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Using a speckle-tracking echocardiography (STE), we recently demonstrated that a left ventricular (LV) global longitudinal strain
(GLS) ≥ −15% and the serum cardiac troponin T (cTnT) concentration are associated withmortality in stable hemodialysis patients
with preserved LV ejection fraction (LVEF). In this study, we explored the relationship between cTnT and echocardiographic
parameters and evaluated whether the prognostic value provided by cTnT is independent of a GLS ≥ −15% and vice versa. Eighty-
eight stable hemodialysis patients with preserved LVEF were followed for 31 months. STE studies and measurements of cTnT
were performed at baseline. CTnT concentration had a modest correlation with GLS (𝑟

𝑠
= 0.44; 𝑃 < 0.001) but had a weak

or nonsignificant correlation with other echocardiographic parameters. Adjusting for clinical parameters, hazard ratios for each
increase of 0.01 ng/mL in cTnT, and a GLS ≥ −15% on mortality were 1.13 (𝑃 = 0.009) and 3.09 (𝑃 = 0.03) without significant
interaction between cTnT and GLS ≥ −15%. In addition, an increased cTnT concentration, a GLS ≥ −15%, or their combination
showed significant additional predictive value for mortality when included in models consisting of clinical parameters. Therefore,
both cTnT and a GLS ≥ −15% are independent predictors of mortality and are useful for risk stratification.

1. Introduction

Mortality in patients with end-stage renal diseases (ESRDs)
remains high mainly because of their high cardiovascular
disease burden [1–3]. The kidney disease outcome quality
initiative (KDOQI) guidelines recommend that conventional
echocardiography should be performed at the initiation of
dialysis and every 3 years thereafter in all ESRD patients
for cardiac risk stratification and optimization of therapies

[4–7]. However, hemodialysis patients with heart failure
(HF) and/or overt systolic dysfunction, defined by low left
ventricular (LV) ejection fraction (LVEF) on conventional
echocardiography, have very poor outcome [4–6, 8, 9] and
frequently respond poorly to therapies [10]. It is thus feasible
that early identification of high-risk patients in an asymp-
tomatic and stable hemodialysis population with preserved
LVEFmay facilitate an early initiation of therapies to improve
outcome.
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For early detection of subclinical heart disease, two-
dimensional speckle-tracking echocardiography (STE) with
myocardial deformation (2D strain) analysis and themeasur-
ing of serum cardiac biomarkers, such as cardiac troponin
T (cTnT), may be useful tools. STE with 2D strain analysis
is a quantitative method for the assessment of subtle LV
dysfunction, which cannot be evaluated by semiquantita-
tive conventional echocardiography [11–16]. Using 2D strain
analysis, LV global peak systolic longitudinal strain (GLS)
or circumferential strain (CS) is the ratio of the maximal
change in myocardial longitudinal or circumferential length
in systole to the original length, respectively. During systole,
the LV myocardium shortens in either direction; therefore,
GLS or CS has a negative value, and less negative GLS or
CS value indicates poorer global LV systolic function [13, 16].
GLS has been demonstrated to be a more sensitive predictor
for all-cause mortality than LVEF in the general population
[17]. We recently reported that a less negative GLS (defined
as GLS ≥ −15%, i.e., an absolute value of GLS ≤ 15%) but
not LVEF predicted all-cause and cardiac mortality among
stable hemodialysis patients with preserved LVEF (LVEF ≥
50%), indicating that GLS is a promising marker for early
risk stratification [18]. As for serum cardiac biomarker, high
circulating cTnT concentrations are associated with high
mortality in dialysis patients [2, 19, 20]. The food and drug
administration and the KDOQI guidelines [7] both indicate
the use of cTnT as a biomarker formortality risk stratification
in dialysis patients. In our previous study, we also found
that the elevated cTnT concentration correlated with GLS
and is associated with high mortality in this hemodialysis
population [18].

