EBioMedicine 68 (2021) 103395

Contents lists available at ScienceDirect

EBioMedicine

journal homepage: www.elsevier.com/locate/ebiom

Research paper
Check for
updates

Integration of clinicopathologic identification and deep transferrable
image feature representation improves predictions of lymph node
metastasis in prostate cancer

Ying Hou™', Jie Bao“!, Yang Song®, Mei-Ling Bao®, Ke-Wen Jiang?, Jing Zhang?, Guang Yang®,
Chun-Hong Hu", Hai-Bin Shi?, Xi-Ming Wang“*, Yu-Dong Zhang™*

2 Department of Radiology, The First Affiliated Hospital of Nanjing Medical University; Nanjing, Jiangsu Province, PR China
b Department of Pathology, The First Affiliated Hospital of Nanjing Medical University; Nanjing, Jiangsu Province, PR China
¢ Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China

d Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, PR China

ARTICLE INFO ABSTRACT

Article History:

Received 14 December 2020
Revised 28 April 2021
Accepted 28 April 2021
Available online xxx

Background: Accurate identification of pelvic lymph node metastasis (PLNM) in patients with prostate cancer
(PCa) is crucial for determining appropriate treatment options. Here, we built a PLNM-Risk calculator to
obtain a precisely informed decision about whether to perform extended pelvic lymph node dissection
(ePLND).
Methods: The PLNM-Risk calculator was developed in 280 patients and verified internally in 71 patients and
externally in 50 patients by integrating a set of radiologists’ interpretations, clinicopathological factors and
newly refined imaging indicators from MR images with radiomics machine learning and deep transfer learn-
ing algorithms. Its clinical applicability was compared with Briganti and Memorial Sloan Kettering Cancer
Center (MSKCC) nomograms.
Findings: The PLNM-Risk achieved good diagnostic discrimination with areas under the receiver operating
characteristic curve (AUCs) of 0.93 (95% CI, 0.90-0.96), 0.92 (95% CI, 0.84-0.97) and 0.76 (95% Cl, 0.62-0.87) in
the training/validation, internal test and external test cohorts, respectively. If the number of ePLNDs missed
was controlled at < 2%, PLNM-Risk provided both a higher number of ePLNDs spared (PLNM-Risk 59.6% vs
MSKCC 44.9% vs Briganti 38.9%) and a lower number of false positives (PLNM-Risk 59.3% vs MSKCC 70.1% and
Briganti 72.7%). In follow-up, patients stratified by the PLNM-Risk calculator showed significantly different
biochemical recurrence rates after surgery.
Interpretation: The PLNM-Risk calculator offers a noninvasive clinical biomarker to predict PLNM for patients
with PCa. It shows improved accuracy of diagnosis support and reduced overtreatment burdens for patients
with findings suggestive of PCa.
Funding: This work was supported by the Key Research and Development Program of Jiangsu Province
(BE2017756) and the Suzhou Science and Technology Bureau-Science and Technology Demonstration Project
(SS201808).
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1. Introduction men [1]. Pelvic lymph node metastasis (PLNM), accounting for ~15%

of all newly diagnosed PCa patients, is an important prognostic factor

Prostate cancer (PCa) is one of the most common malignancies
and the second leading cause of cancer-related mortality in Western
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that connects to biochemical recurrence (BCR) and distant metastases
after curative treatment [2,3]. Therefore, accurate pre-treatment
identification of PLNM of localized PCa would have a significant
impact on clinical decision making, treatment planning and predic-
tion of outcomes for patients [4].

Pelvic lymph node dissection (PLND), with external and obturator
iliac lymph nodes dissected, or extended PLND (ePLND), with exter-
nal, obturator, internal iliac and presacral lymph nodes dissected, is
generally recommended for high-risk PCa patients who are
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Research in Context

Evidence before this study

We searched the online database PubMed for the query
“((lymph node invasion [Title/Abstract] OR lymph node metas-
tasis [Title/Abstract]) AND (prostate cancer [Title/Abstract]))”.
We did not use a date restriction, but we limited the search to
English. On Dec. 30, 2019, this search generated 956 results.
Most focused on clinicopathological parameters for the predic-
tion of lymph node metastasis, and there is still no study inte-
grating radiomics and/or deep learning into clinicopathological
parameters. Our study included a large dataset and integrated a
set of radiologists’ interpretations, clinicopathological factors
and newly refined imaging indicators from MR images with
radiomics machine learning and deep learning algorithms. Rad-
ical prostatectomy specimens were used as reference
standards.

Added value of this study

We proposed and validated a pelvic lymph node metastasis
(PLNM) risk calculator to aid in extended pelvic lymph node
dissection (ePLND) decisions in prostate cancer patients. The
results showed that our PLNM-Risk calculator can help to spare
more ePLNDs while at a lower cost of missing lymph node
metastasis than the established Briganti and MSKCC
nomograms.

