, and then another large increase. In the upper panel plotting

the number of daily cases (purple line), the rate estimated by the state-space method l̂ i is also plotted (blue line). In the

lower panel, the reproduction number R̂i estimated with the state-space method is plotted in reference to the true
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parameter ρ of the negative binomial distribution Eq (3) is determined from a given dataset as

r̂ ¼
1

T

XT

i¼1

ðni �
�liÞ

2

�li

� 1; ð15Þ

where �l i ¼
P3

j¼� 3
niþj=7 represents the mean daily cases averaged over a week.

To verify the convergence of the posterior estimate of R̂i concerning the number of parti-

cles, we computed the standard error of R̂i with 100 cases of the Monte Carlo estimation

(Table 1). We observed that 106 particles may provide a reasonably accurate estimate of the

reproduction number.

The state-space method possesses a hyperparameter γ that characterizes the Cauchy distri-

bution of the system equation Eq (6). We tested different values for the hyperparameter γ as

10−2, 10−3, and 10−4, and observed that the estimated reproduction number R̂i is sensitive to

the value of γ while the estimated total rate l̂i is robust against γ (results not shown). We con-

firmed that the likelihood was highest for the case of γ = 10−3. Accordingly, we fixed the hyper-

parameter at γ = 10−3 throughout the following analysis.

With the hyperparameter γ = 10−3 and the parameter r ¼ r̂ determined for each dataset

with Eq (15), we performed the sequential Monte Carlo algorithm with 106 particles to com-

pute the posterior distributions of the reproduction number for each day, R̂i. Fig 3 depicts the

median (solid line) and 95% range (shaded areas) of the posterior distributions. We see that

the amplitude of the reproduction number is estimated properly. In particular, the method has

successfully detected change-points in {Ri}i that were embedded in the simulation.

Comparison with conventional estimation methods. We compared our method with

the following two conventional estimation methods in their ability at estimating the time-vary-

ing reproduction number of the synthetic data. A method suggested by Wallinga and Teunis

(WT method) estimates the “case reproduction number” [25, 26],

Ri ¼
XT

j¼iþ1

nj�j� i
Pj� 1

k¼1
nk�j� k

: ð16Þ

Another method suggested by Cori et al. (EpiEstim) estimates the “instantaneous reproduc-

tion number” [27, 28],

Ri ¼
ni

Pi� 1

j¼1
nj�i� j

; ð17Þ

in a Bayesian framework with a Poisson likelihood and a gamma-distributed prior for Ri. We

reproduction number Ri (purple line). The blue solid line and the shaded area represent the median and 95% range of

the posterior distribution, respectively. The reproduction numbers estimated by Wallinga and Teunis (WT: orange

line) and by Cori et al. (EpiEstim: green line) are also plotted for reference.

https://doi.org/10.1371/journal.pcbi.1008679.g003

Table 1. Convergence of the posterior estimate of R̂i.

particles 103 104 105 106

standard error 0.165 0.057 0.028 0.010

The standard error of R̂i computed with 100 cases of the sequential Monte Carlo algorithm applied to the synthetic

data in Fig 3A.

https://doi.org/10.1371/journal.pcbi.1008679.t001
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plotted the estimation results obtained by the WT method and EpiEstim with a sliding window

of 7 days in Fig 3. It is observed that both methods are easily influenced by the fluctuation of

data and accordingly it is difficult to discern the change points in the original process. Further-

more, the WT method tends to underestimate the current reproduction number at the end of

the recorded interval, because it requires data that could be obtained in the future; the repro-

duction number estimated by EpiEstim is shifted backward in time relative to the WT and our

methods because it uses only data from time points before i.

Analysis of real data

Next, we applied the state-space method to real data of daily confirmed cases in several

countries. The number of daily new cases in various countries is made available on websites

hosted by public research centers such as Our World in Data (https://ourworldindata.org/

coronavirus-source-data) and the Humanitarian Data Exchange (https://data.humdata.org/

dataset/novel-coronavirus-2019-ncov-cases). We used data from the former site in this

analysis.

Variation by day of the week. In the number of reported infections, a large variation has

been observed by day of the week; reported infections tend to be fewer on the weekend than

on the weekdays. There might have been variations in the original infectious activity due to

human behavior, but it is more likely that this variation was caused by the delay in confirming

infections and compiling the results at the weekend. The variation by day of the week is com-

monly observed, but there are large differences between countries, presumably due to the cul-

tural difference in weekly activities (Fig 4).

Before analyzing a sequence of daily cases of a given country, we process the data as follows;

we first obtained the gross daily variation βi in a week by averaging over the entire infection

record (from March 1 2020 to the present), so that the average over a week is normalized as

1

7

XSaturday

Sunday

bi ¼ 1: ð18Þ

Fig 4. Variations by day of the week in the number of reported infections {βi} computed for several countries.

https://doi.org/10.1371/journal.pcbi.1008679.g004
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Then, we convert the original data of daily infections {n1, . . ., nT} to an adjusted dataset

{ν1, . . ., νT} by

ni ¼ ni=bi; ð19Þ

to which we apply the proposed state-space method.

