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Abstract
In a complex and changeable stock market, it is very important to design a trading agent that can benefit investors. In this
paper, we propose two stock trading decision-making methods. First, we propose a nested reinforcement learning (Nested
RL) method based on three deep reinforcement learning models (the Advantage Actor Critic, Deep Deterministic Policy
Gradient, and Soft Actor Critic models) that adopts an integration strategy by nesting reinforcement learning on the basic
decision-maker. Thus, this strategy can dynamically select agents according to the current situation to generate trading
decisions made under different market environments. Second, to inherit the advantages of three basic decision-makers, we
consider confidence and propose a weight random selection with confidence (WRSC) strategy. In this way, investors can
gain more profits by integrating the advantages of all agents. All the algorithms are validated for the U.S., Japanese and
British stocks and evaluated by different performance indicators. The experimental results show that the annualized return,
cumulative return, and Sharpe ratio values of our ensemble strategy are higher than those of the baselines, which indicates
that our nested RL and WRSC methods can assist investors in their portfolio management with more profits under the same
level of investment risk.

Keywords Investment market · Stock trading · Deep reinforcement learning · Real-time decision-making

1 Introduction

Investing is a means to save money from extra income and
idle funds, resulting in more compensation and rewards in
the future. Investing undoubtedly increases one’s source of
income and improves one’s personal quality of life. War-
ren Buffett [45], a famous investor, defines investment as
“A process of laying out money now in the expectation
of receiving more money in the future.” Indeed, successful
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investing can increase one’s finances through a variety of
investment tools. To reduce the risks of the investment pro-
cess, one must weigh and allocate one’s money considering
a variety of factors. Generally, diversification is considered
a safer way to invest one’s money in multiple assets rather
than a single asset. As the saying goes, “Don’t put all your
eggs in one basket.”

In terms of diversified investment, stock investment is
considered to be the most difficult. The stock market is a
highly complex and nonlinear dynamic ecosystem com-
posed of market participants who can make decisions freely
based on their individual beliefs and personal profits. Many
factors affect the stock market, such as political turmoil,
news events, public sentiment, and exchange rate fluctu-
ations. Due to the instability and extremely unpredictable
features of the stock market, stock decision-making is also
affected by various and conflicting attributes, resulting in
a typical multiattribute decision-making (MADM) problem
[33]. In view of the existence of various factors in the stock
market, rational portfolio management is our main goal.

Portfolio management is a continuous process that max-
imizes accumulated profits by minimizing the overall risk
of the portfolio and involves position sizing and resource
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allocation [1]. Professional investment analysts and retail
investors often make stock trading decisions based on their
personal experience and views. However, the efficiency of
such portfolio management is extremely low in a complex
and risky stock market. Some portfolio results recom-
mended by traditional investment analysts present several
limitations [34]. Traditional investment analysts fail to serve
a large number of low net worth customers [35]. At the
same time, they are more vulnerable to behavioral biases
and conflicts of interest. However, AI-based investment has
the advantages of low thresholds, low costs, and high effi-
ciency [36, 37] and revises recommendations more often
than human analysts. Moreover, Coleman et al. [38] pro-
vided the first comprehensive comparison of the investment
recommendations generated by AI-based and human ana-
lysts. Their results suggest that AI-based portfolio systems
outperform human analysts and are a valuable, alternative
information intermediary to traditional sell-side analysts for
investment decisions. In conclusion, the AI-based portfolio
can surpass experienced human traders in financial markets
[39]. Therefore, it is necessary to develop an AI-based port-
folio stock trading strategy that can assist stock investors in
coping with a variety of dynamic environments to maximize
the expected return and minimize investment risk.

AI-based portfolio management systems can provide
financial services and investment consulting for users by
adopting easy-to-use and low-cost algorithms [2]. At the
same time, the application of artificial intelligence algo-
rithms can balance the risk and return of investment, which
optimizes the portfolio to a great extent [8]. Markowitz
proposed the standard mean-variance (MV) model to solve
the multiobjective optimization problem in portfolio man-
agement [3]. In the MV model, portfolio optimization is
regarded as the objective function, and the average return of
assets is modeled as one of the constraints. Due to the cardi-
nality and boundary constraints, the computational overhead
of the MV model is very high, thus limiting its applica-
bility. Based on the classical MV model, Strumberger et
al. extended the formula to solve constrained combination
problems by combining the bat algorithm with the artificial
bee colony heuristic algorithm [4], which is a hard opti-
mization problem suitable for stochastic optimization meta-
heuristics. Furthermore, to improve the dispersion of invest-
ment, Slimane et al. [5] proposed two mean-semientropy
portfolio selection models and designed a fuzzy simulation-
based genetic algorithm to solve the models to optimality.
Recently, Leung et al. [40] formulated the classicMarkowitz
mean-variance (MV) framework and its variant mean con-
ditional value-at-risk (CVaR) as minimax and biobjective
portfolio selection problems and then applied neurodynamic
approaches to solve these problems.

In a dynamic stock market environment, the nonlinear-
ity of the time series is prominent and affects the efficacy

of stock price forecasts. Thus, Chou et al. [7] designed an
intelligent time series prediction system to improve invest-
ment profits. In addition, stock prices sometimes represent
a similar pattern and are determined by multiple factors.
Chou et al. [9] proposed a new and complex method to find
similar patterns in historical stock data to obtain daily stock
prices with high prediction accuracy and potential rules.
Furthermore, some new models such as augmented fuzzy
rough neural networks (FRNNs) [41], prediction models
based on clustering [6], etc. have gradually been proposed
to predict complex stock time series. Among the factors
affecting stock prices, the behavior of investors plays a very
important role. Therefore, Wang et al. [42] explored the
impact of investors’ social networks on stock price dynam-
ics. In addition, in current approaches to predicting stock
prices, the relationships between stocks and sectors are
often neglected. To study this issue, Hsu et al. proposed
a novel model, Financial Graph Attention Networks (Fin-
GATs) [43], to recommend the top-k stocks in terms of
return ratios using time series of stock prices and sector
information.