Implications of all the available evidence

Imaging biomarkers using computational radiomics and deep
learning approaches play an incremental role in the preopera-
tive assessment of pelvic lymph node metastasis risk in patients
with prostate cancer. Our pelvic lymph node metastasis risk
calculator provides improved accuracy of diagnosis support for
the management of patients with findings suggestive of pros-
tate cancer and may assist clinicians in patient management.

undergoing radical prostatectomy [4]. However, there is no ideal pre-
operative tool available to select candidates for PLND or ePLND due
to the variable sensitivity of 27%-100% and application limitations.
For example, the use of superparamagnetic iron oxide or sentinel
lymph node techniques remains in the research field, with no clinical
routine in the field of PCa application [5]. In the last few decades, risk
assessment tools, including the Briganti score, Memorial Sloan Ket-
tering Cancer Center (MSKCC) nomogram and Partin tables, were
proposed for the assessment of PLNM risk [6-8], while showing
moderate predictive accuracy on internal and external validations
[9—-12]. Multiparametric magnetic resonance imaging (mpMRI) has
been widely used to preoperatively characterize PCa and determine
the tumour and nodal stage [13]. Lymph nodes over 8 mm in the
short-axis dimension on To-weighted imaging (T,WI) and high signal
intensity on diffusion weighted imaging (DWI) are recognized as sus-
picious for malignancy. However, the performance of direct MRI-
based nodal staging of PCa is relatively poor, with a sensitivity of 40-
60% [14]. Moreover, imaging interpretation of nodal stage requires
the expertise of experienced radiologists; accordingly, inconsisten-
cies exist between readers with varying levels of experience, thus
leaving room for improvement. Recently, qualitative and quantitative
measurements on high-resolution T,-weighted imaging (T,WI), dif-
fusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI
have been regarded as promising predictors of PLNM [15,16]. A clini-
cally available tool should leverage the integration of all data repre-
sentations to enable detailed risk assessment in PCa, but this is
lacking. Several studies have attempted to develop predictive models

for PLNM by incorporating clinical/demographic and imaging indica-
tors [17—19]. Others have carried out the application of machine
learning or deep learning approaches, yielding higher accuracy than
the Briganti and MSKCC nomograms [20]. Translating multimodal
high-dimensional observations into a clinically interpretable signa-
ture is a potential alternative for improved prognostic and predictive
accuracy of PCa. However, there are challenges associated with such
analyses. First, there are always multimodal data generated in differ-
ent clinical workflows and procedures, and effective approaches for
integrating these data information are lacking. Second, although
high-throughput deep learning networks have matured to a point
that enables detailed discoveries of diseases in task-specific pro-
grams, the limited cohort size and high dimensionality of the data
increase the possibility of false-positive discoveries and overfitting.

Therefore, the purpose of this study is to design and validate a
new risk assessment tool, termed PLNM-Risk, that integrates clinical
data, prostate biopsies, radiologists’ identifications, high-throughput
radiomics and deep learning imaging features from mpMRI into a
more optimized intuitive model for PLNM prediction in patients with
localized PCa.

2. Methods
2.1. Ethical information and study cohorts

This retrospective study was approved by the local Research
Ethics Board of The First Affiliated Hospital of Nanjing Medical Uni-
versity (protocol 2016-SRFA-093), and informed patient consent was
waived. All procedures performed in studies involving human partici-
pants were in accordance with the 1964 Helsinki declaration and its
later amendments.

A total of 1843 patients admitted to prostate mpMRI at two ter-
tiary care medical centres (centre 1: The First Affiliated Hospital of
Nanjing Medical University, time interval: between Sep 2012 and Jun
2019; centre 2: The First Affiliated Hospital of Soochow University,
time interval: between Jan 2016 and Dec 2019) with biopsy-con-
firmed PCa were retrospectively screened. Among them, 401 patients
with pathologically proven PCa (centre 1, n=351; centre 2, n=50)
who underwent both radical prostatectomy (RP) and ePLND treat-
ment were finally included. All patients had no history of previous
surgery, radiotherapy or adjuvant therapies for PCa before mpMRI. A
flow diagram of patient selection with inclusion and exclusion crite-
ria is provided in supplementary Fig. S1.

Data from centre 1 were randomly split into training/validation
(n=280) and test (n=71) groups for model development and internal
testing, respectively. Data from centre 2 (n=50) were used for exter-
nal tests.

2.2. Preoperative clinical characteristics and histological data

Clinical and biopsy characteristics included age, serum prostate-
specific antigen (PSA), PSA density (PSAD), clinical T stage (< Tlc,
T2a-c, > T3), biopsy Gleason score (< 3+3, 3+4, 4+3, and > 4+4), per-
centage of positive cores, and perineural invasion (absent or present).
The surgical findings included Gleason score (< 3+3, 3+4, 4+3, and >
4+4), surgical margin (negative vs positive), extracapsular extension
(ECE) (negative vs positive), seminal vesicle invasion (SVI) (negative
vs positive), and PLNM (negative vs positive). Histopathological
results of ePLND, including the total number of resected lymph nodes
and total number of positive nodes, were recorded.

Transrectal ultrasound (TRUS)-guided cognitive biopsy and/or tar-
geted TRUS/MRI-fusion biopsy were performed followed by a stan-
dard 13-core systematic biopsy after mpMRI scans. RP with ePLND
was performed in high-risk patients classified by the EAU risk group
classification criteria. All biopsies and surgical specimens were pre-
pared and examined by two pathologists who had 10 years of
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experience in urologic pathology according to the ISUP 2005 and
2014 recommendations [21,22].

2.3. Follow-up

The first postoperative visit was 6 weeks after RP and ePLND, and
then patients were consistently followed up at intervals of 3 to 6
months based on PSA. The time of biochemical recurrence (BCR) was
recorded. Patients were censored in case of emigration, or on 30" Jul
2020, whichever came first. PCa BCR was defined as three successive
rises in PSA level of >0.1 ng/ml at least 6 weeks postoperatively with
final PSA >0.2 ng/ml, or administration of secondary therapy for evi-
dence of detectable PSA >0.1 ng/ml at least 6 weeks postoperatively,
or PSA >0.4 ng/ml at least 6 weeks postoperatively, referred to crite-
ria previously reported [23, 24].

