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Objectives. Measuring anatomical parameters in fetal heart ultrasound images is crucial for the diagnosis of congenital heart
disease (CHD), which is highly dependent on the clinical experience of the sonographer. To address this challenge, we propose an
automated segmentation method using the channel-wise knowledge distillation technique.Methods. We design a teacher-student
architecture to conduct channel-wise knowledge distillation. ROI-based cropped images and full-size images are used for the
teacher and student models, respectively. It allows the student model to have both the fine-grained segmentation capability
inherited from the teacher model and the ability to handle full-size test images. A total of 1,300 fetal heart ultrasound images of
three-vessel view were collected and annotated by experienced doctors for training, validation, and testing. Results. We use three
evaluation protocols to quantitatively evaluate the segmentation accuracy: Intersection over Union (IoU), Pixel Accuracy (PA),
and Dice coefficient (Dice). We achieved better results than related methods on all evaluation metrics. In comparison with
DeepLabv3+, the proposed method gets more accurate segmentation boundaries and has performance gains of 1.8% onmean IoU
(66.8% to 68.6%), 2.2% on mean PA (79.2% to 81.4%), and 1.2% on mean Dice (80.1% to 81.3%). Conclusions. Our segmentation
method could identify the anatomical structure in three-vessel view of fetal heart ultrasound images. Both quantitative and visual
analyses show that the proposed method significantly outperforms the related methods in terms of segmentation results.

1. Introduction

It is reported that the annual birth rate of congenital
heart disease (CHD) in children is 0.8–1% [1, 2], and the
incidence rate has ranked first among all birth defects.
At present, fetal echocardiography is an important
medical imaging technology and most used for prenatal
detection and diagnosis of CHD. Well-trained and ex-
perienced doctors can make a reliable diagnosis of
80–90% CHD by fetal echocardiography, while the di-
agnostic accuracy of doctors who lack experience in fetal

echocardiography operation and diagnosis is signifi-
cantly decreased [3, 4].

*e three-vessel and trachea (3VT) view is one of the
fetal echocardiography views, which was introduced by
Yagel et al. [5] as a complementary cardiac view to easily
assess the aortic arch anomalies. Gireadă et al. [6] performed
a retrospective study on 1,596 unselected pregnant patients
presenting at 11–37 weeks of gestation for a routine anomaly
scan and analyzed the performance of the four-chamber
(4C) view and 3VT view in detecting CHD. *e results
demonstrated 4C view detected 47.8% of all CHD, going up
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to 71.7% by adding grayscale 3VT view. *e 3VT view is
deemed desirable if technically feasible by both International
Society of Ultrasound in Obstetrics and Gynecology
(ISUOG) and American Institute of Ultrasound in Medicine
(AIUM) screening guidelines [7, 8], especially due to its
utility in detecting outflow tract anomalies [9–11].

Automatic image segmentation can guide operators to
standardize and serialize the display and analysis of fetal
echocardiography data. Semantic segmentation has been
extensively studied for natural images and is expected to be
applied to medical images to assist in diagnosis. However,
unlike natural images, medical images are often more dif-
ficult to acquire and annotate, which results in a small
amount of annotated data. In addition, the special imaging
modality (e.g., ultrasound) of medical images produces
images of low quality with noises and blurred boundaries.
*ese factors often lead to unsatisfactory segmentation of
images. For the segmentation of three-vessel view of fetal
heart ultrasound images, we collected a total of 1,300 an-
notated images, which is completely incomparable to large
natural image segmentation datasets.

Recently, machine learning methods have widely used in
fetal image processing or ultrasound image processing, such
as quality assessment [12–14], detection, and segmentation
[15–17]. In the field of vessel image processing, physical
models or properties are sometimes introduced to simulate
realistic environment to obtain higher evaluation accuracy
[18–20].

In this paper, we propose to utilize the channel-wise
knowledge distillation [21, 22] technique toward fine-
grained segmentation of three vessels in the 3VTview of fetal
heart ultrasound images. Particularly, we first train a teacher
model whose training data is precisely cropped to a region of
three vessels. Such a teacher model enables fine-grained
segmentation because it focuses only on the target region.
However, such a model cannot be directly applied to the test
data because we are not able to crop the test image to the
target region before prediction. To this end, we train the
student model by distilling the knowledge of the pretrained
teacher model using full-size training data. *is allows the
student model to have both the fine-grained segmentation
capability of the teacher model and the ability to handle full-
size test images. Experiments show that the proposed
method outperforms the most widely used existing methods
by a significant margin.