Recently, reinforcement learning has been widely applied
in a variety of fields of decision-making, such as for self-
driving [10, 11], medical care [12], robot control [13], and
games [14]. The stock trading process can be regarded as
an online decision-making process occurring in response to
market fluctuations. Agents of reinforcement learning can
decide which strategy to use to obtain as many rewards as
possible. Accordingly, trading strategies also need to deter-
mine which operations (such as buying, selling, and hold-
ing) to use to gain more profits in stock trading. Therefore,
reinforcement learning seems to be a very good choice for
learning optimal stock trading strategies [15]. Given the
nonlinear, noisy, and unstable nature of the stock market,
it is difficult for decision-making agents to achieve optimal
results. To address this challenge, a deep neural network is
successfully integrated into reinforcement learning [16, 17]
because deep reinforcement learning (DRL) can abstract the
characteristics of data from complex nonlinear original data.
Due to the fluctuations of stock data, more novel input fea-
tures are considered in the deep learning model, which will
improve the performance of the prediction model [18]. Port-
folios, asset allocation, and trading systems could be better
optimized by deep reinforcement learning [19].

To design a stock decision-making agent, we need to
determine the most suitable deep reinforcement learning
model. Because each model has its own advantages and
disadvantages, we propose ensemble strategies of stock
trading. Our contributions are as follows:

1. We explore benefits of basic reinforcement learning
models that are adept at stock trading, laying a founda-
tion for the ensemble strategy.
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2. We select the three models Advantage Actor Critic
(A2C), Deep Deterministic Policy Gradient (DDPG),
and Soft Actor Critic (SAC) in the FinRL library [20] as
our basic decision-makers. Based on these models, we
propose a nested RL architecture that can dynamically
and spontaneously select the active decision-maker and
generate the optimal trading strategy for complex and
dynamic stock markets. In addition, we compare our
approach to several common ensemble algorithms.

3. To obtain a higher return, we consider the confidence
factor and propose a weighted random selection with
confidence (WRSC) algorithm, which follows the
strategy of the strongest decision-maker with high
confidence; otherwise, the decision-maker makes a
weighted random selection from the remaining base
decision-makers according to the annual return rate.

4. We demonstrate our ensemble strategies for U.S.,
Japanese and British stocks and validate case stud-
ies of real-world trading scenarios involving CSCO
stocks, showing that our strategies exhibit excellent
performance.

The rest of the paper is organized as follows. Section 2
introduces recent progress made in intelligent stock trading
algorithms based on deep reinforcement learning and com-
pares existing methods to our approach. Section 3 presents
the problem formulation for RL-based stock trading under
the MDP framework. Section 4 describes our stock trad-
ing methods based on reinforcement learning in more detail.
Section 5 presents performance evaluations of our methods
and baseline algorithms. In Section 6, we summarize the
paper and describe our plans for future work.

2 Related work

The latest development of reinforcement learning and deep
learning has introduced new ideas to quantitative trading
on the stock market. Recently, deep reinforcement learning
has been regarded as an effective method in the field of
quantitative finance. For example, Liu et al. introduced
a DRL library FinRL [20] that allows users to simplify
their own development and compare it to existing schemes.
Moreover, Qlib, a new AI-oriented quantitative investment
platform, has been proposed [21] and enables the easy
exploration of AI technology in quantitative investment.
Qlib not only provides high-performance infrastructure but
also integrates a number of machine learning tools for
quantitative investment scenarios. Both methods lay a solid
foundation for us to investigate the possible adoption of
reinforcement learning in stock investment.

Following the paradigm of reinforcement learning, many
methods for RL-based quantitative stock trading have been

proposed in two fields, including the stock environment and
portfolio strategies.

In terms of the stock environment, recent studies focus
on a single stock investment. One new approach is called the
adaptive stock trading strategy based on deep reinforcement
learning [22], which uses the gated recurrent unit (GRU) to
extract financial feature information to reflect the internal
characteristics of the stock market and make adaptive
trading decisions. Through the customized design of state
and behavior space, researchers have proposed two kinds
of trading strategies based on the reinforcement learning
Gated Deep Q-learning trading strategy (GDQN) and Gated
Deterministic Policy Gradient trading strategy (GDPG)
[22]. GDQN and GDPG trading strategies perform well in
stock markets, but they only concentrate on single stock
investment without considering portfolio management.
Because the profit margin of a single stock investment
is often limited, its risk is relatively high. To solve this
problem, our nested RL method analyzes the market of
multiple stocks (this study uses 90 stocks) and constructs an
intelligent stock trading strategy to build a flexible portfolio
of multiple stocks.

On the other hand, there are representative studies on
portfolio strategy. Recently, Li et al. proposed a novel Adap-
tive Deep Deterministic Policy Gradient scheme (ADDPG)
for the portfolio allocation task [23]. The model can distin-
guish positive and negative feedback and dynamically adjust
the learning rate of the Q function in the DDPG according to
the prediction error. Despite the ADDPG’s improvement of
the DDPG, it is still only suitable for steady stock markets
and unable to deliver accurate decisions for a more volatile
environment. To alleviate this limitation and realize the scal-
ability of decision-making agents, we propose nested RL,
which combines multiple RL algorithms to generate more
flexible and optimized strategies in a complex and dynamic
stock market.

Some research efforts have already explored ensemble
reinforcement learning approaches that combine multiple
RL methods to exceed the performance of a single method.
To apply an ensemble strategy to continuous spaces, Rohan
Saphal et al. [24] proposed SEERL, which combines
diverse policies, including both discrete and continuous
space strategies. The latter continuous space strategy is the
equivalent of majority voting in continuous action space.
Nevertheless, this voting strategy cannot deal with stock
actions with time series and thus only considers current
stock prices and ignores historical ones.