2.4. Prostate mp-MRI examination and sequence pre-process

All images were acquired prior to prostatic biopsy on two 3.0T MR
scanners (Verio and Skyra; Siemens, Erlangen, Germany) at the two
institutes with a pelvic phased-array coil. The scan protocol was a
combination of transverse T{WI, transverse, coronal, and sagittal
T,WI, and transverse DWI. The apparent diffusion coefficient (ADC)
value was measured by expending a monoexponential fitting model.
The details of the MRI parameters are summarized in Table S1.

The elastic transform from DWI and ADC to high-resolution T,WI
was estimated by an Elastix software package (v. 4.10) referring to
the suggested parameter file “par0001bspline16”. The parameter con-
figuration for the registration was set according to Klein et al.’s work
[25]. The aligned DWI and ADC had the same resolution, field of view
and orientation as To,WI. Before image analysis, T,WI, DWI and ADC
images within and between the two sites were normalized by remap-
ping their histogram to fit within i + 30 (: mean gray-level within
the VOI; o: gray-level standard deviation).

2.5. Radiologists’ interpretation

All images were retrospectively interpreted using the Prostate
Imaging and Reporting and Data System (PI-RADS) version 2.1 [26]
by four genitourinary radiologists at two institutions (reader 1 [Z.Y.]
with 10 years of experience and reader 2 [Z].] with 15 years of expe-
rience in prostatic MRI in centre 1; reader 3 [B.].] with 5 years of
experience and reader 4 [W.X.] with 10 years of experience in pros-
tatic MRI in centre 2). All readers were blinded to the clinicopatho-
logical information. In each patient, radiologists first identified a
leading cancer lesion, which had a higher PI-RADS score or larger
diameter if the score was the same. Then, the following imaging fea-
tures related to the leading cancer lesion were assessed: (i) prostate
volume; (ii) zone of lesion originated (peripheral zone [PZ] or transi-
tional zone [TZ]); (iii) lesion shape (regular or irregular); (iv) lesion
margin (well-defined or ill-defined); (v) lesion max diameter; (vi)
lesion volumetric mean ADC value; (vii) PI-RADS score (PI-RADS 1-5)
[27,28]; (viii) MRI T-stage (< Tlc, T2a, T2b, > T2c); and (ix) MRI-
based assessments for ECE, SVI, and PLNM (absent or present). The
definition of MRI-based assessments was described according to cri-
teria previously reported [20,29]. All cases were interpreted individu-
ally first and then reviewed in consensus by the two readers 4 weeks
after individual evaluation. Individual readings were used to evaluate
interobserver agreement, and a consensus review was used for model
development. Any disagreement in consensus review was discussed
until a final standard consensus was generated.

2.6. Radiomics machine learning and deep learning

PCa lesions were manually segmented by two genitourinary fel-
lows (Reader 5 [H.Y.] and Reader 6 [].K. W]) independently. The entire

volume of interest (VOI) of the tumour was drawn based on radiolog-
ical-pathological correlation slice by slice. For patients with multiple
tumour lesions, only the leading cancer lesion was analysed. All
sequences and the corresponding VOIs were resampled to an inner
resolution of 0.5 x 0.5 mm? by Bicubic methods. To ensure the image
quality and accuracy of the VOI, the presence of deformation was
rechecked by radiologists at the same time.

Radiomics features, including shapes (14), histograms (18), tex-
tures (75), and wavelets (744), were extracted from T,WI, DWI with
b=1500 s/mm?, and ADC by PyRadiomics [30]. Finally, a total of 2553
features were obtained. Each feature was normalized to a similar
scale to avoid scale effects. The feature matrix was normalized by Z-
score normalization, which maps each feature with a mean of zero
and a standard deviation of one. The formula was described as
follows:z — score = *-* where X is the mean value of the feature dedi-
cated and o is the standard deviation of all mean values. The Pearson
product-moment correlation coefficient (PCC) was estimated
between each pair of features, and random features were removed if
the value was larger than 0.85. Additional tumour volumes (in mm?>,
the default of PyRadiomics) in all sequences were excluded from the
assessment.

The entire-volumetric radiomics features focus on only the inner
regions of PCa. We further proposed a deep transfer learning repre-
sentation (DTLR) approach to determine the interactive effect
between tumours and tumour-related regions. The tumour-related
region is a 5-mm extended region around the tumour, which can be
automatically determined using erosion and dilation algorithms as
described in our previous study [31]. DTLR features were measured
on the combined tumour and tumour-related regions using a dedi-
cated image embedding toolbox package (https://github.com/biolab)
through five pre-trained deep neural networks using ImageNet data,
i.e., DeepLoc, Inception v3, SqueenzeNet, VGG-16 and VGG-19 as
embedders [32]. Just as the human visual cortex can adapt to the
analysis of many scenes and images, we assumed that the proposed
image embedders pretrained on a sufficiently large number of
diverse images may infer useful features from a broad range of new
image sets. The idea is that deep transfer learning stores the knowl-
edge obtained from one problem in a trained model and applies it to
another problem, which may be quite different. For each case, the
axis slice with the largest area of the tumour cross section was
selected from axial T,WI, high-b DWI and ADC images. To obtain the
representative imaging features of the target lesion, we used hand-
cropped ROI as an attention to gate model training (i.e., regions
around the PCa) in the centre slice of the MRI scan. For image embed-
ding, we used the penultimate layer of the model to produce a total
of 37,809 new feature vectors, serving as another set of deep learn-
ing-derived imaging features in parallel to radiomics features for the
prediction of PLNM. The detailed parameters of each embedder are
summarized in the supplementary data (Table S2).