2. Methods

2.1. Channel-Wise Knowledge Distillation. Knowledge dis-
tillation was originally designed for model compression: a
compact student model is trained to perform better under
the supervision of a large teacher model [23–25]. A sub-
sequent study [26] has also shown that a student model with
the same configuration as the teacher model can even exceed
the performance of the teacher model. In this work, we
employ the channel-wise knowledge distillation method, as
it was shown to be more effective than the pixel-wise
knowledge distillation that simply aligns point-wise classi-
fication scores per pixel [27, 28].

Channel-wise knowledge distillation was first introduced
by Zhou et al. [21]. Its basic idea is to convert the feature map
on each channel to a probability map and then align the
channel-wise probabilities of the teacher model and the
student model. *e corresponding channel-wise distillation
loss LC D(·, ·) is defined in the form of a KL divergence:
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where T and S denote the teacher and student models, y(·)

denotes the predicted logits of size H × W × C; i indexes the
spatial location of pixels, where W and H are the width and
height of the predicted logits; c � 1, 2, .., C indexes the
channel, where C is the number of classes including the
background; τ is a hyperparameter called distillation tem-
perature; ϕ(·) is a channel-wise softmax function which
converts the logits on each channel into a soft probability
distribution, defined as
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2.2. Our Method. In this paper, we use a model of the
DeepLabv3+ [29] architecture with channel-wise knowledge
distillation to segment three vessels in 2D fetal heart ul-
trasound images.

DeepLabv3+ is an encoder-decoder network designed
for segmentation tasks. A modified aligned Xception model
is used as the encoder, while the Atrous Spatial Pyramid
Pooling (ASPP) layer is used as the decoder as the default
setting of DeepLabv3+.

As shown in Figure 1, the teacher and student networks
use the same architecture. According to the groundtruth
label masks, we crop the region of interest (ROI, i.e., the
region of three vessels) from full-size images to train the
teacher model. Meanwhile, we record the coordinates of
cropped regions to restore them to the corresponding spatial
location in the full-size image afterwards. After training
teacher network with cropped inputs, its logits output is used
to distill knowledge on channels for student model training.
*is allows the student model to have the same ability to
segment the ROI as the teacher model. For the training of the
student model, we use full-size images as input and align the
logits of the teacher model to the full-size ones as additional
knowledge. *e loss of our network is made up of three
components:

L � α · LCE ygt, ypred􏼐 􏼑 + β · LDice ygt, ypred􏼐 􏼑 + c · LK D y
T
, y

S
􏼐 􏼑.

(3)

Here,LCE(·, ·) and LDice(·, ·) denote cross-entropy loss
and dice loss, respectively, ygt is the groundtruth label mask,
and ypred is the predicted probability map showing the
probability that each pixel being categorized in each class.
LK D(·, ·) is defined in Section 2.1. Note that for the teacher
network, c is set to 0, since no knowledge distillation is used.
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2.3. Materials. 1300 pregnant women who underwent fetal
echocardiography examination in Sir Run Run Shaw Hos-
pital from 2016 to 2021 were randomly recruited. *e
gestational age was 20 to 40 weeks. *e inclusion criteria
were as follows: (1) normal fetus without heart or noncardiac
malformations, especially there has no abnormality in the
nine standard fetal echocardiography views posted by
ISUOG; (2) low risks of chromosome abnormalities were
confirmed by early NT and maternal serological examina-
tion, or amniocentesis and umbilical cord blood puncture;
(3) gestational weeks estimated by ultrasound were con-
sistent with those calculated by menopause history (differ-
ence <2 weeks); and (4) the mothers who had no diabetes,
hypertension, or pregnancy complications. All pregnant
women were informed the purpose of this study and agreed
that their fetal heart ultrasound related data should be used
for scientific research, and consents should be signed.

Philips IE33 (Philips Medical Systems, Bothell, WA,
USA) color ultrasound diagnostic instrument was used, with
S5-1 2D imaging probe and a frequency of 1∼6MHz. Firstly,
the fetal echocardiography mode was used to comprehen-
sively evaluate the structure and function of the fetal heart,
clearly displaying the standard three-vessel view images and
storing the original data. Pregnant women are requested to
hold their breath or reduce the range of breathing as much as
possible during the whole collection process.