Remedies to such a problem have been proposed to carry
out automated stocking. One pioneering work was done
by Salvatore et al. [25], who proposed a multilayer and
multiensemble stock trader to address the issue of using
price information in single supervised classifiers leading to
poor results. Then, Carta et al. proposed the multi-DQN
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method [46], which combines deep Q-learning classifiers
that can address the uncertain and chaotic behavior of
different stock markets. However, the learning and con-
vergence speed of the multi-DQN method slow as the
amount of stock data increases. Our DRL shows great
promise in dealing with complex, multifaceted, and sequen-
tial decision-making problems. In addition, Yang et al.
proposed an automated stock trading (AUST) ensemble
strategy based on three RL algorithms: Proximal Policy
Optimization (PPO), the Advantage Actor Critic (A2C)
and the Deep Deterministic Policy Gradient (DDPG) [26].
The method automatically selects the best agent of the
three algorithms to make trading decisions according to the
Sharpe ratio, which can adapt to different market envi-
ronments. Nevertheless, this strategy only makes a greedy
selection in n sliding windows of three months. The result
only inherits the advantages of each algorithm and does not
exceed the best performance of all three agents. Studies have
shown that some RL agents make more assertive decisions,
whereas other RL agents tend to be more pessimistic in
response to the dynamic stock market. To comprehensively
combine the strengths of each agent, we add the correspond-
ing weight to each agent and propose the weighted random
selection with confidence (WRSC) algorithm.

3 Problem formulation

Some unpredictable facets of the stock market can affect
yields, but with a clear understanding of the market, one
can make decisions at the best trading time. Stock trading
refers to buying and selling the shares of a specific company.
If one owns stock, one owns part of a company. The
most commonly used stock market terms include buying,
selling, holding, closing, the trading volume, the bear
market, the bull market, dividends, etc. In a bear market, the
stock market shows a downward trend where the prices of
multiple stocks are falling. In a bull market, the stock market
exhibits an upward trend where the prices of multiple stocks
are increasing. Stock prices are divided into the opening
price, closing price, highest price, and lowest price.

In the stock market, stock trading involves a stochastic
and interactive process; thus, stock trading decisions can be
modeled as the Markov decision process (MDP). During the
MDP, decision-makers observe Markov stochastic dynamic
systems periodically or continuously and make decisions
sequentially. The MDP is a quad {S, A, P, R}. Here, S is
a set of finite states, A is a set of finite actions, P is the
state transition probability, and R is the expected immediate
reward received after performing action A. In this section,
we define the state space, action space, reward function and
environment of this MDP framework. We use the following

indicators to represent the state space of the stock trading
environment.

3.1 State Space

Stock investors analyze all kinds of stock information
before making decisions (buy, sell, or hold). To learn
from the environment, our trading agent needs to observe
many different characteristics. The state space describes
the observation results obtained by interacting with the
environment.

– Balance b ∈ R+ : the total amount remaining in the
user’s account in time step t .

– Shares own h ∈ Zn+ : the current shares for each stock,
where n represents the number of stocks.

– Closing price p ∈ Rn+: the closing price of the stock
market, which is the weighted average trading volume
of all transactions one minute before the last trading of
the securities on a given day.

– Opening price o ∈ Rn+ : the price at which a security
first trades on the opening of an exchange on a trading
day.

High price h ∈ Rn+: the highest price among the
trading prices on a given day.

Low price l ∈ Rn+: the lowest price among the trading
prices on a given day. The three prices reflect the
changes in stock prices.

– Trading volume v ∈ Rn+ : the total number of stocks
traded by investors in a period of time.

3.2 Action Space

Action space refers to the allowed actions of the trading
agent interacting with the stock market environment.
Generally, a ∈ A includes three actions: {−1, 0, 1}, where
-1, 0, and 1 respectively denote selling, holding and buying
a stock. A single action can be used in multiple stocks.
We define action space {−k......, −1, 0, 1.......k}, where k

represents the number of stocks. For example, when one
buys 20 NKE stocks or sells 20 NKE stocks (k=20), the
corresponding action is denoted as 20 or - 20, respectively.
As shown in Fig. 1, the total value of an investor’s stock
is ‘v’ at time t . After taking different actions (buy, hold or
sell), the corresponding total value of the stock will change
and eventually become ’total value 1,’ ’total value 2,’ or
’total value 3’ at t + 1. Since stock trading occurs daily and
stock decision-making occurs in real time, we believe that
a daily decision-making frequency can effectively measure
the performance of the model. That is, after obtaining the
stock information of the current day, our model gives stock
decision suggestions for the next day.
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Fig. 1 The total value of an
investor’s stock changes after 3
different actions (buy, hold, and
sell)

3.3 Reward function

Reward function R(s, a, s′) is an incentive mechanism
that encourages trading agents to identify better behavior
strategies. Here, we provide the commonly used reward
function template [27] as follows:

– In state s, when action a reaches new state s′, the change
in the portfolio value is R(s, a, s′) = V ′ − V , where
V ′ and V represent the portfolio value in s′ and s,
respectively.

– In state s, action a is taken and reaches new state s′, the
log value of the portfolio change ratio:

r(s, a, s′) = log

(
v′

v

)
(1)

– During trading period t , the Sharpe ratio is defined as
follows:

ST = mean(Rt )

std(Rt )
(2)

where Rt = Vt − Vt−1, t ∈ [1, ..., T ]. Vt is portfolio’s
current value at t .

4Methodology

The complexity of the stock market presents volatility, vul-
nerability, and uncertainty. Deep reinforcement learning
agents can make a dynamic adjustment at any time accord-
ing to changes in the environment, which can be success-
fully applied to stock decision-making. We choose the DRL
models (the A2C, DDPG, and SAC) in the FinRL library

as basic decision-makers. As data grow exponentially, tag-
ging large datasets becomes time-consuming and strenuous.
However, DRL does not use large label training datasets,
which is a key advantage. The purpose of stock trading is
to maximize returns while avoiding risks. To achieve this,
DRL maximizes the total expected returns through trading
actions.