Random forest classifiers, which combined the concepts of feature
selection and step model training, were used to build radiomics and
deep learning signatures for predicting PLNM. Cross-validation was
applied on the training cohort to optimize the hyperparameters of
each method, and one standard error was used to determine the
number of features. In the random forest algorithm, each tree is
developed from a bootstrap sample from the training data. When
developing individual trees, an arbitrary subset of attributes is drawn
from which the best attribute for the split is selected. The final model
is based on the majority vote from individually developed trees in
the forest. Regarding feature selection, we assessed the features using
a mean decrease Gini index (MDGI). The MDGI represents the impor-
tance of individual features for correctly classifying a residue into
linker and nonlinker regions. The MDGI was calculated by classifying
randomly selected linker features and nonlinker features, and the
mean MDGI was calculated as the averaged MDGI over 100 trials. The
mean MDGI z-score of each feature was calculated as MDGI
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z — score = *=%, where X is the mean MDGI of the feature dedicated
and o is the standard deviation of all mean MDGI. Vector elements
with MDGI Z-Score larger than 2 were selected as optimum feature
candidates. The direct output values of the random forest classifiers
do not show probabilities of PLNM positivity of PCa; therefore, we
converted their output values to probabilities (Pi) by applying a sig-
moid function as follows: P; =1/(1+exp(-x;)), where ¥x; is the classifier
output value. The value of P; indicates the probability that the obser-
vation is PLNM (+). Thus, possibilities termed the Rad score and DTLR
score were obtained.

2.7. Development, performance, and validation of PLNM-Risk model

Clinicopathological variables included age, PSA, PSAD, clinical T
stage, biopsy Gleason score, percentage of positive cores and perineu-
ral invasion. Radiological measurements included the prostate vol-
ume, zone of lesion origin, shape, margin, maximum diameter,
volumetric ADC, PI-RADS score, MRI T-stage, MRI-based ECE, SVI and
PLNM. Finally, eighteen clinical, biopsy and radiological variables as
well as the Rad score and DTLR score were integrated into a PLNM-
Risk model for predicting the nodal status of PCa patients.

We used an open-source AutoGluon platform for PLNM-Risk
model development and validation. By processing raw CSV input into
predictions for test data, the AutoGluon framework employs a novel
form of multilayer stack ensembling. The first layer of AutoGluon has
n types of base learners, including extremely randomized trees, k-
nearest neighbours, gradient boosting machines, random forests and
a tabular neural network, whose outputs are concatenated and then
fed into the next layer, which itself consists of multiple stacker mod-
els. These stackers then act as base models to an additional layer. It
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a d
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merely employs random search for hyperparameter tuning, model
selection, ensembling, feature engineering, data pre-processing, data
splitting, etc., thus allowing us to implement all strategies for hyper-
parameter tuning, feature selection, model selection and ensemble.
The entire flowchart of PLNM-Risk model development is shown in
Fig. 1.

2.8. Statistical analysis

The interreader agreements for the measurable variables, such as
tumour diameter and ADC, were analysed using the intraclass corre-
lation coefficient test, and the MRI-derived categorical variables were
measured by Kappa identity test analysis.

The detailed differences of clinical, biopsy and radiological factors,
Rad and DTLR score of PLNM-absent and PLNM-present were com-
pared by T-test or Mann-Whitney U test. The discrimination perfor-
mance of predictive models was quantified by the area under the
ROC curve (AUC) value in the primary training data and internally
validated in the independent test data. Diagnostic sensitivity, speci-
ficity and accuracy were calculated at a cut-off point that maximized
the value of the Youden index. True-positive and false-positive rates,
weighted by the odds of the selected threshold probability of risk,
were assessed to evaluate the clinical usefulness and net benefits of
the PLNM-Risk model. BCR-free survival was defined as the time
interval from the date of surgery to the date of BCR. Survival curves
were generated with the Kaplan-Meier method and compared by
two-sided log-rank tests. The statistical analysis was conducted with
an R package (version 3.3.4; Project for Statistical Computing; http://
www.Rproject.org). The reported statistical significance levels were
all two-sided, with statistical significance set at 0.05.

T~

f Transferable learning features

h

Integration of multimodal informations i . e
PLNM-Risk prediction model

o T

v L
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PLNM-present

-

PLNM-absent
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Fig. 1. Flowcharts of PLNM-Risk development. a—d, Radiologic characteristics, clinical data repository and biopsies within the primary cohort of study, in response to PLNM sta-
tus, were interpreted by a panel of experts and encoded into a dedicative ClinicBioRad identification. e-g Individual image data within the cohort of study are embedded with train-
ing-sparing deep image embedders and a radiomics toolbox to extract various image feature representations. This produces deep imaging feature measurements with auto
machine learning algorithms, resulting in complex network representations of PLNM. h,i, All translated datasets are then fed into the auto machine frameworks for predictive

modelling of the outcome of interest.
PLNM = pelvic lymph node metastasis.
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2.9. Role of funding source

The Key Research and Development Program of Jiangsu Province
and Suzhou Science and Technology Bureau-Science and Technology
Demonstration Project had neither a role in the study design, data
collection, analyses or data interpretation nor in the writing of the
report. The corresponding authors had full access to all of the data in
the study and had final responsibility for the decision to submit the
publication.