Diversity in the spread of the contagion. In Fig 5, we show original daily new infection

cases {n1, . . ., nT} and the adjusted dataset {ν1, . . ., νT} of several countries. Below each panel of

the daily cases, we demonstrate the reproduction number R̂i estimated with the proposed

state-space method:

Italy. A rapid increase in new cases was followed by a slow decrease. The esti-

mated reproduction number was R̂ > 1 at the outset and dropped to

R̂ < 1. It is interesting to note that the drop in the reproduction number

occurred after political measures, such as lockdown and border closure,

were enforced.

Japan. The number of cases is found to be relatively small compared to those in

Europe. An increase in the number of cases was followed by a rapid

decrease, and then by a second increase. Accordingly, the reproduction

number exhibited a drop from R̂ > 1 to R̂ < 1, and then it increased to

R̂ > 1.

Saudi Arabia. The number of new cases repeatedly moved up and down, and the esti-

mated reproduction number R̂ changed accordingly. It is observed that

Ramadan has promoted increased reproduction number, as it may have

facilitated human contact.

The United States. A rapid increase in new cases is followed by a very slow decrease, and

then another growth. The estimated reproduction number R̂ was higher

than unity at the beginning, dropped off to near unity due to the confine-

ment measures taken, but then it exceeded unity again. The political

measures taken were found to vary by state, making it difficult to inter-

pret the data from this country as a whole.

We also compared the proposed method with a conventional WT method [26] and EpiEs-

tim [28] by applying them to these real data (Fig 5). It is also observed that the WT method

and EpiEstim are easily influenced by the fluctuation of data. Results of other four countries

are also shown in Fig 6.

The reproduction number at the initial phase. There have been debates about why infec-

tion rate and mortality rate change by orders of magnitude across different countries. Though

these numbers likely reflect the confinement measures taken in individual countries, there

might also have been differences across nations in susceptibility to COVID-19, reflecting not

only genetic resistance but also lifestyle and cultural differences, such as shaking hands or

hugging.

Because most governments did not implement serious confinement measures at the initial

phase, the initial exponential increase of infections might reflect the natural susceptibility of

citizens of each country. We realized that the estimated reproduction number was stable in a

certain period before each country took confinement measures such as a lockdown or social

distancing. Fig 7A depicts the reproduction numbers estimated with the proposed state-space
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method for 10 days until the day before the confinement measures of each country. The initial

variation in the numbers of daily new cases is depicted in Fig 7B, indicating that the estimated

reproduction number is correlated to the slope in the log plot. Here we have selected the

period shifted by 5 days, by taking account of the typical transmission delays. We can observe

that countries in different regions tend to cluster, indicating that the susceptibility tended to

be similar between nations in the same region.

Fig 5. Number of daily new cases and the reproduction number R̂i estimated using the state-space method. Italy,

Japan, Saudi Arabia, and the USA.

https://doi.org/10.1371/journal.pcbi.1008679.g005
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The minimum reproduction number achieved in each country. The degree of a drop in

the estimated reproduction number could reflect the impact of non-pharmaceutical interven-

tions such as a lockdown. It might be possible to quantify the effectiveness of political interven-

tions in each country in terms of the relative percentage reduction in the reproduction

number [13]. Here we searched for the minimum reproduction number averaged over 10 days

that was achieved in each country. Fig 8A depicts the reproduction number for 10 days whose

Fig 6. Number of daily new cases and the reproduction number R̂i estimated using thestate-space method. France,

Australia, Iran, and Brazil.

https://doi.org/10.1371/journal.pcbi.1008679.g006
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Fig 7. The difference in the reproduction number at the initial phase. (A) The reproduction numbers estimated with the proposed state-space

method for 10 days until the day before the lockdown measures of each country. Days are counted from 12 days before the confinement measures. (B)

Initial variation in the numbers of daily new cases; ni divided by n6. The period is shifted by 5 days, by taking account of the typical transmission delay.

https://doi.org/10.1371/journal.pcbi.1008679.g007

Fig 8. The minimum reproduction number achieved in each country. (A) The reproduction number for 10 days whose average takes minimum in

each country. (B) Variation in the numbers of daily new cases; ni divided by n6. The period is shifted by 5 days, by taking account of the typical

transmission delay.

https://doi.org/10.1371/journal.pcbi.1008679.g008
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average takes minimum in each country. The variation in the numbers of daily new cases is

depicted in Fig 8B, indicating that the estimated reproduction number is correlated to the

slope in the log plot.

Future prediction

Using the proposed method, it is also possible to predict the number of new cases in the future.

This can be done by simulating the converted Hawkes process Eq (2) with the parameters esti-

mated from the given data. One may adopt the reproduction number Ri in near future as con-

stant at the value of an endpoint of estimation if the current conditions are assumed to be

maintained. Alternatively, one may also examine various time schedules of Ri, by assuming

possible choices of relaxation or confinement measures.