4.1 Selection of the Base Decision-maker

The actor critic approach has been recently applied in
designing reinforcement-based stock trading systems. Its
main purpose is to simultaneously update an actor network
that represents the policy and an opposite critic network that
represents the value function. The actor critic approach has
proven to be able to learn and adapt to large and complex
environments. Thus, the actor critic approach performs
well in trading with a large stock portfolio. We adopt the
following three models (the A2C, DDPG, and SAC) as
our basic decision-makers, each of which shows its own
advantages in different stock markets.

These three models are chosen as basic decision-
makers because they offer their own advantages and can
provide dynamic decisions that conform to different trading
environments. First, one of the A2C’s [28] major advantages
lies in its capacity to manage large collections of complex
stock data and support multiple stock trading scenarios:
single-stock trading, multiple-stock trading and portfolio
allocation. Second, portfolio management is a process of
continuously changing the distribution weight of funds in
financial assets. The DDPG [29] is capable of handling
high-dimensional continuous action spaces and can learn
continuously. Therefore, the DDPG is an ideal candidate
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that can automatically adjust the weight of stocks in each
trading period to find the optimal decision-making action.
Third, the SAC [30] is suitable for significant changes in
stock environments because it adopts a random strategy with
certain advantages over the deterministic strategy. Next, we
introduce the structures and principles of the three models
in more detail.

4.1.1 Advantage Actor Critic (A2C)

In the original actor critic approach, the Q value output of
the critic network is used to calculate the policy gradient.
However, this method produces noise and high levels of
variance. To address this issue, Wu et al. [44] proposed
subtracting a baseline from the cumulative reward Q(st , at )

(stock return) when calculating the expectation. This
method can reduce the gradient such that the step of gradient
descent is gentler and makes the training process more
stable. This also helps the A2C to construct a loss function.
Based on this idea, the advantage function is constructed
as follows:

A(st , at ) = Q(st , at ) − V (st ) (3)

where Q(st , at ) is the value after executing decision action
at (buy, sell, hold) in state st or the asset return value. V (st )

is the state value function. Therefore, the loss function of
the A2C is as follows:

∇Jθ (θ) = E[
T∑

t=1

∇θ logπθ (at |st )A(st , at )] (4)

where πθ(at |st ) is a policy network representing the proba-
bility of selecting action at in state st , and θ is the parameter
to be updated. A(at |st ) is the advantage function of (3).

As shown in Fig. 2, the A2C uses multiple agents work-
ing in parallel to update gradients ∇θ with different data
samples. Each agent works independently to interact with
the same stock environment to obtain independent sampling

experience, and these experiences are also independent of
each other, which breaks the coupling between experiences
and has the same effect as experience replay. After all par-
allel agents complete the gradient calculation, the A2C uses
the coordinator to transfer the average gradient on all agents
to the global network. In this way, the global network can
update the network of actors and critics.

The global network increases the diversity of training
data. Synchronous gradient updating is more cost effective
and efficient and has a better effect in large batches. At
the same time, in view of the stability and robustness of
the A2C, it is an ideal model for stock trading. Based on
these advantages of the A2C, we choose it as our basic
decision-maker.

4.1.2 Deep deterministic policy gradient (DDPG)

The DDPG is a policy learning method that integrates deep
learning neural networks into the deterministic policy gradi-
ent (DPG). Inspired by the deep Q network (DQN), Lillicrap
et al. improved the DPG and used the convolutional neu-
ral network as policy function μ and Q function simulation.
Then, the deep learning method is used to train these neural
networks so that large-scale states and action space can be
learned online.

The agent of the DDPG takes action at (buy, sell, or
hold) in state st and obtains reward value rt (the return value
of stock assets) when it reaches new state st+1. As shown
in Fig. 3, the DDPG actor first stores the transition data
(st , at , st+1, rt ) into experience replay buffer R and then
randomly samples the mini-batch N data from experience
replay buffer R during training. The DDPG uses a function
approximator parameterized by θQ to update the critic
network by minimizing the following losses:

L = 1

N

∑
t

(yt − Q(st , at |θQ))2 (5)

Fig. 2 A2C model framework in
the stock environment
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Fig. 3 Framework of the DDPG
model

where Q(st , at |θQ) is an action value function describing
the expected return after taking action at in state st . yt is
obtained by the following formula:

yt = r(st , at ) + γQ(st+1, μ(st+1)|θQ) (6)

where γ ∈ [0, 1]is the discount factor. Then, we update the
actor policy using the sampled policy gradient:

∇θuJ ≈ Est∼ρβ[∇θμQ(s, a|θQ)|s=st ,a=μ(st |θμ)]
= Est∼ρβ[∇aQ(s, a|θQ)|s=st ,a=μ(st )∇θμμ(s|θμ)|s=st ]

(7)

where ρβ denotes the discounted state visitation distribution
for different stochastic behavior policy β.

For the target networks, Lillicrap et al. used ”soft”
updates rather than directly copying the weights. The
authors created copies of the actor and critic networks,
Q′(s, a|θQ′

) andμ′(s, a|θμ′
), respectively, used to calculate

the target values.

θQ′ ← τθQ + (1 − τ)θQ′
, τ � 1

θμ′ ← τθμ + (1 − τ)θμ′
, τ � 1 (8)

The weights of the target networks are then updated
by slowly tracing the learned networks, which means that
the target values can only change slowly, significantly
improving the stability of learning. This is the critical reason
for the construction of the target network.

The DDPG can better deal with high-dimensional contin-
uous action space, so it can be effectively applied for stock
trading. We thus to choose it as the basic decision-maker.

4.1.3 Soft Actor Critic (SAC)

The Soft Actor Critic (SAC) [30] is an off-policy algorithm
developed for maximum entropy reinforcement learning.
Compared to the DDPG, the SAC uses stochastic policy,
which has certain advantages over deterministic policy. The
SAC requires the actor to maximize the entropy of reward
expectation and strategy distribution at the same time.
The introduction of maximum entropy enhances action
exploration ability, enabling the exploration of more stock
decisions and achieving more stable performance under
complex circumstances.