3. Results
3.1. Baseline characteristics

Out of all patients included, the presence of histological PLNM was
diagnosed in the explanted tissue of 70/401 patients (17.5%), with 64/
351 (18.2%) in centre 1 and 6/50 (12%) in centre 2. Detailed baseline
characteristics of the patients are summarized in Table 1.

Table 1
The baseline characteristics of PCa patients between PLNM (-) and PLNM (+) in two medical centers.
Center 1 Center 2
Variable PLNM (-) PLNM (+) p PLNM (-) PLNM (+) p
n=287 n=64 n=44 n=6
Age (y), mean (std) 69.5 (6.6) 67.5(7.2) 0.032' 70.1(6.3) 66.2 (7.4) 0.160
PSA (ng/mL), mean (range) 29.9(1.4-591.0) 75.6 (3.9-676.0) 0.000 31.2(3.3-100.0) 77.6(22.6-200.1)  0.155
PSAD (ng/mL/cc), mean (range) 0.8(0.1-9.2) 1.6 (0.1-16.3) 0.008' 0.8(0.1-3.3) 1.8(0.5-5.3) 0.008
Clinical T-stage 0.031" 0.328"
Tlcor less 180/287 (62.7) 32/64(50.0) 29/44 (65.9) 3/6 (50.0)
T2a-c 86/287 (30.0) 30/64 (46.9) 13/44 (29.5) 2/6(33.3)
T3 or more 21/287 (7.3 2/64(3.1) 2/44 (4.5) 1/6(16.7)
Prostate volume (cm?), mean (range) 39.0(11.2-189.6)  50.4(11.2-117.7)  0.000 43.8(15.7-111.1)  46.5(36.4-61.0) 0.753
Tumor shape 0.000* 0.650"
Regular 138/287(48.1) 6/64(9.4) 16/44 (36.4) 1/6(16.7)
Irregular 149/287 (51.9) 58/64 (90.6) 28/44 (63.6) 5/6(83.3)
Zone of tumor origin 0.048* 1.000"
TZ 91/287(31.7) 12/64(18.8) 11/44(25.0) 1/6(16.7)
Pz 196/287 (68.3) 52/64 (81.2) 33/44(75.0) 5/6(83.3
Tumor margin 0.000* 1.000"
Well-defined, n (%) 126/287 (43.9) 5/64(7.8) 8/44 (18.2) 1/6 (16.7)
[ll-defined, n (%) 161/287 (56.1) 59/64 (92.2) 36/44 (81.8) 5/6 (83.3)
Tumor max diameter (cm), mean (range) 1.7 (04-5.9) 3.1(0.7-6.3) 0.001' 2.1(0.5-5.4) .1(1.4-4.1) 0.055
Mean ADC (x 107 s/mm?), mean (std) 0.8(0.2) 0.8(0.2) 0.042' 1.0(0.2) 0.9(0.1) 0.829
PI-RADS score 0.000" 1.000"
1-2 19/287 (6.6) 0/64 (0.0) 3/44(6.8) 0/6 (0.0)
3 40/287 (13.9) 0/64 (0.0) 2/44 (4.5) 0/6 (0.0)
4 95/287 (33.1) 4/64 (6.3) 8/44 (18.2) 1/6 (16.7)
5 133/287 (46.3) 60/64 (93.7) 31/44(70.5) 5/6(83.3)
MRI-based stage 0.000* 1.000*
Tlcor less 42/287 (14.6) 0/64 (0.0) 2/44 (4.5) 0/6 (0.0)
T2a 98/287 (34.1) 2/64(3.1) 14/44 (31.8) 2/6(33.3)
T2b 24/287 (8.4) 5/64(7.8) 4/44(9.1) 0/6 (0.0)
T2c or more 123/287 (42.8) 57/64 (89.1) 24/44 (54.5) 4/6 (66.7)
MRI-ECE+ 90/287 (31.4) 55/64 (85.9) 0.000°  15/44 (34.1) 3/6 (50.0) 0.654"
MRI-SVI+ 29/287(10.1) 43/64 (67.2) 0.000*  9/44(20.5) 2/6(33.3) 0.601"
MRI-LNI+ 15/287 (5.2) 36/64 (56.3) 0.000°  10/44 (22.7) 2/6(33.3) 0.621*
Biopsy findings 0.000* 0.504"
GS 3+3 70/287 (24.4) 3/64 (4.7) 0/44 (0.0) 0/6(0.0)
GS3+4 63/287 (22.0) 5/64(7.8) 9/44(20.5) 0/6 (0.0)
GS4+3 77/287 (26.8) 21/64(32.8) 11/44 (25.0) 1/6(16.7)
GS > 4+4 77/287 (26.8) 35/64 (54.7) 24/44 (54.5) 5/6(83.3)
Percentage of positive cores, median (range) 0.4 (0.0-1.0) 0.7 (0.2-1.0) 0.000' 0.5(0.1-1.0) 0.8 (0.6-1.0) 0.008
Perineural invasion+ 45/287 (15.7) 28/64 (43.8) 0.000*  8/44(18.2) 1/6 (16.7) 1.000*
Surgical findings
GS 3+3 33/287(11.5) 0/64 (0.0) 0/44 (0.0) 0/6 (0.0)
GS3+4 87/287 (30.3) 4/64 (6.3) 8/44 (18.2) 0/6 (0.0)
GS4+3 97/287 (33.8) 17/64 (26.6) 17/44 (38.6) 0/6(0.0)
GS > 4+4 71/287 (24.7) 4364 (67.2) 19/44 (53.2) 6/6 (100.0)
ECE+ 76/287 (33.0) 44/64 (68.8) 13/44(29.5) 4/6 (66.7)
SVI+ 31/287(13.5) 43/64 (67.2) 5/44 (11.4) 2/6(33.3)
SM+ 91/287 (39.6) 4864 (75.0) 15/44 (34.1) 4/6 (66.7)
LN+ 0/287 (0.0) 64/64 (100.0) 0/44 (0.0) 6/6 (100.0)
No. of nodes dissected 2758 798 238 71
No. of positive nodes 0 248 0 19