Validation of a novel marker for risk stratification in a
specific population requires a phased approach. Early-phase
studies should demonstrate that the novel marker is associ-
ated with the outcome. Midphase studies should explore the
relationships between various markers and demonstrate that
the new marker provides additional value beyond traditional
and other markers in identifying high-risk patients and/or
changing the decision-making process. The relationship
between cTnT concentrations and conventional echocardio-
graphic parameters has been extensively studied in a general
dialysis population [2, 19–21]; however, the relationship
between cTnT concentrations and subtle LV dysfunction and
clinical characteristics in stable hemodialysis patients with
preserved LVEF is still unclear, though we have noted that
the cTnT concentration correlated with GLS in our previous
study [18]. Furthermore, because cTnT might correlate with
GLS, it raises a question of whether the association of cTnT
with mortality remains significant after adjustment for other
prognostic factors including GLS. In other words, whether
cTnT can replace GLS in risk stratification, or vice versa,
is still unknown. In addition, it remains unclear whether
there is an additional prognostic value of cTnT or a GLS
≥ −15% or their combination beyond other prognostic
factors. In this study, we explored the relationships between
cTnT concentrations and patients’ characteristics and STE-
measured echocardiographic parameters and evaluated the
additional prognostic value provided by cTnT or a GLS ≥
−15% or their interaction to define their clinical usefulness.

2. Subjects and Methods

2.1. Patients. This study adhered to the Declaration of
Helsinki and all enrolled patients provided written informed
consent. The study protocol was approved by the Human
Research andEthicsCommittee of our institute (IRBnumber:
ER-98-073). As previously described [18], from December
2008 to January 2009, adult stable hemodialysis patients (≥18
years old) receiving a maintenance hemodialysis program
consisting of 4 hours a session, thrice weekly for more than
3 months, were prospectively enrolled from two community
hospitals in Yun-Lin County, Taiwan: National Cheng Kung
University Hospital Dou-Liou Branch and Catholic Fu-An
Hospital. In total, 120 hemodialysis patients without intercur-
rent or terminal illnesses were screened and 109 patients were
included (3 with starting long-term hemodialysis <3 months
and 8 without the willingness to participate). Additional
patients were subsequently excluded because of old age (≥80
years, 𝑛 = 3), LVEF <50% (𝑛 = 2), or episodic or persistent
HF (≥NYHA FC III) [22, 23] within 6 months (𝑛 = 3).
Patients with chronic atrial fibrillation (𝑛 = 4), recent
infarction (𝑛 = 1), severe valvular heart disease (𝑛 = 2), or
inadequate image quality (𝑛 = 6) were also excluded. The 88
enrolled patients were followed for 31 months or until death.
Upon enrollment and during the follow-up period, clinical
information on comorbidities, medical history, and cardio-
vascularmedicationwere obtained by a careful review of each
patient’s medical record and/or a self-reported questionnaire.
The primary outcome was all-cause mortality.

2.2. Biochemical Measurements. Blood was collected before
the midweek dialysis session in the same week that the
echocardiographic study was performed. Sera were stored at
−80∘C until analysis, when they were thawed for measure-
ment of the concentrations of cTnT (4th generation Troponin
T STAT immunoassay, ElecSys 2010 System, Roche Diag-
nostics, Indianapolis, IN, USA), high-sensitivity C-reactive
protein (BN II analyzer; Dade Behring, Glasgow, DE, USA),
interleukin-6 (chemiluminescent sandwich ELISA, Quan-
tikine Human interleukin-6; R&D Systems Inc., Minneapo-
lis, MN, USA), and procollagen type I C-terminal peptide
(Takara Bio Inc., Otsu, Shiga, Japan). The measurements of
cTnT concentrationwere performed in the clinical laboratory
at National Cheng-Kung University Hospital and were super-
vised by one of the coauthors (YWL). CTnT concentrations
were assayed in batch using the automated ElecSys 2010
analyzer. The lower limit of detection for this assay is
0.01 ng/mL, which also reflects the 99th percentile cutoff limit
for detection of myocardial necrosis. In our laboratory, the
coefficient of variation (CV) at 0.078 ng/mL is 5.0% and the
CV at 2.300 ng/mL is 2.5%. Serum cholesterol, triglycerides,
calcium, phosphate, and albumin were measured using an
automatic analyzer.

2.3. Echocardiographic Measurements. All patients were
examined by one well-trained cardiologist (YWL, with 10
years of experience in echocardiographic examination) using
an ultrasound system with a 3.5MHz probe (Vivid-i, GE
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Table 1: Baseline clinical characteristics of stable hemodialysis patients with preserved left ventricular ejection fraction.

cTnT Tertiles
𝑃 for trendLower

(cTnT ≤ 0.02 ng/mL,
𝑛 = 30)

Middle
(0.02 < cTnT ≤ 0.042 ng/mL,

𝑛 = 29)

Upper
(cTnT > 0.042 ng/mL,
𝑛 = 29)

