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Abstract: The incidence of syphilis, gonorrhea, chlamydia, and herpes simplex has increased over the
last decade, despite the numerous prevention strategies. Worldwide scientists report a surge in drug-
resistant infections, particularly in immunocompromised patients. Antigenic variations in syphilis
enable long-term infection, but benzathine penicillin G maintains its efficiency, whereas macrolides
should be recommended with caution. Mupirocin and zoliflodacin were recently introduced as thera-
pies against ceftriaxone-resistant gonococcus, which poses a larger global threat. The gastrointestinal
and prostatic potential reservoirs of Chlamydia trachomatis may represent the key towards complete
eradication. Similar to syphilis, macrolides resistance has to be considered in genital chlamydiosis.
Acyclovir-resistant HSV may respond to the novel helicase-primase inhibitors and topical imiquimod,
particularly in HIV-positive patients. Novel drugs can overcome these challenges while nanocarriers
enhance their potency, particularly in mucosal areas. This review summarizes the most recent and
valuable discoveries regarding the immunopathogenic mechanisms of these sexually transmitted
infections and discusses the challenges and opportunities of the novel molecules and nanomaterials.
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1. Introduction

Sexually transmitted infections (STIs) are among the most common acute diseases
worldwide. Despite the numerous local efforts and national prevention strategies, their
incidence remains high. Long-term complications such as infertility, seronegative arthri-
tis, and neurological disorders are worrisome [1]. Nevertheless, in this era of medicine
focused on subspecialties, Venerology has not yet seen a surge of interest in publications.
Venerology is usually assigned to dermatologists who focus their research on non-venereal
pathology. The Centers for Disease Control and Prevention (CDC) estimated 2 million
cases of Chlamydia, gonorrhea, and syphilis, every single year, in the United States only.
Chlamydia represents the most prevalent bacterial STI in the United States, followed by
gonorrhea. Of note, syphilis (“The Great Imitator”) prevalence has drastically increased in
the United States lately [2]. An estimated half a billion people worldwide have herpes sim-
plex virus (HSV) genital infection [3]. CDC identified drug-resistant Neisseria gonorrhoeae
among the top five urgent antibiotic-resistant threats to public health, but the impact of
antimicrobial-resistant (AMR) STIs is often underestimated. Furthermore, foreign travel
contributes to the spread of AMR infections, as one-third of international travelers engage
in casual travel intercourse [4].

In syphilis, Treponema pallidum rare outer membrane (OM) proteins (TROMPs) are
the main antigens recognized by the host Toll-like receptors (TLRs) [5], but the antigenic
variation of these surface lipoproteins promotes immune escape [6]. Chromosomal transfer
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of AMR genes is an important factor, that may lead to AMR gonorrhea [7]. The emergence
of extensive drug-resistant (XDR) gonococcus strains in Japan, France, and Spain and the
first resistant strain to ceftriaxone and azithromycin combined therapy in England and
Australia [8] has sparked a global trend towards discovering novel therapeutic approaches
in gonorrhea [9]. Chlamydia trachomatis is a leading bacterial STI in developed and undevel-
oped countries [10]. The alternation between two morphological different forms enables
particular metabolic activities and confers resistance features to Chlamydia species [11].

Nucleoside analogs such as acyclovir have paved the way to HSV infection treatment [12],
but the prevalence of acyclovir-resistant HSV exceeds 10% in solid organ and hematopoietic
stem cell transplant recipients [13], and alternatives are warranted in this subset of patients,
as well as in HIV positive patients [14]. This paper aims to describe the molecular and
immunological mechanisms in syphilis, gonorrhea, chlamydia, and herpes simplex infections
in relation to currently available treatments and drug resistance, respectively.