Note. -Unless indicated otherwise, data are number of tumors, with percentages in parentheses. ADC = apparent diffusion coefficient; PSA = prostate serum
antigen. PSAD = prostate serum antigen density. PI-RADS= Prostate Imaging and Reporting and Data System version 2.1; ECE = extracapsular extension.
SVI = seminal vesicle invasion. LN = lymph node; PLNM = pelvic lymph node metastasis.GS= Gleason Score. RP=radical prostatectomy. SM=surgical margin.

" Independent sample t test.
* Chi-Square test.
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3.2. Development, performance, and validation of PLNM-Risk

The dynamic performance tuning of two types of imaging signa-
ture models (Rad score and DTLR score) is described in supplemen-
tary Fig. S2, and the feature expression maps for the top radiomic
features on T2WI and ADC images are shown in supplementary
Fig. $3. The stacked ensemble variable importance and model impor-
tance are plotted in Fig. 2 and show that the Rad score, MRI-based
SVI assessment and DTLR score are the three most important predic-
tors of PLNM. The weighted_ensemble_k0_11 model, with a stacked
ensemble of 10 base models, achieves the best performance with
respect to the prediction of outcome interest.

The resulting PLNM-Risk model (weighted_ensemble_k0_11) pro-
duced an area under the receiver operating characteristic curve
(AUC) of 0.93 (95% CI, 0.90-0.96) in the training group, 0.92 (95% CI,
0.84-0.97) in the internal test group and 0.76 (95% CI, 0.62-0.87) in
the external test group (Fig. 3a). The predicted PLNM-Risk score
showed a significant difference (independent-samples T-test, p <
0.001) between the PLNM-absent and PLNM-present groups. Using
an optimal threshold (PLNM-Risk > 0.131) that maximizes the You-
den index of the ROC analysis in training data, the model resulted in
a sensitivity of 92.2%, 84.6% and 50.0% with specificity of 81.2%, 84.5%
and 84.0% in predicting PLNM in training, internal and external test
sets, respectively (Fig. 3b). Additionally, the PLNM-Risk model dem-
onstrated better performance than Rad score, DTLR score, Rad + DTLR,
a ClinicBioRad model (incorporating clinical factors, biopsy findings
and radiologist’ interpretations), ClinicBioRad +Rad and Clinic-
BioRad + DTLR based on a single modality or multimodalities in the
training and combined test cohorts (Fig. 3c).

3.3. Clinical implication of PLNM-Risk

The true and false positive rates of PLNM-Risk in comparison with
established MSKCC and Briganti scores for stratifying PLNM risk are
plotted in Fig. 4. For internal-tested data, PLNM-Risk resulted in

similar true positive (TP) rates while achieving notably lower false
positive (FP) rates at threshold probabilities of PLNM < 20% com-
pared to MSKCC and Briganti scores. For externally tested data, the
PLNM-Risk resulted in lower TP rates and lower FP rates compared to
MSKCC and Briganti scores. According to the European Association of
Urology (EAU) and National Comprehensive Cancer Network (NCCN)
guidelines for the treatment of PCa, if the number of ePLNDs missed
for risk assessment is controlled at < 2% (PLNM-Risk, 1.7% vs MSKCC
2.2% and Briganti 1.9%), the PLNM-Risk can provide both a higher
number of ePLNDs spared (PLNM-Risk: 239/401 [59.6%] vs MSKCC:
180/401 [44.9%] vs Briganti 156/401[38.9%]) and a lower number of
false positives (PLNM-Risk, 96/162 [59.3%] vs MSKCC, 155/221
[70.1%] and Briganti, 178/245 [72.7%]) compared with MSKCC and
Briganti scores (supplementary Tables S3,54).

3.4. Prognostic aspects of PLNM-Risk for biochemical recurrence

As of 30" Jul 2020, 331/401 (82.5%) patients who had completed
3-year BCR follow-up after the surgery were enrolled. The overall
recurrence rate was 34.7% (115/331), with 36.4% (104/286) in centre
1 and 24.4% (11/45) in centre 2. The median BCR-free survival time of
the patients was 5.8 (range, 1.4-40.7) months: 5.2 (1.4-40.7) months
for those with PLNM and 6.2 (1.4-38.1) months for those without
PLNM (log-rank test, p < 0.001). Similar results were observed in the
PLNM-Risk model: The median BCR-free survival time was 4.3 (1.4-
28.8) months for patients with high PLNM-Risk scores and 8.0 (1.4-
40.7) months for those with low PLNM-Risk scores (log-rank test, p <
0.001) in the whole cohort. BCR-free survival of the separate training,
internal and external validation cohorts is shown in Fig. 5.