Seven experienced doctors annotated and reviewed the
collected fetal heart ultrasound images. *ey annotated the
pulmonary artery (PA), aorta (AO), and superior vena cava
(SVC) regions on each image as the groundtruth. *e
resolution of the original image is 1024 × 768. All images are
simply center-cropped and resized to 512 × 512 as full-size
training data in the student network. *e ROI-based
cropped images described in Section 2.2 are generated by
padding the annotated three-vessel region with 50 pixels per
edge and resizing them to a square region of size 512 × 512.
We selected 1040, 130, and 130 images in all experiments for
training, validation, and testing, respectively.

Figure 2 shows two examples of the fetal heart ultra-
sound images, as well as their corresponding full-size labeled
images and ROI-based cropped images.

2.4. Training. *e proposed method is implemented on an
NVIDIA RTX 3090 GPU using the Keras and TensorFlow
frameworks and trained using the Adam optimizer.We train
the network through two stages:

(1) During the first stage, the initial learning rate is
0.0005 and the parameters are initialized by pre-
training on the PASCAL VOC 2012 [30] dataset. All
parameters of the Xception backbone are frozen. We
set α � 1, β � 1, and c � 0. Since the main purpose of
this stage is to speed up the training, we do not use
the channel-wise knowledge distillation here. *e
batch size is set to 8.

(2) During the second stage, the initial learning rate is
0.00005 and all layers are trainable. We set α � 1, β �

1 for both teacher and student models, while the
hyperparameters of the channel-wise knowledge
distillation are c � 3 and τ � 4 and are used only in
the student model. In equation (1), C � 4 as we have
4 classes including the background, PA, AO, and
SVC.*e batch size is set to 2, since backpropagation
to the backbone layers requires a larger amount of
GPU memory.

In both stages, we set the decayed learning rate as lr �

lrinit · 0.92iterations− 1 and train for 50 epochs with an early
stopping setting when the validation loss stops decreasing.

*e following random data augmentation methods are
used in the training: scale transformation, displacement, flip,
rotation, and color jittering.

3. Results

To evaluate the performance of the proposed method, we
compare with the most used existing methods, including
U-Net [31] and the original DeepLabv3+. U-Net is a classical
network and is widely used in medical image segmentation.
*e original DeepLabv3+ is also adopted as our teacher
network; we train it on full-size images for performance
comparison. For ablation study, we train the models for
comparison by using a combination of cross-entropy loss
and dice loss without the knowledge distillation.

Teacher Network

Student Network

Logits Predictions

Logits

Channel-wise
Knowledge Distillation
with Spatial Alignments 

Full-size Training Data

Cropped Training Data

ROI-based
Cropping

Predictions

Labels

Labels

Same
Architecture

Softmax

Softmax

Figure 1: Overview of the proposed channel-wise knowledge distillation method.
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To quantitatively evaluate the segmentation accuracy, we
use three evaluation protocols: Intersection over Union
(IoU), Pixel Accuracy (PA), and Dice coefficient (Dice).

IoU:

IoU �
Sa ∩ Sb

􏼌􏼌􏼌􏼌
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Here, Sa is the predicted segmentation result of the
network and Sb is the groundtruth.

Table 1 shows the performance of our method. We
present the IoU, PA, and Dice for each class evaluated on the
test data. *e mean value over three vessels’ segmentation
accuracies is shown in the bottom row. *e mean IoU, PA,
and Dice of the proposed method are 68.6%, 81.4%, and
81.3%, respectively.

Table 2 shows the comparison of three methods. *e
displayed measurements are the average of the three vessels’
segmentation accuracies from all test data. It is evident that
the proposed method performs better than the other
methods.

To intuitively demonstrate the effectiveness of our re-
sults, we plot segmentation contours of the listed methods in
Figure 3.

Specifically, we observed that when using existing seg-
mentation methods, the SVC vessel is sometimes undetected
or incorrectly segmented due to its small size. In addition,
since the three vessels occupy only a small portion of the
image, the existing methods only produce rough and in-
correctly segmented boundaries.

4. Discussion

*e incidence of birth defects in China is about 5.6% and
the number of new birth defects is about 900,000 every year
[1]. Amongst them, there are about 250,000 cases of birth
defects that can be observed clinically at birth. Birth defects
are the main causes of early abortion, stillbirth, perinatal
death, infant death, and congenital disability, which not

Figure 2:*e 1st column shows original 3VTview of fetal heart ultrasound images.*e 2nd column shows full-size labelled images, the red
region is pulmonary artery (PA), the green region is aorta (AO), and the yellow region is superior vena cava (SVC). *e 3rd column shows
ROI-based cropped images, which are cropped from full-size images.