2. Host Interactions
2.1. Syphilis

Treponema pallidum, subsp. pallidum, phylum Spirochaetes, is a spiral-shaped, dark-
field visible, extracellular bacterium that causes syphilis. Venereal syphilis is usually
sexually transmitted through skin or mucosal microabrasions. After an incubation period
varying from 9 days up to 2–3 months, an asymptomatic, highly contagious chancre
appears at the inoculation site and a regional, non-tender lymphadenopathy may be
palpated. Secondary syphilis, characterized by mucocutaneous lesions and high titers
of blood circulating treponemes, can occur from 10 weeks to 6 months after infection. If
untreated, the patient undergoes a period of latency and ultimately, the tertiary stage of
syphilis, characterized by neurosyphilis, aortitis, and gummas. During the secondary, and
early latent syphilis (the first 12 months of disease) mucocutaneous relapses occur and
patients are usually contagious. Afterward, patients are usually not contagious, except for
pregnant women. Vertical transmission via the placenta to the fetus can appear in all stages
of syphilis [1,15–17].

TROMPs serve as antigenic molecules capable to induce immune responses via TLR-2
pathways. The predominance of treponemal proteins beneath the surface [17,18] enables
these bacteria to silently disseminate, accompanied by a low systemic inflammation and
symptomatology, as the innate immune system barely senses them [19]. Furthermore,
the treponemal OM lacks the highly proinflammatory lipopolysaccharides (LPSs) and
lipooligosaccharides (LOSs), which are usually found in Gram-negative germs [16,20,21].

As seen in the hard chancre, an initial step in the host response to T. pallidum is the
formation of opsonic antibodies, which facilitate the internalization and degradation of
treponemes through phagocytosis. The phagosomes along with the ingested treponemes
further fusion with lysosomes resulting phagolysosomes. Within phagolysosomes, the
treponemes are degraded and the liberated phagolysosomal lipopeptides trigger T cells
recruitment. In each chancre, replicating treponemes generate an elaborate inflammatory
response, consisting of macrophages, T cells, and plasma cells. Locally activated CD4+
and CD8+ T cells (with a predominance of CD4+ in early infection) produce IFN-γ. This
last cytokine has a dual effect, as it stimulates the macrophages to internalize and degrade
treponemes, and it provokes aggressive inflammatory cascades. Hence, the primary syphilis
response is a predominant Th1 cell-based immune response. High, but inefficient titer
of antibodies characterizes the secondary, humoral stage of syphilis. Secondary syphilis
lesions arise after the treponemes pass across the endothelial junctions and trigger a local
immune response consisting of macrophages, monocytes, and T cells [22–26].

2.2. Gonorrhea

N. gonorrhoeae is a species of obligate human pathogenic, facultatively intracellular,
Gram-negative diplococcus bacterium that causes gonorrhea. This STI is one of the oldest
recorded infections and easily spreads through unprotected sexual activity. Gonococcal
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primary sites of infection are the urethral mucosa, inner part of the cervix, anal canal,
pharynx, and conjunctiva. Unlike T. pallidum, the gonococcal OMs mainly contain LOSs,
LPSs, and surface hair-like proteins (pili) that facilitate movement, adherence, and genetic
exchanges [1,4,7,9]. A single gonococcus can simultaneously produce up to six structurally
and antigenically distinct LOSs. Because LOSs are highly expressed on the OM and are
readily available as targets of the adaptive immune system, the gonococcal LOSs stand as
potential vaccine candidates [27–29].

N. gonorrhoeae uses type IV pili to attach to the mucosal epithelium and other outer-
membrane proteins such as opacity-associated (Opa) proteins and invasins to enable
internalization. Gonococcal LOSs stimulate innate immunity and various cytokines are
produced [30]. The release of pro-inflammatory cytokines such as IL-6, IL-8, IL-1β, IL-17,
and IFN-γ favors polymorphonuclear leukocytes’ (PMNs) chemotaxis and infiltration to the
infection area. Following recruitment to the infected tissue, PMNs phagocytose opsonized
N. gonorrhoeae. They synthesize reactive oxygen species (ROSs) and release antimicrobial
peptides (AMPs) and other molecules from their intracellular granules which induce inflam-
matory damage within the epithelial mucosa [31–33]. However, a specialized gonococcal
antimicrobial efflux pump can successfully export the AMPs [34]. Hence, N. gonorrhoeae is
able to survive and replicate inside PMNs as a result of their native resistance to antimicro-
bial molecules [30]. Although both the alternative and classical complement pathways may
be activated during infection, the gonococcus can bind complement proteases to prevent
opsonization and can successfully siaylate its LOSs as a hiding mechanism [35].