4. Discussion
In this study, we developed and validated a collaborative model

that enables the integration of clinical data, biopsies, experts’ knowl-
edges, radiomics and transferable deep learning image features into

Stacked ensemble variable importance Model importance AUC
Rad score 1.00
] weighted_ensemble_k0_11 094
MR SVI 0.74
1 mweighted_ensemble_k0_11
DTLR score 1 062 RandomForestClassificrGini 091
MRILN .
1 0.43 & RandomForestClassifierGini
PSA 0.40 RandomForestClassifierEntr 091
Prostate Volume 031 B RandomForestClassifierEntr
PSAD 023 NeuralNetClassifier 0.89
i = NeuralNetClassifier
Positive core% 0.22
T LightGBMClassifierCustom 0.92
Tumor size 0.22 ® LightGBMClassifierCustom
Tumor ADC 021
4 & LightGBMClassifier LightGBMClassifier 091
Age 0.19
Biopsy NI X . ) P
opsy NI 122 0.08 0.75 = KNeighborsClassifierUnif KNeighborsClassifierUnif 0.87
Biopsy GS 1. 0.07
1 1.39 KNeighborsClassifierDist
MR ECE 0.06 KNeighborsClassifierDist 0.85
MR stage 0.05
= _L 139 ExtraTreesClassifierGini
Clinical stage {1 0.04 ExtraTreesClassifierGini 0.85
Tumor shape {1 0.03 -0.75 ExtraTreesClassifierEntr
Tumor location 0.03 ExtraTreesClassifierEntr 0.87
- 0.10 B CatboostClassifier
Tumor edge { 0.02
1 CatboostClassifier 0.89
PI-RADS { 0.01
a 00 02 04 06 08 10 12 b 20 -1.0 0.0 10 20 c 08 0.82 0.84 0.86 0.88 09 092 0.94 0.9

Fig. 2. Importance (a,b) of multimodal variables and performance (c) of base machine learning models for PLNM-Risk. Stacked ensemble variable importance is generated by
averaging the importance from ten base models. Model importance is generated by: importance = **, where x; is the AUC of each model dedicated; and X and o are the mean and

standard deviation of all AUCs, respectively.

GS = Gleason score; NI = perineural invasion; DTLR = deep transferable learning image representation; ECE = extracapsular extension; SVI = seminal vesicle invasion; LN = lymph
node; PI-RADS = Prostate Imaging and Reporting and Data System; PSA = prostate serum antigen; PSAD = PSA density; ADC = apparent diffusion coefficient; PLNM = pelvic lymph

node metastasis; AUC = area under the receiver operating characteristic curve.
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Fig. 3. Performance of PLNM-Risk in primary training, internal testing and external validation datasets. (a) Sens and Spec curves are created by sweeping a threshold over the
predicted probability, and the hidden lines represent the 95% confidence interval. (b) Distributions of predicted results are plotted in the PLNM-absent vs PLNM-present group;
using the optimal risk threshold (0.131), the sensitivity and specificity of the PLNM-Risk model are determined. (c) The performance of the models trained with single- and multi-
modality integrations is compared, in which PLNM-Risk is superior to any other model for performance in the whole internal and external test cohort.

PLNM = pelvic lymph node metastasis; Sens = sensitivity; Spec = specificity.

an interpretable tool to improve the prediction of PLNM in localized
PCa. Unlike most approaches focusing on the task of combined algo-
rithm selection and hyperparameter optimization [33,34], our study
used an auto meta-learning framework, allowing us to combine
the aggregated predictions of base models as its features and to
exploit interactions between base models that offer enhanced
predictive accuracy. This deep multimodal interaction and data
mining approach might provide a new alternative for solving sim-
ilar medical tasks. Second, our deep image embedding does not
need training on a closely related set of images. This is functional
for avoiding potential model overfitting when the cohort is
limited and thus contributes important methodology
to address the problem of high-dimensional data classification in
the face of a limited number of samples. Finally, our results on a
cohort of 401 patients with ePLND from two tertiary care medical
centres show promise of the PLNM-Risk model and potential util-
ities of this tool for therapeutic decision making. Additionally, the
results of the follow-up of BCR show a favourable prognostic
aspect of PLNM-Risk for disease progression assessment.

In our previous single-centre cohort study [20], we presented in-
house traditional machine learning methods by integrating clinical
factors and radiologists’ interpreted imaging features to predict
PLNM. The results were promising for precision risk assessment of
PCa, which is consistent with the studies of Wang et al. and Brembilla
et al. [16,35]. In the current work, distinct facets of our results
deserve attention. First, our results showed that the newly built
imaging hallmarks, i.e., Rad score and DTLR score, generated from
high-throughput imaging features, were workable for the nodal stag-
ing of PCa. Second, combining the Rad score and DTLR score with
conventional clinical factors and radiologists’ interpreted imaging
features improved the prediction performance and showed an incre-
mental role to radiologists’ interpretation for PLNM prediction.
Among 2,000 radiomics features, factors related to tumour gray level
intensity (e.g., wavelet coarseness and emphasis) on high-b DWI and
ADC and tumour heterogeneity on T,WI (e.g., complexity and
entropy) were identified as the top predictors for PLNM. We assumed
that gray-level-intensity features on DWI and ADC might reflect the
intratumour cellularity that connects to the PCa Gleason grade.
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Fig. 4. Assistant role of the PLNM-Risk model in selecting patients who are candidates for ePLND. Plots show true positive rates (a) and false negative rates (b) of MSKCC, Brig-
anti and PLNM-Risk for the prediction of PLNM in the training, internal test and external test cohorts, respectively. For the internal test cohort, PLNM-Risk resulted in a similar true
positive rate but achieved a notably lower false positive rate at threshold probabilities of PLNM < 20% (dashed line) compared to MSKCC and Briganti score. For the external test
cohort, PLNM-Risk resulted in a lower true positive rate and lower false positive rate than MSKCC and Briganti scores. This might be caused by sample bias, as there were only 6/50

PLNM-positive cases in the external cohort.

