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The use of single-cell multi-omics in
immuno-oncology

Anjun Ma® 2, Gang Xin%3 & Qin Ma® 2*

Single-cell multi-omics (scMulti-omics) has brought transformative insights into
immuno-oncology, demonstrating success in describing novel immune subsets
and defining important regulators of antitumor immunity. Here, we give exam-
ples of how scMulti-omics has been used in specific tumor studies and discuss
how this may develop in the future.

The mixture of cell subpopulations in tumors is considered one of the important characteristics
for drug resistance, metastasis, and disease relapse. The presence of diverse immune cells in a
tumor microenvironment (TME) may profoundly affect clinical outcomes. One significant
challenge in immuno-oncology is identifying the heterogeneity of immune cells in tumors and
their differentiation process. Traditional profiling approaches, such as flow cytometry or mass
cytometry, rely heavily on pre-existing knowledge and cell-type defining markers. Bulk tran-
scriptional analyses dilute the contribution of a small subset of immune cells in the overall gene
expression pattern. To overcome these limitations, a scMulti-omics study can offer detailed
identification of diverse immune subsets at a higher resolution and provide an opportunity to
understand the contribution of immune cells to tumor progression.

More than 30 single-cell sequencing technologies have been established to allow the inter-
rogation of multiple modalities that characterize different genetic and epigenetic sequencing
information in a cell simultaneously!. These modalities include DNA, gene expression, chro-
matin accessibility, chromatin architecture organization, histone modification, protein, T/B cell
receptors, and DNA methylation status (Fig. 1a). Furthermore, emerging spatial transcriptomic
technologies enable the identification of spatially variable genes that have distinct expression
patterns across spatial locations, tissue architecture prediction, cell-type localization, and the
inference of cell-cell communications in a TME?3. These technologies provide tools for the use
of scMulti-omics methods in immune-oncology studies. scMulti-omics data and the associated
analytical methods have provided insights into the following biological capabilities to: (a) define
tumor and immune cell identity in different patient groups, (b) infer the heterogeneous nature of
diverse immune repertoires, (c) understand the communication between cancer cells and
immune cells and the molecular mechanisms underlying cellular heterogeneity within the TME,
and (d) accelerate the discovery of novel pathogenesis and therapeutics in many cancer types.

Integrative analyses of scMulti-omics in immuno-oncology

The integration of scMulti-omics data can be categorized into three types*: (a) intra-modality
integration where the same modality (e.g., gene expression) are measured from different cells
(unmatched data), (b) unmatched inter-modality integration where multiple modalities (e.g.,

1Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA. 2 pelotonia Institute for Immuno-Oncology, The James
Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA. 3 Department of Microbial Infection and Immunity, The Ohio State
University, Columbus, OH 43210, USA. ®email: gin.ma@osumc.edu

| (2022)13:2728 | https://doi.org/10.1038/s41467-022-30549-4 | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30549-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30549-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30549-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30549-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30549-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30549-4&domain=pdf
http://orcid.org/0000-0001-6269-398X
http://orcid.org/0000-0001-6269-398X
http://orcid.org/0000-0001-6269-398X
http://orcid.org/0000-0001-6269-398X
http://orcid.org/0000-0001-6269-398X
http://orcid.org/0000-0002-3264-8392
http://orcid.org/0000-0002-3264-8392
http://orcid.org/0000-0002-3264-8392
http://orcid.org/0000-0002-3264-8392
http://orcid.org/0000-0002-3264-8392
mailto:qin.ma@osumc.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications

COMMENT

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30549-4

a Single-cell multi-modal profiling

scRNA-seq scATAC-seq

scDNA-seq scHiC-seq
g
— 5 ) .
scMethyl-seq « scCUT&RUN
7
scT/BCR-seq

&ADT—seq

b c
Intra-modality
I:II}I integration
NWVINL NN

NWIN\L

Tumor and microenvironment

. ’
Unmatched inter-

l:,'}l L modality integration

Spatial architecture

P :i 5 7a
~_..°'16.,' -7
p. 9. 4 i i
P = ‘l"
@ @ -
z /= %
< R
s ¢

Matched inter-
modality integration

LNV W)

/ Find sample differences \

@ Treatment difference @
Sex-bias

—>

Tumor type
etc.