Age (years) 64.0 ± 13.0 67.9 ± 8.7 68.4 ± 11.6 0.27
Male, 𝑛 (%) 11 (37%) 9 (31%) 12 (42%) 0.71
BMI (kg/m2) 21.3 ± 3.0 22.6 ± 2.5 21.2 ± 2.9 0.15
Kt/v 1.75 ± 0.22 1.71 ± 0.24 1.66 ± 0.22 0.30
IDWG, (kg) 2.63 ± 0.83 2.92 ± 1.02 2.78 ± 1.25 0.60
IDWG, (%) 5.1 ± 1.8 5.2 ± 1.6 5.1 ± 2.3 0.98
Hemodialysis duration (years) 6.5 (4, 9) 4.4 (2, 9.9) 4 (1.8, 6.4) 0.31
SBP (mmHg) 143.0 ± 13.2 152.2 ± 16.3 144.1 ± 15.2 0.93
DBP (mmHg) 73.9 ± 8.7 81.0 ± 7.8 76.2 ± 10.2 0.44
Heart rate 74.7 ± 11.4 75.8 ± 12.4 75.5 ± 12.6 0.94
Prevalent CAD 8 (27%) 11 (38%) 12 (41%) 0.46
Diabetes mellitus 7 (23%) 16 (55%) 22 (76%) <0.001∗

Hypertension 27 (90%) 25 (86%) 25 (86%) 0.85
LV hypertrophy# 28 (93%) 27 (93%) 27 (93%) 0.95
ACEI/ARB 17 (57%) 18 (62%) 13 (45%) 0.40
𝛽-Blocker 15 (50%) 11 (38%) 15 (52%) 0.40
CCB 15 (50%) 17 (59%) 18 (62%) 0.48
Statin 6 (20%) 4 (14%) 5 (17%) 0.94
Calcium (mg/dL) 9.4 ± 0.9 9.1 ± 0.7 9.2 ± 0.7 0.26
Phosphate (mg/dL) 4.4 ± 1.3 4.8 ± 1.3 4.1 ± 1.1 0.19
Albumin (g/dL) 3.3 ± 0.5 3.4 ± 0.3 3.2 ± 0.4 0.21
Cholesterol (mg/dL) 163.1 ± 35.7 168.6 ± 41.5 157.6 ± 35.7 0.55
hsCRP (mg/dL) 0.26 (0.14, 0.63) 0.66 (0.18, 0.99) 0.45 (0.19, 1.95) 0.12
IL-6 (pg/mL) 9.5 (7.3, 16.3) 9.7 (6.9, 13.7) 10.6 (6.3, 19.1) 0.85
PICP (ng/mL) 843.6 ± 398.5 802.1 ± 331.8 952.8 ± 444.9 0.34
Continuous data are expressed as the mean ± standard deviation or the median (25th and 75th percentiles); categorical data are expressed as the number
(percentage). A nonparametric Kruskal-Wallis test was used for nonnormally distributed data.
∗

𝑃 < 0.05; #LV hypertrophy was diagnosed by echocardiography.
Abbreviations: ACEI: angiotensin-converting enzyme inhibitor; ARB: angiotensin II-receptor blocker; BMI: body mass index; CAD: coronary artery disease;
CCB: calcium channel blocker; cTnT: cardiac troponin T; DBP: diastolic blood pressure; hsCRP: high-sensitivity C-reactive protein; IDWG: interdialytic weight
gain; IL: interleukin; Kt/V: an indicator of dialysis adequacy (𝐾: urea clearance; 𝑡: dialysis time;𝑉: urea distribution volume); LV: left ventricle; PICP: procollagen
type I C-terminal peptide; SBP: systolic blood pressure.

Healthcare, Horten, Norway). Two-dimensional STE and
tissue Doppler imaging (TDI) were performed as previously
described [15, 16, 18]. All participants received an echocardio-
graphic examination at the halfway point of the hemodialysis
session (the second or third hour of each session) [18]. We
measured LVMi, LV volume, LVEF, and left atrial volume
index, and LV hypertrophy (LVH) was defined as an LVMi
>115 g/m2 for men and >95 g/m2 for women [22–24].