In Fig 9 we applied the forecasting method to the data of Japanese daily cases. Assuming

that we are on June 30, 2020, we have estimated the reproduction number R̂i using the daily

cases until that day. To predict the number of daily cases from July 1 to August 1, we ran the

Hawkes process 100 times to obtain the expected daily cases. Firstly, we have assumed that the

reproduction number remains the value obtained for the last day R = 1.4. Occasionally the

reproduction number has not changed drastically in July, and accordingly, the predicted num-

ber of new cases is similar to the real data obtained in July.

We have also tested the cases in which the reproduction number is decreased to R = 0.7 due

to confinement measures, or increased to R = 1.8 by liberalization. In this way, we may exam-

ine what might occur if political interventions are taken.

Discussion

Society and the media currently alternate between hope and despair in response to the tempo-

rary decrease or increase of daily new COVID-19 infections, which came out after a long

Fig 9. Predicting the number of new cases in the future. The forecasting method was applied to the data of Japanese

daily cases, assuming that we were on June 30, 2020. We ran the Hawkes process 100 times to obtain the expected daily

cases, by assuming that the reproduction number remains constant R = 1.4, which was obtained using the previous

data (orange line). We also examined the cases in which the reproduction number is decreased to R = 0.7 due to

confinement measures (green line) or increased to R = 1.8 by liberalization (red line).

https://doi.org/10.1371/journal.pcbi.1008679.g009
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latency period. To make an objective assessment of the current status, we have developed a

state-space method for estimating the control status, in particular quantifying the time-depen-

dent reproduction number R.

Pros and cons

We have adopted the Hawkes process, or its discrete-time variant, in describing the variables

underlying the transmission of disease. In contrast to ordinary differential equation models

such as SIR or SEIR models, the Hawkes process is advantageous in that it explicitly specifies

the distribution of transmission delays. However, the Hawkes process does not account for the

finite size effect, in which infected and recovered people represent a finite fraction of the entire

population. There have been some models that incorporate the finite population size effect

into the Hawkes process, as has been done with the SIR or SEIR models [8, 29]. To analyze the

current status of COVID-19, however, we do not take the finite size effect into account, as the

fraction of the recovered or removed people is still less than a few % of the entire population.

We have converted the original Hawkes process Eq (1) into a discrete-time variant repre-

senting the expected number of events on a daily basis Eq (2) because the exact timing of infec-

tion event is not available for the case of COVID-19. It is noteworthy that Cheysson and Lang

also developed a method for estimating parameters of the Hawkes process from counts data

[30]. However, their method is based on a spectral likelihood, assuming stationarity in the

underlying process. In contrast to this, we directly modeled the count time series and com-

bined it with the state-space model to accommodate nonstationary data.

We introduced the Cauchy distribution Eq (6) into our analysis, assuming the stepwise

changes in the reproduction number Ri. Accordingly, we were able to detect change-points

from the posterior distribution taking on stepwise characteristics. As discussed by Kitagawa

[21], the use of the heavy-tailed distribution enables us to express change-points, in contrast to

using a Gaussian noise, which results in gentle changes. However, a drawback of the Cauchy

distribution is that it causes slow convergence in the Monte Carlo simulation [31].

Interestingly, the drop in the reproduction number occurred after political measures, such

as lockdown and border closure. It should be also noted that there may be an additional

latency between the times at which political measures were conducted and the changes in the

reproduction number, which may reflect the behavior change. This delay may also be country-

specific. Therefore, it could be interesting to investigate the delay in the change-points in the

reproduction number following social events.

When inferring the transmission of disease from daily confirmed cases, we have considered

potentially erroneous observations made in the real data. We took into account counting

errors by assuming a negative binomial distribution that represents the over-dispersion. We

also took into account the variation by day of the week and adjusted the data by compensating

for the periodic dependency. Note that there may still be an underestimation of infection num-

bers, as asymptomatic cases may have been overlooked. Though this is unavoidable unless the

inspection is enforced, it is reported that the infections caused by asymptomatic people are rel-

atively small (about 6%) for COVID-19 [19].

We have assumed that the transmission delay is a serial interval defined as the duration

between symptom onsets of successive cases and adopted the log-normal distribution with the

mean 4.7 days and SD 2.9 days, as suggested in reference [12]. As our mathematical formula-

tion is general, it is possible to search for a more suitable transmission kernel ϕd without rely-

ing on such external knowledge, if the numbers of daily cases are accurately provided.

Here, we set the spontaneous occurrence rate to zero (μ0 = 0) in the analysis of real data.

However, imported cases might be involved in the data. Also, we did not address censoring for
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incomplete observation of the epidemic process in particular at the initial stage. These may

cause bias in the estimations of the reproduction number at the early stage of the epidemic.

The most crucial assumption in the majority of mathematical model studies, including this

study, is the mean-field assumption, in which all individuals are assumed to interact uni-

formly. Though difficult to incorporate, it is desirable to consider the heterogeneity of the real-

world community in analyzing the communicability of disease.

Despite these assumptions, the proposed state-space method may be of worth in assessing

the status of the disease systematically, based on reported daily confirmed cases. This method

might serve as a reference for governments adopting variable regulations that should be

changed according to current infection circumstances.
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