The iterative process of the SAC is divided into soft
policy evaluation and soft policy updating. For fixed
strategy π , its soft Q value can be iterated by Bellman
backup operator T π :

T πQ(st , at ) � r(st , at ) + V Est+1∼p[V (St+1)] (9)

V (st ) = Eat∼π [Q(st , at ) − logπ(at |st )] (10)

where T n is the Bellman backup operator, and Qk+1 =
T πQk . In practice, tractable policies are preferred. Thus, we
additionally restrict the policy to set of policies II that can
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correspond to a parameterized family of distributions such
as Gaussians. The soft policy is updated as follows:

πnew = argminπ ′∈IIDKL(π ′(·|st )||exp(Qπold (st ,·))
Zπold (st )

) (11)

where Zπold (st ) is the partition function used to normalize
the distribution of Q values. Different from the usual off-
policy method used to maximize the Q value, the policy
of the SAC is updated in the direction of an exponential
distribution proportional to Q. In practice, to facilitate the
processing of the policy, we still output the policy as a
Gaussian distribution and minimize the gap between the two
distributions by minimizing KL divergence.

By using soft policy evaluation and soft policy updating
repeatedly and alternately, the final policy will converge to
the optimal value. The learning objective of the SAC is as
follows:

π∗ =argmaxπ

∑
E(st ,at )∼ρπ

[r(st , at )+αH(π(·|st ))] (12)

where hyperparameter α measures the relative impor-
tance of entropy for reward. The randomness of the optimal
control policy controlled by α is determined by the follow-
ing formula:

α∗
t = argminat Eat∼π∗

t
[−αt logπ∗

t (at |st ; αt ) − αtH ] (13)

Relative to the deterministic policy, the stochastic policy
of the SAC also requires entropy maximization, which
means that the neural network needs to explore all possible
optimal paths, which can produce the following advantages.
1) The policy will learn many ways to complete tasks
through maximum entropy, which is more conducive
to learning new tasks. 2) Clearly, the policy’s stronger
exploration ability makes it easier to find better modes
under multimodal rewards. For example, stock decision-
making agents should not only obtain high returns but
also reduce trading risks. 3) The policy is more robust
and generalizable by exploring various optimal possibilities
in different ways, so it is easier to adjust in the face
of interference. For example, when facing different stock
markets, agents can make different decisions in dealing with
different environments.

4.2 Proposed strategies

4.2.1 Nested RL trading strategy

Based on the significant application advantages of the three
DRL models (the A2C, DDPG, and SAC) mentioned in
Section 4.1 in reference to stock trading, we adopt them as
our basic decision-makers and combine them to integrate
the advantages of the three agents and obtain higher returns
with minimal risk. It is critical to select an agent that

behaves the best from the A2C, DDPG and SAC accord-
ing to annualized returns. Furthermore, choosing a suitable
agent from the three agents as the final decision-maker in
different trading environments is a major research prob-
lem. In view of the effective application of reinforcement
learning in decision-making problems, we design two-
layered reinforcement learning for the three agents and
propose a nested reinforcement learning (Nested RL) frame-
work including A2C RL, DDPG RL and SAC RL. At the
second layer of nested RL, the three agents attempt to learn
their own trading strategies independently and present their
recommendations, while at the first layer, a primary agent
aims to learn a selection strategy of determining which
recommendations to adopt. Fig. 4 displays the nested RL
frameworks (A2C RL, DDPG RL and SAC RL) on which
the primary agent acts based on the three base decision-
makers.

The first layer of nested A2C/DDPG/SAC RL contains
five elements: A2C-1/DDPG-1/SAC-1 agent, Action, Reward,
State and Environment on the left side of Fig. 4. Here, the
action space of the primary agent involves choosing the
A2C-2, DDPG-2 and SAC-2 strategies, where three actions
follow function G(a, S) in (14).

G(a, S) =

⎧⎪⎨
⎪⎩

A2C(S), if a ∈ [a0, a1]
DDPG(S), if a ∈ [a1, a2]
SAC(S), if a ∈ [a2, a3]

(14)

where the value range of action a is [a0, a3], and a1 and
a2 are thresholds. The value range of action a represents
the annualized return obtained when three agents make
decisions. The greater annualized return is, the greater the
value range of action a becomes.

These three actions indicate which recommendation
Nested RL uses to make a decision. For instance, the
Nested A2C RL’s agent (the A2C-1) selects an action from
the DDPG-2 agent that acts as a basic decision-maker to
carry out a stock trading strategy. Similarly, the DDPG-
2 also contains five elements: the DDPG-2 agent, action,
reward, state and environment. Upon receiving the DDPG-2
agent’s action, the environment’s state immediately changes
and sends a reward signal to the DDPG-2 agent as its
feedback. Afterward, the DDPG-2 agent makes decisions
according to reward and feedback signals and gives trading
recommendations to the A2C-1 agent. As a result, Nested
A2C RL will eventually follow the decision made by the
DDPG-2 agent. The DDPG’s environmental factors include
opening/high/low prices, closing prices, trading volume and
balance. Its reward is the annualized return. Figure 4 shows
the overall process: the first layer selects a basic decision-
maker, and the second layer follows this decision-maker
to buy/sell/hold stocks. The pseudocode of Nested RL is
listed in Algorithm 1. First, Nested RL obtains the state
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representation of environment S on Lines 1-2. Then, on Line
3, our method obtains the original action and S′ through the
actor network. Lines 4-5 map the original action to the base
decision-maker’s action. On Line 6, our algorithm obtains
reward R of the mapped base decision-maker’s action
through the actor network. On Lines 7-8, the algorithm
computes the TD loss to further update the network. On
Lines 9-10, Nested RL updates critic network parameters.
Lines 11-12 of this algorithm run gradient descent to update
the actor network parameters. On Line 13, the algorithm
saves the 5-tuple (φ(S), subaction, R, φ(S′), isend) into the
experience pool. Finally, the base decision-makers are
trained by experience pool D in every time period m on
Line 14.