Using pulsed-wave Doppler, we measured the peak early
(E)-wave and late (A)-wave velocities of the mitral inflow.
The pulse TDI of the mitral annulus movement was acquired
from the apical 4-chamber view when a sample volume was
placed first at the septal side and then at the lateral side of
the mitral annulus. To obtain the peak systolic (𝑠) and early
diastolic (𝑒) velocities, we measured 3 end-expiratory beats
and averaged these values for further analysis. We used the

average 𝑒 velocity acquired from the septal and lateral sides
of themitral annulus to calculate the ratio of themitral inflow
𝐸 to the 𝑒 velocity (average 𝐸/𝑒 = 𝐸/[(𝑒septal + 𝑒



lateral)/2]).
We acquired 2D gray-scale STE images in the 3 standard
apical views (i.e., apical 4-chamber, apical 2-chamber, and
apical long-axis) for 3 cardiac cycles and then stored the
images digitally for subsequent off-line analysis. To evaluate
the fluid status, we measured the IVC diameter twice with an
average value defined as the IVCe at the end of expiration
in a subxiphoid location and just proximal to the junction
of the hepatic veins [16, 22, 23, 25]. IVCe > 1.53 cm indicates
hypervolemia in ESRD patients [16, 25].

2.4. 2D Strain Analysis. Off-line 2D strain analysis was
performed using automated functional imaging software
(EchoPAC work station, BT09, GE Healthcare, Israel). Peak
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Figure 1: (a) The Kaplan-Meier estimates of the overall survival probability of patients stratified by tertiles of cTnT concentrations. (b) The
Kaplan-Meier estimates of the cumulative hazard rate for all-cause mortality stratified by the cTnT concentration with a cutoff of 0.042 ng/dL
(the lower limit of the upper tertile) with a hazard ratio (HR) of 2.85 (95% confidence interval [CI], 1.44–5.62; 𝑃 = 0.001) for cTnT > 0.042.

systolic longitudinal strain was automatically obtained from
the 3 standard apical views. The average peak systolic lon-
gitudinal strain value from the 3 apical views was regarded
as the GLS. Six LV segments on the parasternal short-axis
view at the midpapillary level were examined to obtain the
segmental circumferential strains in systole and the average
of these 6 segmental circumferential strain was defined as the
CS [16, 18]. The Bland-Altman analysis revealed no systemic
bias of the GLS between intra- and interobserver agreements
[18]. In addition, hemodialysis per se did not affect GLS
measurement [18].

2.5. Statistical Analysis. Continuous data are presented as the
mean ± standard deviation, or the median and interquartile
range, depending on the distribution. Dichotomous data are
presented as numbers and percentages. We stratified patients
by tertiles of the cTnT concentration and comparisons among
groups across the tertiles were performed using the trend test.
A Kruskal-Wallis test was used for nonnormally distributed
data. The Kaplan-Meier method with a log-rank test was
used to compare mortality between strata. The relationships
among continuous variables were evaluated using a Pearson
correlation or a Spearman’s correlation analysis depending
on the distribution. Uni- and multivariate Cox regression
analysis were used to examine the risk factors for all-cause
mortality. We confirmed that all variables considered in
the regression analysis met the assumption of proportional
hazards. The additional predictive value of cTnT concentra-
tions and a GLS ≥ − 15% for mortality was investigated
using a multivariate Cox regression with analysis of the
deviance between different models and a receiver operating
characteristic (ROC) curve analysis. A 𝑃 < 0.05 was con-
sidered statistically significant. All statistical analyses were

performed using SAS software, version 9.2 (SAS Institute) or
SPSS (Statistical Package for the Social Sciences) software,
version 17.0 (SPSS Inc.).

3. Results

This was a prospective study of 88 stable hemodialysis
patients with preserved LVEF (LVEF ≥ 50%). All patients
presented with anuria and received adequate hemodialysis
(average Kt/V, 1.71 ± 0.23; hemoglobin, 10.2 ± 1.2mg/dL)
[26]. The baseline characteristics and echocardiographic
parameters in the all enrolled patients had been reported in
a previous study [18]. Patients were stratified by tertiles based
on their cTnT concentrations: lower (cTnT ≤ 0.02 ng/mL),
middle (0.02 < cTnT ≤ 0.042 ng/mL), and upper tertiles
(cTnT > 0.042 ng/mL). Comparisons of baseline character-
istics across tertiles of cTnT concentrations are listed in
Table 1. The prevalence of diabetes was significantly differ-
ent across tertiles but not background CAD, hypertension,
and LVH. Other variables were not significantly different
across tertiles. Comparisons of baseline LV geometric and
functional parameters across tertiles of cTnT concentrations
were listed in Table 2. Only LV-GLS showed a significant
difference across tertiles; other variables, including LV mass
index (LVMi), LV diastolic functional parameters, and other
LV systolic parameters, did not. There was no significant
difference in LV end-diastolic volume index (LVEDVi) or
end-expiratory inferior vena cava diameter (IVCe) across
tertiles, and the IVCe did not increase in the patients of each
group, indicating that the volume status of patients in these
three groups was similar and that substantial hypervolemia
did not occur [16, 27]. In total, 82 patients (93%) presented
LVH [22], and all three groups presented an inverse ratio
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Table 2: Baseline echocardiographic study of asymptomatic hemodialysis patients with preserved left ventricular ejection fraction.