Table 1: Performance of the proposed method.

IoU (%) PA (%) Dice (%)
Pulmonary artery (PA) 71.2 83.5 83.2
Aorta (AO) 69.7 82.8 82.1
Superior vena cava (SVC) 64.9 77.8 78.7
Mean 68.6 81.4 81.3
*e segmentation accuracies of three vessels and their mean values are
shown.

Table 2: Performance comparison to existing methods.

IoU (%) PA (%) Dice (%)
U-Net 62.4 77.5 76.9
DeepLabv3+ 66.8 79.2 80.1
Ours 68.6 81.4 81.3
*emean segmentation accuracy of three vessels over all test data is shown.
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only seriously harm the survival and quality of life of
children but also affect the happiness and harmony of
families. It will also lead to potential life loss and increasing
social and economic burden. Accurate prenatal diagnosis
can significantly improve the perioperative treatment effect
of CHD and the success rate of operation and reduce
neonatal mortality.

Many studies have shown that improving the ability of
routine obstetricians to recognize CHD is the most im-
portant issue to improve the successful rate of CHD prenatal
diagnosis. However, doctors who complete obstetrical ul-
trasound diagnoses in their daily medical work are always
lacking the diagnostic basis and evaluation experience of
complex CHD, and it is difficult to obtain all basic views
needed for CHD diagnosis [32–35], including four-chamber
cardiac view, left and right ventricular outflow tract view,
and three-vessel view, so it is difficult to make reliable display
and diagnosis of CHD. As a result, CHD has become the
most easily missed structural abnormality in prenatal rou-
tine ultrasound examination.

As we know, the 4C view is the most commonly used and
easily obtained basic view in fetal heart examination. *e
acquisition rate at 16–40 weeks is around 95–99.5%, but
four-chamber abnormalities only account for 48–63% of
congenital cardiovascular malformations. A variety of fetal
congenital cardiovascular malformations do not show ab-
normal shape of the four-chamber heart, including tetralogy
of fallot, persistent truncus arteriosus, aortic valve stenosis,
pulmonary valve stenosis, transposition of great arteries, and
double outlet of ventricle. *e extended basic views include
three-vessel view, three-vessel trachea view, aortic arch view,
pulmonary artery-ductus arteriosus arch view, and vein-
atrium connection view. *e detection rate of congenital
cardiovascular malformation can be increased from 48–63%
to 83–86%. Amongst which, the number, internal diameter,
course, vascular arrangement, and abnormal blood flow
direction of the major vessels can be clearly observed in the
three-vessel and three-vessel trachea view, which plays an
important role in the screening of fetal cardiac macro-
vascular malformations. *erefore, it is clinically important

Image Groundtruth U-Net DeepLabv3+ Ours

Figure 3: Segmentation results of different methods. *e original 3VT view of fetal heart ultrasound images are shown in the first column
and the groundtruth are shown in the second column.*e segmentation results of U-Net, DeepLabv3+ and our proposedmethod are shown
in the last three columns, respectively.
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to collect and identify the three vessels, and the automatic
segmentation algorithm could help doctors to easily operate
and accurately diagnose CHD.

Automated segmentation of fetal heart ultrasound im-
ages is a challenging task due to low signal-to-noise ratio,
low contrast, and blurred boundaries. Collecting and ac-
curately annotating the data is also a difficult task. We
believe that the performance of the proposed model can be
further improved by using a larger and more standard
dataset. Nonetheless, we achieved better results than
DeepLabv3+ on all evaluation metrics, with performance
gains of 1.8% on mean IoU (66.8% to 68.6%), 2.2% on mean
PA (79.2% to 81.4%), and 1.2% on mean Dice (80.1% to
81.3%).

5. Conclusion

In summary, we propose a fully automated segmentation
method for fine-grained segmentation of three vessels in the
3VT view of fetal heart ultrasound images using a channel-
wise knowledge distillation technique. We design a teacher-
student architecture to distill channel-wise knowledge from
ROI-based cropped images to full-size images. *e logits
output of the teacher model empowers the student model
with fine-grained segmentation capability. In this way, we
obtain more accurate segmentation boundaries. Both
quantitative and visual analyses show that the proposed
method significantly outperforms other methods in terms of
segmentation results of the three vessels in the 3VT view of
fetal heart ultrasound images.
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