4.2.2 WRSC trading strategy

Our nested RL approach is designed to achieve the ‘max-
imal annualized return for different stock market environ-
ments by dynamically fusing trading strategies provided
by different RL agents. In addition to the layered RL frame-
work defined by Nested RL, we also explore the combined

Weighted Random Strategy with Confidence (WRSC)method
to balance the likelihood of strong agents and weak agents
being selected. This method selects the optimal trading
strategy from the A2C, DDPG, and SAC based on their
weight and confidence. Figure 5 illustrates the computa-
tion workflow of WRSC. First, WRSC runs the three agents
to calculate the annualized return of stocks as AR(A2C),
AR(DDPG) and AR(SAC). Then, it selects an agent’s strat-
egy with the maximal annualized return and its confidence
among the three candidates. Here, confidence refers to the
probability that an agent will make a certain decision. When
the agent’s confidence is greater than a threshold, WRSC
complies with actions made by the current agent; other-
wise, WRSC randomly selects the remaining two agents
according to their respective weights as the current decision-
maker and follows this agent’s actions.The pseudocode of
our WRSC strategy is shown in Algorithm 2.

In Algorithm 2, T is first divided into training set T 1
and validation set T 2 according to time in step 1. On
Line 2, WRSC obtains the best strategy from the base
decision-maker by T 1. Then, on Lines 3-5, the algorithm
obtains S, S′, R, the action, the action value of the best
base decision-maker. On Line 6, WRSC computes the
confidence (probability) of this action and time step. On
Lines 7-9, the algorithm determines whether to select the
base agent’s strategies by comparing their confidence values
against a predefined threshold. On Lines 10-11, WRSC
continues to train base decision-makers using the experience
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Fig. 4 Framework of nested A2C/DDPG/SAC RL

Fig. 5 Workflow of the Weighted Random Strategy with Confidence (WRSC) strategy
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replay mechanism, where φ(S) is the function used to
decode the state.

5 Performance evaluation

5.1 Datasets and experimental environment

We first explain the selection of stock data used for our trad-
ing strategy. As is well known, 30 Dow Jones stocks cover
representative companies from many different industries,
mainly including financial services, pharmaceutical indus-
try, information technology, etc., and can reflect the state of
the U.S. stock market to a certain extent. Therefore, these
data are useful to train the robustness, effectiveness, and uni-
versality of our proposed model. The Dow Jones industrial
average (DJIA) is also calculated based on the reputation,
market value, and several other features of these 30 stocks.
It is considered an indicator of the overall health of the mar-
ket and is one of the most popular stock market indices.
Therefore, these 30 Dow Jones stocks are very suitable for
the training and test trading of our proposed strategy.

In addition to 30 U.S. stocks, we also choose 30 Japanese
and British stock data for our experiments to verify and train
the generality and applicability of the model. The company
names of the stocks are shown in Table 1. Along the timeline
of the original datasets, we further partition the data samples
for 2000/01/01 to 2015/01/01 as a training set and those
for 2015/01/01 to 2021/01/01 as a validation/trading set as
shown in Fig. 6.

In actual trading scenarios, an intelligent trading agent
needs to consider all kinds of relevant information, such
as historical stock prices, current holding shares, and
technical indicators. In this paper, our trading environment
is established based on the OpenAI Gym framework, and
according to the principle of time-driven simulation, we run
the collected real data to simulate the stock market. Here,
we adopt the FinRL library, which can simulate trading
environments across various stock markets.

2000/01/01 2015/01/01 2021/01/01

Training Validation/Trading

Fig. 6 Data splitting of stocks on the U.S./Japanese/British markets

5.2 Performance comparison

5.2.1 Evaluation indicator

1. Annualized return

Since investors pay more attention to final investment
benefits no matter which operation is taken for each stock,
we use the measurement index - annualized return - to mea-
sure the performance of stock trading strategies. The annu-
alized return refers to rate of return obtained by investors
during a one-year investment period. The calculation for-
mula is as follows:

Annualized return| = Return · 365
Principal · Investment days · 100%

(15)

2. Cumulative return

The cumulative return of an investment is the total amount
of the investment gained or lost over time, regardless of
the time involved. The cumulative return is expressed as a
percentage and can be calculated by following function:

Cumulative return = Current Values − Original Values

Original Values
(16)

3. Annualized volatility

Annualized volatility is the annualized standard deviation
of portfolio return.

Table 1 The company name abbreviation of 30 stocks selected in the U.S., Japanese, and British markets respectively

Market Company Symbol

The U.S. stock (30 stocks) AXP, AMGN, AAPL, BA, CAT, CSCO, CVX, GS, HD, HON, IBM, INTC, JNJ, KO, JPM, MCD,
MMM, MRK, MSFT, NKE, PG, TRV, UNH, CRM, VZ, V, WBA, WMT, DIS, DOW

The Japanese stock (30 stocks) Advantest Corp, Alps Electric, Amada, Chiba Bank, Chugai Pharmaceutical, Concordia Financial
Group, Dainippon Screen Mfg., DIC Corp, Eneos Holdings Inc, Fujikura Ltd., GS Yuasa Corp.,
Hitachi Zosen Corp., J.Front Retailing Co., Ltd., Japan Steel Works Ltd, JR West Japan, KDDI,
Keisei Electric Railway Co.,Ltd., Konami Corp., Maruha Nichiro Corp, Minebea Mitsumi Inc, NEC,
Tokyo Electric Power, Casio, Mazda, Hitachi, Mitsui chemical, Mitsubishi Motors, Sony, Isuzu
Motors Ltd., Yamaha

The British stock (30 stocks) ABDN, EDEV, BGUK, BLND, CRH, ENT, FLTRF, HIK, HLMA, ICP, JETJ, MRON, NWG, OCDO,
POLYP, PSHP, RMV, RTO, SGE, SMDS, SMT, AZN, CPG, RR, LSEG, SSE, TW, NG, BP, BATS
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4. Sharpe ratio

In finance, the Sharpe ratio [32] measures the perfor-
mance of an investment compared to a risk-free asset, after
adjusting for its risk. It is defined as the difference between
the returns of the investment and the risk-free return, divided
by the standard deviation of the investment. Its calculation
of the Sharpe ratio is as follows:

Sa = E(Ra − Rb)

σa

= E(Ra − Rb)√
var[Ra − Rb] (17)

where Ra is the asset return and Rb is the risk-free return
(such as a U.S. Treasury security). E[Ra − Rb] is the
expected value of the excess of the asset return over the
benchmark return, and σa is the standard deviation of the
asset excess return.