PLNM = pelvic lymph node metastasis; MSKCC = Memorial Sloan Kettering Cancer Center.

Volumetric complexity and entropy measured on high-resolution
T,WI might reflect intratumour heterogeneity, which is an important
predictor of disease aggressiveness. Our findings are partly consistent
with those of previous studies, in which quantitative measurements
on mpMRI could be helpful for the prediction of PCa Gleason grade
and disease aggressiveness [36—38]. Third, we set up separate inter-
nal and external validation sets. To some extent, the accuracy, repeat-
ability and generalization of our PLNM-Risk model were proven. Last
but not least, instead of comparing different traditional machine
learning methods in the previous study, we used the new Auto Gluon
platform to generate an ensemble, hyperparameter optimized classi-
fier, which allows us to provide robust performance results. Due to
the powerful AutoGluon that allows multimodal interaction and a
multialgorithm stack ensemble, our PLNM-Risk model, integrating 20
multimodal factors and embedding 10 base models, was superior to
any other existing clinical nomogram. This data mining approach
might be helpful and inspiring to solve similar medical problems. Our
findings are consistent with those of previous studies, which used
similar computational approaches for breast cancer assessment
[39,40].

Additionally, we made a head-to-head comparison of PLNM-Risk
with the MSKCC and Briganti nomograms. Patients with a risk thresh-
old higher than 5% estimated by the MSKCC or Briganti nomograms
are candidates for ePLND on the basis of the EAU guidelines [41,42].
The adoption of a 5% threshold at the Briganti nomogram in the origi-
nal cohort resulted in sparing 65% of ePLNDs at the cost of only 1.5%
PLNM missed [6]. On the following external validation, using a 7%
cut-off, the Briganti nomogram had an AUC of 0.79 and resulted in

56-70% ePLNDs spared at the cost of 1.5-2.6% PLNM missed [43—45].
In our cohort, with the PLNM missing rate controlled less than 2%,
the PLNM-Risk resulted in a higher number of ePLNDs spared at
lower cost of number of PLNMs missed than the MSKCC and Briganti
nomograms. Therefore, our PLNM-Risk, using an optimal threshold of
8%, can result in a higher number of ePLNDs spared at the cost of
fewer PLNMs missed. Our preliminary results also showed that the
PLNM-Risk even revealed a potential role in predicting the preopera-
tive disease progression risk. We found that BCR-free survival of PCa
patients after RP differed significantly in subgroups stratified by
PLNM-Risk.

However, as shown by the results in the external validation
cohort, the PLNM-Risk might not be able to completely replace the
current MSKCC or Briganti nomogram, the accuracy of which has
been internally and externally validated. This may be caused by the
small external test cohort of patients and the difference in PLNM dis-
tributions in positive and negative data. In addition, MRI-derived
characteristics of patients in two hospitals were evaluated by radiol-
ogists at their respective sites (reader 1 and reader 2 evaluating the
data from Centre 1 and reader 3 and reader 4 evaluating the data
from Centre 2). It also requires the expertise of experienced radiolog-
ists, and there is inconsistency across readers of varying experience.
In addition, subjective radiologists’ interpretations lack standardiza-
tion, which may be another important factor exerting an influence on
external validation. Therefore, it is further necessary to test the gen-
eralization of PLNM-Risk in more external cohorts.

Our study had several limitations. First, because of its retrospec-
tive character, a large number of patients who did not undergo
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Fig. 5. Kaplan-Meier survival curves of biochemical recurrence (BCR) according to MSKCC, Briganti and PLNM-Risk in the training (a), internal test (b) and external test
cohorts (c). The results reflect significantly different BCR-free survival in the subgroups stratified by MSKCC, Briganti and PLNM-Risk scores, implying prognostic relevance for the
short- and long-term management of patients. P values were obtained from the log-rank tests.

BCR = biochemical recurrence; PLNM = pelvic lymph node metastasis; MSKCC = Memorial Sloan Kettering Cancer Center.

ePLND were excluded from the study, and selection bias and treat-
ment procedure might influence model development. Second, the
model was tested externally on a relatively small group of patients,
and validation on a larger number of patients in multiple centres is
needed. Third, prospective application of an automatic decision sup-
port tool in a clinical scenario involves a series of challenges, such as
individual variations in the pathological manifestations of disease
and technical variations in imaging devices, parameter setting and
image processing. Therefore, in its current state, our PLNM-Risk
might not be routinely available.

In summary, we proposed a PLNM-Risk tool for the pretreatment
prediction of PLNM in PCa. Our end-to-end model, maintaining the
exploratory nature of multimodal high-dimensional database inte-
gration and multialgorithm embedding, provides strong predictive
capabilities and prognostic accuracy in internal and external valida-
tion. The interpretability of PLNM risk is particularly important for
building trustworthy autodecision tools for clinical applications.
Adoption of this tool would allow 59.6% of ePLND procedures to be
spared at the cost of missing only 1.7% of PLNM cases, which is better
than the current MKSCC and Briganti nomograms. Therefore, our
automachine intelligence approach would provide a great alternative
to improve routine procedures in patient management.
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