Identify tumoral/immuno-
subpopulations

Build single-cell atlas

HUMAN CELL ATLAS
IMMUNE SYSTEM

J (B

.

/ Specify TME cell types/states \ /

Improve immuno-therapy

Immune attack

p -

* . & =e
p ' )

Anti-PD-1
antibody

Construct biological networks

T%\‘\;.Gene
o _ X,
« ¥/ \

Infer specific TF-gene \
regulations in cell types

-::::::-&o

Refine subpopulation
identification
Activel  Exhausted-ike
Naive T cell

T

Transitional state Exhaustedj

Define cell-cell communication

=0
=g

J

Fig. 1 scMulti-omics profiling and application examples in immuno-oncology. a An overview of various scMulti-omics data types. Sequencing techniques
including single-cell DNA sequencing (scDNA-seq) for DNA sequence profiling, single-cell RNA sequencing (scRNA-seq) for gene expression profiling,
Single-cell sequencing assay for transposase-accessible chromatin sequencing (scATAC-seq) for chromatin accessibility profiling, single-cell high-
throughput chromosome conformation sequencing (scHiC-seq) for chromatin architecture organization, single-cell cleavage under targets and release
using nuclease (scCUN&RUN) for histone modification profiling, single-cell antibody-derived tag sequencing (scADT-seq) for protein abundance profiling,
single-cell T cell or B cell receptor sequencing (scT/BCR-seq) for receptor repertoire (the recombination of the variable (V), diversity (D), and joining (J)
genes of T/B cell receptors) diversity and clonality profiling, and single-cell methylation sequencing (scMethyl-seq) for DNA methylation status profiling.

b-d scMulti-omics enabled immuno-oncology research.

gene expression and chromatin accessibility) are measured from
different cells, samples, or experiments, and (c) matched inter-
modality integration where multiple modalities are measured
from the same cell.

Here, we provide four experimental examples to demonstrate
the advantages of intra-modality integration of multiple single-
cell RNA sequencing (scRNA-seq) data compared to the analysis
of individual datasets (Fig. 1b). The first advantage is to improve
cell population identification and enable comparative analysis
among different patients, treatments, time points, and species.
One study screened the gene expression of 25,149 CD4" T cells
from six cancer types and discovered a previously under-
appreciated tumor-infiltrating follicular regulatory T cell group.
This cell subset can effectively suppress antitumor T cells and is
associated with resistance to anti-PD-1 therapy®. The second
advantage is to enable the discovery of a wide spectrum of dif-
ferent immune cell types and their gene markers. Zhang et al.
profiled and integrated scRNA-seq data of 397,810 T cells from
316 patients of 21 cancer types, and depicted the pan-cancer
landscape of T cells (including 17 CD8' and 24 CD4" sub-
clusters) in the TME®. Specific markers, such as TNFRSF9 (in
regulatory T cells), ZNF683 and CXCR6 (in tissue-resident