5. Max drawdown

A maximum drawdown (MDD) is the maximum observed
loss from a peak to a trough of a portfolio, before a new peak
is attained. Maximum drawdown is an indicator of downside
risk over a specified time period.The formula for maximum
drawdown is as follows:

MDD = T rough V alue − Peak V alue

P eak V alue
(18)

5.2.2 Benchmark Comparison

In this paper, we use five baselines to compete against our
approach:

Multi-DQN This method is an ensemble of the same deep
Q-learning classifiers with different experiences with the
environment. It can tackle the uncertain and chaotic behav-
ior of different stock markets through a flexible ensemble
strategy.

AUST This is an ensemble strategy based on deep rein-
forcement learning designed as an automated stock trading
(AUST) method [26]. The strategy automatically selects
the best agent from three models to trade according to the
Sharpe ratio.

The other three methods are the average weighted (Average-
W), weighted by return (Weight-R), and weighted-random
by return (RandomWeight-R) strategies.

Average-W This method simply assigns the same weight to
the three agents (the A2C, DDPG, and SAC) to make a final
decision.

Weight-R This approach gives greater weight to agents that
can produce higher annualized returns and will follow the
agents with the greatest weight.

RandomWeight-R This method mainly randomly selects
agents to make decisions by annualized returns of stocks.

The premise of the latter three baselines are close to
the majority voting method that combines the best action
of each algorithm and determines its final decision on
the frequency by which an action is preferred by each
algorithm. Such a combination of basic decision-makers can
yield a refined model of high accuracy and robustness.

The two methods proposed in this paper are nested RL
(A2C RL, DDPG RL and SAC RL) and the weighted
random selection with confidence (WRSC) strategy. The
experimental results of the algorithms are shown in Tables 2,
3, and 4. The four evaluation indicators used in our paper are
objective and not data related and do not depend on the time,
country, etc. considered. Our nested RL andWRSC decision
models are universal and robust, which is only related to the
parameters of the model itself, the number of training times,
the basic decision-makers, etc.

Tables 2 and 3 clearly show that the three performance
indicators (the annual return, cumulative returns and Sharpe
ratio) of A2L RL are higher than the RandomWeight-
R, Weight-R, Average-W, Multi-DQN and AUST values,
which shows that A2C RL gains more in the U.S. and
Japanese markets. Tables 2 and 4 clearly show that the three
performance indicators of DDPG RL are higher than the
RandomWeight-R, Weight-R, Average-W, Multi-DQN and
AUST values, which shows that DDPG RL behaves better
in the U.S. and British markets. We also find from Tables 2,
3, and 4 that the three indicators of WRSC are greater
than those of the traditional three methods, Multi-DQN and
AUST, indicating that WRSC can achieve high returns in
three different markets.

The low performance of the RandomWeight-R, Weight-
R and Average-W approaches is caused by the limitation of
simple ensemble approaches such as the weighted average
and majority voting methods, which cannot be well applied
to the long-term decision-making stock environment. These
three traditional methods only select the basic decision-
maker according to the weight of the stock return. When
other relevant factors need to be considered, including
technical indicators such as annual volatility and maximum
drawdown (MDD), the traditional methods may not be able
to deal with this information well. However, our proposed
method can dynamically select the basic decision-maker
that is most in line with the current state in real time
according to changes in technical indicators in the trading
environment. Our method reduces trading risk as much
as possible while considering a high return. Note that the
Multi-DQN achieves a very low annualized return because
the model gradually performs poorly with an increase in
stock data. The AUST [26] strategy does not achieve the
same level of annual return as our methods because it only
makes a greedy selection among the models in a sliding
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window of three months and does not exceed the best
performance of all three agents. Moreover, AUST may not
be able to dynamically select a reasonable agent when the
stock market changes. In contrast, our nested reinforcement
learning methods (the A2C RL and DDPG RL) are able to
match the dynamics of the stock environment in real time,
thereby achieving higher returns.

Furthermore, it is clear from Table 2 (U.S. stocks) that
WRSC’s performance exceeds that of Nested RL. The
reason is that the majority of Nested RL decisions tend to
choose the strongest agent with the best chance of winning
the highest return and only select the weak agent with the
lowest return in very few cases. The WRSC approach is
designed to balance the possibility of a strong agent and
weak agent being selected by combining weight random
selection with confidence. Our WRSC algorithm follows a
decision made by the strongest agent when its confidence
is higher than the predefined threshold; otherwise, we
randomly select the remaining agents by the weight of
annual return. In this way, WRSC is able to locate more
trading opportunities for profits.

From the perspective of the max drawdown index, the
value of WRSC (-44.23%) in Table 4 is lower than the
values of all other methods, which indicates that our
approach has a smaller maximum loss when their annual
volatility is roughly the same. Overall, the experimental
results confirm that our method can generate a high-
performance trading strategy.