As Treponema pallidum, the gonococcus has the ability to modulate the adaptive immu-
nity, as it was shown to selectively suppress Th1 and Th2 cells development and promote
a Th17 response, through the induction of TGF-β. The suppression of Th1 and Th2 im-
mune responses blocks the generation of a specific adaptive immune response, while Th17
cells recruit neutrophils [36–38]. Moreover, this pathogen decreases the macrophages’ and
dendritic cells’ capacity to induce CD4+ T cells proliferation (Figure 1) [39,40].
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Figure 1. Host responses in syphilis and gonorrhea. (a) A dominant Th1 response in primary syphilis
promotes IFN-γ production. Opsonized treponemas in secondary syphilis undergo phagocytosis and
resistant treponemas disseminate and produce skin and mucosal lesions. (b) Neisseria gonorrhoeae
inhibits complement pathways and Th1 and Th2 cells but stimulates Th17 cells which promote
neutrophil infiltration. Some gonococci may escape phagocytosis and invade pelvic organs.

2.3. Chlamydia trachomatis

C. trachomatis is a Gram-negative, coccoid or rod-shaped, strict intracellular bacterium
in the genus Chlamydia, whose strains are subdivided into several serotypes. Serotypes A
to C produce trachoma, serotypes D to K infect the urethral epithelia in both sexes, and
endocervical epithelia of women and serotypes L1 to L3 cause lymphogranuloma venereum.
Up to approximately 70% of D-K C. trachomatis infections are asymptomatic. Particularly in
women, C. trachomatis infection is usually unrecognized, and not treated [1,10,41,42].

During its cellular cycle, the bacterium alternates between two morphologic types:
a highly infectious, non-replicative, small form (elementary body) and a non-infectious,
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replicative, larger form (reticulate body) [43]. The interaction of the elementary bodies
(EBs) with host cells occurs in a two-stage mechanism. The initial binding occurs through
electrostatic interactions of the bacterium with heparan-sulfate containing glycosamino-
glycans. This is a reversible process and is followed by a second, irreversible, binding
process [44–46].

Upon infection, EBs are internalized inside membrane-bordered vacuoles, named intra-
cytoplasmic inclusions. Within the inclusions, the EBs differentiate into the metabolically
active forms, named reticulate bodies (RBs) [43]. RBs use host cytoplasmic nutrients
and undergo repeated replications by binary fission throughout the middle part of the
developmental cycle. The transformation of RBs back to EBs arises when the inclusion
containing RBs reaches a critical volume and a depletion of nutrients and ATP occurs.
The newly produced EBs are released into the extracellular milieu and another round
of infection occurs [47–50]. A better understanding of the EBs metabolism has recently
emerged. It appears that EBs are not metabolically inert but are capable to metabolize
extracellular glucose 6-phosphate, ATP, and amino acids [51].

The host epithelial cells use surface receptors, endosomal receptors, and innate im-
mune factors to recognize C. trachomatis antigens. Binding chlamydial ligands to these
receptors triggers the release of pro-inflammatory cytokines and chemokines, which re-
cruit host inflammatory cells. The phagocytosis of C. trachomatis triggers a specific B and
T cells mediated humoral immunity. Nonetheless, this pathogen secretes potent proteases,
which degrade two important transcription factors (RFX5 and USF-1) and interfere with
the synthesis of major histocompatibility complex (MHC) class I and class II molecules.
Chlamydia provokes a cellular potassium efflux which stimulates ROSs synthesis and
eventually leads to caspase-1 activation and IL-1β and IL-18 synthesis. This inflammatory
response is required for C. trachomatis clearance, but also promotes scarring and host dam-
age [48,52–55]. TLRs recognize C. trachomatis and contribute to bacterial cleaning [56], but
some innate immunity soluble factors, such as the NLRP3–ASC inflammasome [57], may
promote infection by increasing fats metabolism [58].