memory T cells), and GZMK (in effector memory cells), were
identified in each subtype. The third advantage is integrating
different sequencing technologies and leveraging their unique
features’. For example, using one Smart-Seq2 (deep sequencing
depth and high sensitivity) scRNA-seq and 10X Genomics (sui-
table for detecting large cell populations due to its massive
throughputs) scRNA-seq data from CD45" immune cells, Zhang
et al. identified LAMP3™ dendritic cells as an important cell type
originating from tumors, migrating to hepatic lymph nodes, and
shaping the lymphocyte function through antigen-specific
priming®. The fourth advantage is the ability to build single-cell
atlas, such as the tumor immune atlas’, in order to provide a
comprehensive compendium of immune cells and an inspection
of gene expression patterns in different immune cell types.
Compared with the studies only using an individual single-cell
sequencing dataset, the unmatched inter-modality integration has
shown advances in detecting tumor intrinsic and extrinsic factors
affecting critical subpopulations. Here, we provide three examples
to showcase how the integration led to accurate cell subpopula-
tion prediction and characterization by combining unique fea-
tures from different modalities (Fig. 1c). The first example of
unmatched inter-modality integration is to combine scRNA-seq
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a Future: knowledgeable biological networks modeling and inference
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Fig. 2 Deep learning modeling and wet-lab validations for scMulti-omics data. a Heterogeneous graphs and deep learning models can enable
sophisticated biological network inference from scMulti-omics data. b Wet-lab experimental validations bridge scMulti-omics predictive findings with

phenotype changes.

data with single-cell T cell receptor sequencing (scTCR-seq) data,
allowing the appearance of T cell tracing subsets from a single cell
(clonotype) and comparing the expansion, differentiation state, and
phenotype between various clonotypes. The study carried out by Li
et al. uncovered significant clonal sharing of transitional and dys-
functional CD8 cells, which linked these two CD87 subset popu-
lations in one developmental pathway. These results provide crucial
evidence to support that early transitional CD87 cells progressively
differentiate into dysfunctional T cell states!?. In the second exam-
ple, scientists used scRNA-seq and single-cell sequencing assay for
transposase-accessible chromatin sequencing (scATAC-seq) on
KMT2A-rearranged acute lymphocytic leukemia to uncover sig-
nificantly increased lineage plasticity in younger leukemia patients!!.
They also identified an immunosuppressive signaling circuit between
cytotoxic lymphocytes and leukemic cells, providing clinical impli-
cations for molecularly targeted and immunotherapy approaches. In
this circuit, natural killer (NK) T cells produce interferon-gamma
IFNYy to activate leukemic cells; in turn, these leukemic cells employ
inhibitory molecules such as transforming growth factor beta (TGF-
B) to suppress cytotoxic T and NK cells. The third example show-
cased that protein abundance, gene expression, and chromatin
accessibility can be integrated to identify biological networks linking
cancer/immune-specific relations among genes, such as cis-reg-
ulatory elements, TFs, and cancer-related peak-to-gene linkages!213,
Specifically, Granja et al. used Seurat!* to couple the above three
modalities measured in six mixed-phenotype acute leukemia
samples!3. They observed common malignant signatures across
patients and patient-specific regulatory features, and they identified
91,601 putative peak-gene linkages and key TFs (e.g., RUNX1) that
regulate marker genes in leukemia (e.g., CD69).

The matched inter-modality integration takes the power of
joint profiling of scMulti-omics with minimum cell-wise and
modality-wise biases to build more reliable connections among
modalities (Fig. 1d). Compared to the unmatched data integra-
tion, the matched inter-modality analysis is still in its infancy,
mainly due to high expenses and stringent experimental opera-
tions, leading to fewer applications in immuno-oncology studies.
First, a frequently used joint profiling technique in immuno-