cTnT Tertile
𝑃 for trendLower

(cTnT ≤ 0.02 ng/mL, 𝑛 = 30)

Middle
(cTnT of 0.02–0.042 ng/mL,

𝑛 = 29)

Upper
(cTnT > 0.042 ng/mL,
𝑛 = 29)

LV EDVi (mL/m2) 69.9 ± 18.8 69.5 ± 20.8 71.1 ± 19.3 0.96
LVMi (gm/m2) 135.4 ± 25.0 151.5 ± 57.2 159.1 ± 64.7 0.27
IVCe diameter (cm) 1.21 ± 0.26 1.3 ± 0.21 1.35 ± 0.35 0.18
LVEF (%) 65.7 ± 5.2 64.7 ± 5.9 62.3 ± 6.4 0.10
𝑠
 (cm/sec) 8.7 ± 2.0 8.8 ± 1.6 7.9 ± 2.2 0.16
GLS (%) −20.0 ± 3.5 −17.6 ± 3.0 −16.4 ± 4.6 0.002∗

LSRs (sec−1) −1.02 ± 0.21 −0.98 ± 0.22 −0.89 ± 0.21 0.06
CS (%) −22.2 ± 5.6 −20.7 ± 6.3 −19.6 ± 5.9 0.33
CSRs (sec−1) −2.05 ± 0.56 −1.98 ± 0.66 −1.66 ± 0.45 0.05
𝐸 (m/sec) 0.79 ± 0.31 0.81 ± 0.31 0.79 ± 0.29 0.97
𝐴 (m/sec) 1.01 ± 0.28 1.09 ± 0.39 1.00 ± 0.27 0.53
𝐸/𝐴 0.85 ± 0.53 0.80 ± 0.35 0.78 ± 0.23 0.78
𝑒
 (cm/sec) 5.0 ± 1.4 4.8 ± 1.1 4.7 ± 1.5 0.63
𝐸/𝑒 15.8 ± 5.9 18.2 ± 10.1 16.8 ± 6.1 0.52
LAVi (mL/m2) 34.1 ± 7.9 35.6 ± 7.7 36.4 ± 8.9 0.67
Continuous data are expressed as the mean ± standard deviation or the median (25th and 75th percentiles); categorical data are expressed as the number
(percentage). A nonparametric Kruskal-Wallis test was performed for nonnormally distributed data.
∗

𝑃 < 0.05.
Abbreviations: CS: average circumferential strain; CSRs: circumferential systolic strain rate; cTnT: cardiac troponin T; EDVi: end-diastolic volume index;
EF: ejection fraction; 𝐸/𝑒: early transmitral velocity to tissue Doppler mitral annular early diastolic velocity ratio; GLS: global left ventricular peak systolic
longitudinal strain; IVCe: end-expiratory inferior vena cava diameter; LAVi: left atrial volume index; LSRs: longitudinal systolic strain rate; LV: left ventricular;
LVMi: left ventricular mass index; 𝑠: left ventricular systolic myocardial velocity.

between early and late LV filling velocity, a high 𝐸/𝑒, and
a high left atrial volume index (LAVi), indicating that most
patients in this cohort had LVH and diastolic dysfunction.

There were different degrees of correlations among the
echocardiogram parameters LVMi, LVEF, GLS, systolic lon-
gitudinal strain rates (LSRs), CS, and systolic circumferential
strain rates (CSRs) (see Table S1 in Supplementary Mate-
rial available online at http://dx.doi.org/10.1155/2014/217290).
Because the distribution of cTnT was skewed (skewness
= 0.98), we assessed the relationships between cTnT and
echocardiographic parameters using Spearman’s correlation
(Table 3). CTnT concentrationsmodestly correlatedwithGLS
(𝑟
𝑠
= 0.44; 𝑃 < 0.001) and weakly correlated with LVEF,

LSRs, CS, and CSRs (all |𝑟
𝑠
| < 0.3 and all 𝑃 < 0.05). Other

variables, including LVMi, LVEDVi, IVCe, and diastolic
functional indicators hadno significant correlationwith cTnT
concentrations.