Finally, to analyze the overall trend of the methods
more clearly, we plot curves of different cumulative
return changes of four baselines and our two methods for
2015/01/01-2020/12/30 in Figs. 7, 8, and 9:

The cumulative return curve in Fig. 7 shows that the
three traditional methods, Multi-DQN and AUST strategy
have always fallen behind A2C RL, and the gap with
WRSC is becoming increasingly larger, which indicates that
the application of deep reinforcement learning as a stock
integration strategy can indeed improve investment return.
It is evident that Nested A2C RL complies with a decision
of the optimal base agent in most cases, and it can also
adaptively choose the remaining decision-makers in other
cases. Such behavior resembles the premise of WRSC,
thereby demonstrating its best performance and robustness
among the Nested RL methods proposed in this paper.
Therefore, the overall performance of Nested A2C RL is
the best and most robust of the three Nested RL methods.
Furthermore, the performance and trend of WRSC and
A2C RL are consistent because they share similar ensemble
ideas. In some cases, WRSC sacrifices a small amount of
stability in exchange for higher profits. In general, WRSC
is more suitable for pursuing high profits, whereas Nested
RL is more suitable for the common scenario of low risk
tolerance.
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Fig. 7 Trends of cumulative
returns of nested RL, WRSC
and baselines for
2015/01/01-2020/12/30 on 30
U.S. stocks

As shown in Fig. 8, the Average-W/RandomWeight-
R/AUST approaches are almost always in a loss state.
Although Weight-R is profitable at first, it enters a loss
state over time. In contrast, our A2C RL approach finally
achieves high returns. Fig. 9 shows that the traditional
Average-W/Randomweight-R curve is always at the bottom.
Over time, our DDPG RL approach leads and achieves the
largest annualized return.

The stock market is considered a risky prospect, as shares
bought can increase or decrease in value for various reasons.
We also observe that all the methods show a downward
trend during 2020/02, 2020/03 and 2020/10 in Fig. 7, as
the global stock market, including U.S. shares, was affected
by the U.S. election and COVID-19, resulting in a negative
trend and a sharp drop in the stock market. Therefore, the
cumulative return obtained by our approaches and other
baselines also declines or even has a low value for the above
period of time. Similarly, the Japanese and British markets
shown in Figs. 8 and 9 also show fluctuations.

To compare the performance of our ensemble strategy
(Nested A2C RL and WRSC) with the three independent

agents (the A2C, DDPG, and SAC) employed as the trading
agent separately, we plot their dynamic curves on cumula-
tive returns for U.S. stocks. Fig. 10 clearly demonstrates that
the cumulative returns of our strategies gradually exceed
those of the three independent agents. This further empha-
sizes that it is significant to adopt an ensemble strategy in
stock decision-making.

In summary, theWRSC and nested RLmethods proposed
in this paper can generate an excellent stock trading strategy.
When investment risk is similar, our integrated strategy
can dynamically make appropriate decisions and gain high
profits with a low loss.

5.2.3 Case Study

To verify the effectiveness of our proposed method for
real trading, we compare the decision-making processes of
the AUST and A2C RL strategies for U.S. stock CSCOs.
Figs. 11 and 12 show the decision-making processes
for CSCO stock for 2020/09/30-2020/12/30, respectively,
where the vertical axis denotes the stock price. The blue

Fig. 8 Trends of cumulative
returns of nested RL, WRSC
and baselines for
2015/01/01-2020/12/30 on 30
Japanese stocks
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Fig. 9 Trends of cumulative
returns of nested RL, WRSC
and baselines for
2015/01/01-2020/12/30 on 30
British stocks

Fig. 10 Trend of cumulative
returns of nested A2C RL,
WRSC and the DDPG, the SAC,
and the A2C on the U.S. stocks

Fig. 11 Decision-making process of AUST on CSCO stock for 2020/09/30-2020/12/30
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Fig. 12 Decision-making process of nested A2C RL on CSCO stock for 2020/09/30-2020/12/30

number represents the number of stocks bought on a day,
and the red number represents the number of stocks sold.

Generally, both strategies can achieve the following
expected decision behavior: buy at a low point and sell at a
high point. Figure 11 shows that AUST only makes a buy
decision at low points on 10/03 and 11/12 and makes a sell
decision at three high points on 11/16, 11/17 and 11/18.
In contrast, nested A2C RL can make decision-making
operations at low and high points, as shown in Fig. 12. For
example, buy-decisions were made at low points of 10/06,
10/08, and 10/28 to 11/01, and sell-decisions were made
at high points of 10/11, 10/13, 11/17, 11/25 and 12/04.
This proves that nested A2C RL can capture more trading
opportunities and make accurate and timely decisions on
whether to buy, sell or hold dynamically in response to
changes in stock prices. In this way, nested A2C RL is able
to obtain higher profits while avoiding investment risks.

6 Conclusion

In this paper, we analyze the applicability of a deep rein-
forcement learning model for stock decision-making. To
address the complex environment of the stock market,
we propose stock trading integration strategies based on
deep reinforcement learning. One strategy is that of nested
RL, which ensembles multiple deep reinforcement learn-
ing agents, including the A2C, DDPG and SAC. The other
WRSC approach synthesizes the strategies of the three RL
agents by computing their maximal annualized return and
confidence. Experimental results for 90 stocks (the U.S.,

Japanese and British markets) demonstrate that both trad-
ing strategies perform better than the RandomWeight-R,
Weight-R, Average-W, Multi-DQN and AUST ensemble
strategies, which only use a greedy algorithm to select
agents. Our methods can obtain more returns while ensur-
ing lower risks and capture more trading decision-maker
points in practical cases to adapt to different complex stock
markets. And in addition to stock trading, our proposed
method is also applicable to those scenarios that require
intelligent decision-making. For example, automatic driving
and route planning, game decision-making, recommenda-
tion system and service composition.

There are some limitations to our work. We only ensem-
ble three DRL models as basic decision-makers and do not
consider other factors involved in trading, such as sentiment
and politics. Therefore, several types of research can be
conducted in the future. First, we may explore more strong
decision-makers with good performance and integrate them
into nested strategies. Additionally, we could focus on other
factors that influence stock trading, such as social news,
sentiment [31], and politics. Finally, we may study ways to
lower the annual volatility and investment risk of our RL
methods under the conditions of high returns.
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