oncology is CITE-seq!®, where matched gene expression and
protein abundances are quantified from the same cell. Leader
et al. applied CITE-seq to profile gene expression and 81 anti-
bodies from eight non-small cell lung patients!®. Their study
showcased that CITE-seq allowed for highly accurate CD4*" and
CD8T T cell clustering and annotation that scRNA-based clus-
tering could not completely resolve (e.g., identified an activated
CD8+ cluster enriched in IFNG, GZMB, LAG3, CXCL13, and
HAVCR?2 expression and with increased PD-1, ICOS, and CD39
protein abundance). Second, scRNA-seq can be jointly sequenced
with spatial transcriptomics to delineate communication between
different subsets of immune cells in TME. Pelka et al. profiled the
scRNA-seq of 371,223 cells and matched spatial transcriptome
data from 45 regions of interest in three colorectal tumor samples
with high CXCL13 T cell program activity!”. They discovered
spatially organized cell-cell interactions that contribute to a
coordinated multi-cellular immune response in human colorectal
tumors. Specifically, the IFNy derived from T cells can induce
expression of CXCR3 ligand to attract more activated IFNG +
and CXCL13 + T cells and CXCL10/CXCL11 + myeloid cells to
form spatially organized foci within human tumors. Lastly, the
joint profiling of scRNA-seq and scATAC-seq can enable a pre-
cise definition of cell types and their differentiation states,
offering a unique opportunity to discover novel TFs and epige-
netic mechanisms and build dynamic gene regulatory networks!8.
Unfortunately, no immuno-oncology study has been published
using this kind of scMulti-omics technology in the public domain
as of today.

Challenges and future prospects

There are still several challenges for applying scMulti-omics in
immuno-oncology. First, batch effect removal is one of the main
obstacles in accurate integrative analyses, which needs to retain
the true signals and remove differences between samples, condi-
tions, and experiments. Experimentally, the joint profiling of
multiple modalities from the same cell rather than separating
sequencing from different cells can greatly minimize the batch
effect; and computationally, the selection of appropriate tools to
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handle the batch effect can be guided by the existing bench-
marking methods!?20. Second, multiple computational tools have
been developed to integrate scMulti-omics data in a generic
style2!, but not particularly designed or optimized for data ana-
lysis in immuno-oncology. For example, the number of features
in dimension reduction and the resolution in Louvain clustering
can be tailored higher in immuno-oncological scMulti-omics data
than those used for normal tissues or cell lines. Also, acknowl-
edged marker genes and signatures (e.g., CD3 and CD4 for CD4 "
T cells) can be included in the data analyses to auto-correct the
cell clustering result. Third, current methods have limited power
to understand the cross-talk between cells and different mod-
alities. This limits the application of scMulti-omics data for
inferring the underlying biological networks of diverse cell types,
elucidating the response of these networks to external stimuli in a
specific cell type!3, and discovering the molecular programs that
drive transitions from one cell type to another in TME. Last, as
the data complexity increases (e.g., ten million cells in one
dataset), computational efficiency becomes more critical and
requires scalability to handle huge amounts of data.

We envisage more scMulti-omics data and computational
tools becoming available for integrative analysis in immuno-
oncology. As more data is generated, databases that system-
atically collect processed single-cell data in immuno-oncology
are needed (e.g., TISCH??). Such databases can create a path
towards innovative studies in tool development and optimiza-
tion, and provide opportunities for the potential integration of
different modalities across different cancer types, species, and
treatment conditions. With the increased generation of scMulti-
omics data, deep learning will revolutionize tool development
and single-cell data analysis, as deep learning frameworks are
powerful in extracting features from complex data in a
hypothesis-free manner?3. For example, a deep graph repre-
sentative learning framework (e.g., graph transformer) can be
used to extract and learn the appropriate features of different
modalities in order to characterize cellular heterogeneity. It has
a great potential to identify the joint embeddings of cells and
multiple modalities synergistically, with a heterogeneous graph
model that includes cells, genes, chromatin peaks, and other
epigenetic elements in the same graph (Fig. 2a). In addition, the
design of an end-to-end deep learning framework with com-
posable elements could be used where different analysis steps are
highly modularized, and users can customize the framework by
removing or adding steps. In such a way, all of the different
steps in the framework can be trained simultaneously instead of
in a sequential manner. Last, more wet-lab efforts are needed for
validating the integrative analysis results of scMulti-omics data.
Single-cell CRISPR screening is one option that can test a lim-
ited number of genomic and non-genomic sites at once to
observe the perturbance effect of the target genes or epigenetic
factors?4 (Fig. 2b).
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