During the follow-up of 31 months, 24 patients (27.3%)
died: 9 from cardiovascular death, 11 from infections, and
4 from liver disease [18]. The baseline median plasma cTnT
concentrations were significantly higher in patients who died
than in those who survived to the end of 31-month follow-
up (0.049 [25th, 75th percentiles: 0.023, 0.134] versus 0.025
[0.010, 0.042], 𝑃 = 0.001). Figure 1(a) illustrates the Kaplan-
Meier estimates of the overall survival probability of patients
stratified by tertiles of cTnT concentrations. Figure 1(b) shows
the Kaplan-Meier estimates of the cumulative hazard rate for

mortality stratified by the cTnT concentration with a cutoff
of 0.042 (the lower limit of the upper tertile) with a hazard
ratio (HR) of 2.85 (95% confidence interval [CI], 1.44–5.62;
𝑃 = 0.001) for cTnT > 0.042.The results of the univariate Cox
regression analysis for mortality are listed in Table S2. Based
on our previous study [18] and a recentmeta-analysis [28], we
used aGLS of−15% and a CS of −23.3% as cutoff values in this
analysis. In addition, because the plasma values of cTnT were
low and an increase of 0.01 in the cTnT concentration may
be clinically significant, we multiplied the cTnT values by 100
(cTnT × 100) for analysis. For the multivariate Cox regression
analysis, a background of CAD, diabetes, and hypertension
together with plasma albumin concentration, which were sig-
nificant predictors in the univariate analysis, were selected to
be basic clinical parameters and to construct the basic model
(Table 4). Because the cTnT concentrations were modestly
correlated with GLS, we first observed the changes in HR
when adding cTnT × 100 and GLS ≥ −15% individually or
concomitantly in the basicmodel.Weobservedno substantial
change in HR of cTnT × 100 and GLS ≥ −15%. Furthermore,
there was no significant interaction between cTnT × 100 and
a GLS ≥ −15% in the full model (Table 4), indicating that
cTnT and a GLS ≥ −15% are independently associated with
mortality. After adjustment for basic clinical parameters, the
HRs associatedwith an increase of 0.01 in cTnT concentration
and aGLS≥ −15% in relation tomortality were 1.13 (1.03–1.24;
𝑃 = 0.009) and 3.09 (1.14–8.43; 𝑃 = 0.03), respectively
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Table 3: Spearman’s correlation between cardiac troponin T (cTnT)
concentrations and echocardiographic parameters.

Variables 𝑟
𝑠

𝑃 Variables 𝑟
𝑠
𝑃

LVEDVi 0.10 0.44 IVCe (cm) 0.209 0.07
LVMi 0.18 0.14

Systolic function Diastolic function
LVEF (%) −0.23 0.04∗ Average 𝐸/𝑒 0.05 0.66
GLS (%) 0.44 <0.001∗ 𝑒

 (cm/s) −0.14 0.20
LSRs (sec−1) 0.28 0.01∗ 𝐸 (m/s) −0.08 0.46
CS (%) 0.23 0.049∗ 𝐴 (m/s) −0.09 0.44
CSRs (sec−1) 0.28 0.02∗ 𝐸/𝐴 −0.01 0.95
𝑠
 (cm/s) −0.10 0.39 LAVi 0.14 0.31
∗

𝑃 < 0.05.
Abbreviations: CS: average circumferential strain; CSRs: circumferential
systolic strain rate; cTnT: cardiac troponin T; EDVi: end-diastolic volume
index; EF: ejection fraction; 𝐸/𝑒: early transmitral velocity to tissue Doppler
mitral annular early diastolic velocity ratio; GLS: global left ventricular
peak systolic longitudinal strain; IVCe: end-expiratory inferior vena cava
diameter; LAVi: left atrial volume index; LSRs: longitudinal systolic strain
rate; LV: left ventricular; LVMi: left ventricular mass index; SRs: systolic
strain rate; 𝑠: left ventricular systolic myocardial velocity.

(Table 4, full model). We subsequently performed a multi-
variate Cox regression analysis with backward elimination.
In the final model (Table 4, reduced model 2), cTnT × 100,
a GLS ≥ −15%, and serum albumin were significant pre-
dictors of mortality, whereas background hypertension was
a marginally significant predictor. There was no significant
interaction between cTnT× 100 and aGLS≥ −15% in the final
model.The 95%CIs of each HR in the Cox regressionmodels
shown in Table 4 are listed in Table S3.

The additional predictive value of cTnT and GLS for all-
cause mortality was investigated using a multivariate Cox
regression with an analysis of deviance between different
models and an ROC curve analysis (Table 5). Using these
two analysis methods, mortality was best predicted when the
cTnT concentration and a GLS ≥ −15% were simultaneously
included in themodel incorporating the basic clinical param-
eters. In addition, including either the cTnT concentration or
a GLS ≥ −15% in the model incorporating the basic clinical
parameters also increased the predictive power of the model.

4. Discussion

The principal findings of the current study were that both the
cTnT concentration and a GLS ≥ −15% were independent
and significant predictors of all-cause mortality, despite the
modest correlation between cTnT and GLS, and added incre-
mental predictive value in determining the risk of mortality
beyond basic clinical parameters (background CAD, diabetes
and hypertension, and serum albumin concentrations) in
stable hemodialysis patients with preserved LVEF. The prog-
nostic predictive value of the cTnT concentration could not
be replaced by GLS and vice versa.

4.1. Relationship between cTnT Concentration and Baseline
Echocardiographic Parameters and Clinical Characteristics.

Despite contradictory findings [2], elevated cTnT concen-
trations have been linked to LVH, LV dilation, and systolic
and diastolic dysfunction in hemodialysis patients without
cardiovascular symptoms [20, 21, 29–31]. In the present study,
the cTnT concentration was not significantly correlated with
diastolic functional parameters or LVMi, possibly because the
diastolic dysfunction and LVH were present in the majority
of the enrolled patients. This finding of lacking a significant
association between the cTnT concentration and LVMi is
similar to the study by DeFilippi et al. [2] that also had
high prevalence of LVH in their enrolled patients. The most
noteworthy finding was that subtle LV systolic dysfunction,
especially represented as the GLS, was modestly correlated
with cTnT concentrations.The cTnT concentration has also a
significant but weak associationwith other systolic functional
parameters including LVEF, LSRs, CS, and CSRs (Table 3).
This finding indicates that the elevated cTnT concentration
may, at least in part, reflect subtle LV dysfunction but not
LV diastolic dysfunction or mass in this patient population
with high prevalence of LVH and diastolic dysfunction. One
possible explanation for this result is that some patients with
subtle LV dysfunction, detected by measuring the GLS but
not other systolic parameters, have concomitant subclinical
myocyte injury and/or stress resulting in the increase of
cTnT. Furthermore, myocardial stunning may contribute to
the subsequent development of systolic dysfunction in fixed
segment(s) even without reduction of LVEF in hemodialysis
patients [32, 33], resulting in a less negative GLS. In addition,
it has been demonstrated that a high cTnT concentration is
independently associated with the presence or new develop-
ment ofmyocardial stunning [34].This information indicates
that elevated cTnT concentration and less negative GLS
possibly share some common underlying mechanisms.

There was no significant difference in the prevalence of
CAD across tertiles of cTnT concentrations in the current
study. Some studies [2, 35, 36] have suggested an association
between cTnT andCADbut others have failed to demonstrate
any correlation [29, 30, 37], implying that CAD is not the
sole causal factor for the increased cTnT concentrations.
However, we did find that dialysis patients with diabetes had
significantly elevated serum cTnT concentrations. Several
studies have indicated that diabetes is associated with raised
cTnT concentrations because of the presence of cardiac
microvascular disease [29, 38–40]; in contrast, Ooi and
House [41] suggested that this association may result from
protein glycosylation, alteration of the degradation of the
molecules, and/or reexpression of fetal genes.

4.2. Association of Outcomes and Prognostic Predictive Values.
Elevated cTnT concentration is a powerful prognostic predic-
tor in the ESRD population [19, 42–47]. Several studies have
reported associations between elevated cTnT concentration
and LVMi and LV dysfunction [2, 19, 20, 31, 48]; however, ele-
vated cTnT concentration remains associated with mortality
after adjustment for LVMi in hemodialysis patients [20] and
after adjustment for LVMi and LVEF in peritoneal dialysis
patients [19], indicating that the prognostic value of cTnT
reflects more than just LV mass and function. In the present
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study, LVH and LVMiwere not significant predictors possibly
because most of the enrolled patients had LVH. It should be
noted that most stable hemodialysis patients have LVH and
preserved LVEF [2, 29], and our finding indicates that cTnT
concentrations and GLS are useful indicators in evaluating
the prognosis in such a population.

We found that cTnT concentrations and a GLS ≥ −15%,
but not LVEF or other systolic echocardiogram parameters,
were independently associated with mortality. Although GLS
modestly correlated with LVEF (Table S1), the LVEF reflects
LV radial and transverse function and only partially reflects
longitudinal function, whereas GLS mainly reflects LV longi-
tudinal function [17, 49]. LV longitudinal function is largely
determined by the subendocardial region, and GLS may thus
be more sensitive in detecting the presence of pathological
conditions such as myocardial ischemia or fibrosis [17, 49,
50], which might explain the predictive value of GLS for
long-term prognosis in hemodialysis patients with preserved
LVEF. The reasons for the differences in outcome prediction
of cTnT and less negative GLS are unclear. CTnT is a cardiac
injury marker, whereas GLS is a functional marker, and our
findings suggest they may capture different or residual risks
associated with poor outcomes.

The prognostic value of elevated cTnT concentrations and
GLS ≥ −15% might not be attributed to background diabetes
or CAD as demonstrated by the finding that no substantial
change in the HRs of cTnT and a GLS ≥ −15% was found
when cTnT and a less negative GLS were added to the model,
regardless of whether themodel was adjusted for background
CAD and diabetes (full model and reduced models 1 and 2 in
Table 4).

4.3. Possible Clinical Implications. Given that cTnT concen-
trations and a GLS ≥ −15% have additional prognostic value
beyond conventional echocardiographic and clinical param-
eters, echocardiography (with STE) should be performed in
conjunction with measurement of cTnT concentrations for
early risk stratification in stable hemodialysis patients with
preserved LVEF.

An STE study includes longitudinal, radial, and circum-
ferential strains and twist measurements; the thorough strain
measurement is complicated and may be time-consuming,
especially for inexperienced operators. All STE-measured
parameters can be collected in research studies; however,
the measuring GLS is particularly useful because it appears
to be highly sensitive, relevant for prognosis, and more
reproducible than either circumferential or radial strain in
the general population [51, 52] and in stable hemodialysis
patients with preserved LVEF. To simplify the strain exami-
nation in clinical practice, assessment of only the longitudinal
strain may be used to facilitate the analysis. With this
kind of modified STE analysis, the measurement of GLS
generally only requires 2–4 minutes and may be feasible as
a component of routine echocardiographic examinations in
clinical practice [53].

4.4. Study Limitations. The current study has several limi-
tations. First, the number of enrolled patients was limited;

therefore this study may not have had sufficient power
to explore all of the factors associated with mortality. In
addition, we were not able to analyze the impact of cTnT
concentrations and GLS ≥ −15% on cause-specific mortality,
such as cardiovascular mortality. With the current sample
size, however, we already had sufficient statistical power to
detect significant effects of cTnT concentrations and a GLS
≥ −15% on all-cause mortality, and, therefore, the findings
were statistically significant. Nevertheless, a study with a
larger sample size will enable the simultaneous evaluation
of more predictors in the future and may help confirm our
findings. Second, patients with low LVEF (<50%) and/or
HF were not enrolled in the current study, which limits the
generalizability of our findings to a general hemodialysis pop-
ulation. However, the serum cTnT concentration [54–56] and
GLS [57–59] were predictive of the prognosis in nondialysis
acute and chronic HF patients with varying LVEF values.
Whether the measurement of cTnT concentrations or GLS or
the combination thereof is also useful for risk stratification
in a general hemodialysis population including patients with
low LVEF and/or HF warrants further studies. Third, some
dialysis patients had severe valvular heart diseases, atrial
fibrillation, or poor echocardiographic image quality, which
excluded the possibility of GLS analysis. Finally, we did
not measure brain natriuretic peptide concentrations in this
study.

4.5. Conclusions. Both the cTnT concentration and a GLS
≥ −15% are powerful, independent predictors of all-cause
mortality and add prognostic value to the clinical and
conventional echocardiographic parameters in current use
thus enabling the early identification of high-risk patients and
inform clinical decision making among stable hemodialysis
patients with preserved LVEF. Further studies are warranted
to define effective and early intervention strategies for these
high-risk patients.
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