2.4. Herpes Simplex Virus

HSV is a double-stranded DNA virus and a member of the Alphaherpesvirinae sub-
family of the Herpesviridae family. There are two major types of HSV: herpes simplex 1
(HSV-1) and herpes simplex 2 (HSV-2). They vary both clinically and in severity degree.
HSV-1 usually causes herpetic stomatitis, herpes labialis, and sight-threatening ocular her-
pes. Additionally, HSV-1 may produce sporadic encephalitis. While sexually transmitted
HSV-2 commonly causes anogenital lesions, an increasing incidence of HSV-1 genital herpes
has emerged, notably in teenagers, due to oral sexual intercourse. HSV targets two types of
cells: epithelial cells and neurons. Following the oral or genital HSV infection, the virus
replicates within the epidermal keratinocytes and Langerhans cells (LCs), which possess
HSV receptors. HSV migrates via unmyelinated sensory nerve fibers using retrograde
microtubule-associated transport (dynein and dynactin) to the neuronal soma in the dorsal
root ganglion (or the sensory ganglion of the trigeminal nerve for HSV-1) [12,59,60].

HSV possesses several envelope glycoproteins, which have a major function in binding
to host cell surface receptors and promoting HSV entry into host cells [61,62]. There are
at least five important glycoproteins (gB, gC, gD, gH, gL) that were shown to enable HSV
entry into the host cell. Following gB coupling with heparan-sulfate and its receptor, gD
interacts with epithelial cells receptors or herpesvirus entry mediator (HVEM) on immune
cells. Therefore, the recognition of HVEM by gD promotes a high viral tropism for the
innate immune cells that express HVEM [63–65]. Furthermore, Wakeley et al. have recently
shown that HVEM expression increases on CD3+ cells after trauma and plays a major role
in host defense against infections in trauma patients from the ICU [66].

HSV activates the type-1 interferon (IFN) signaling pathway (with IFN-α and IFN-β
production) via pattern recognition receptors (PRRs), an important family of soluble factors
involved in skin innate immunity. These receptors possess specific sensors able to recognize
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HSV and trigger the interferon-stimulated genes (ISGs) activation. ISGs may limit HSV
infection, together with a vigorous adaptive immune response majorly represented by the
CD8+ T-cells production of IFN-γ (Figure 2) [67,68]. Furthermore, IFN-γ may inhibit HSV
reactivation in vivo ganglia cultures [69]. Aberrations of innate immunity, such as TLR-3
mutations, are associated with herpes simplex encephalitis in children and may increase its
susceptibility in adults [70].
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tween the elementary bodies and the reticulate bodies. Chlamydiosis inflammation may resolve with
local scarring. (b) Herpes simplex virus binds pattern recognition receptors (PRRs) and stimulates
IFN (α, β, γ) production. Following proliferation within the epidermal keratinocytes and Langerhans
cells, the herpes virus undergoes anterograde transportation and enters the dormant stage inside the
dorsal root ganglia. ISG = interferon-stimulated genes; PRR = pattern recognition receptor.

3. Treatment Guidelines and Resistant Pathogens
3.1. Syphilis

According to the “2020 European guidelines on the management of syphilis”, benza-
thine penicillin G (BPG) 2.4 million units intramuscularly (IM) is the treatment of choice in
early syphilis (primary, secondary, or <1 year acquired) and 2.4 million units IM weekly,
for 3 weeks, in late syphilis (>1-year duration or duration unknown). Higher doses are
required in neurosyphilis, while HIV patients and pregnant women should receive the
same BPG regimen. A treponemicidal BPG concentration of >0.018 mg/L, for at least seven
days, is warranted [71].

Procaine penicillin (IM) is a second-line therapy for early and late syphilis. During
neurosyphilis treatment, probenecid should be associated with procaine penicillin. Doxy-
cycline (PO), erythromycin (PO), azithromycin (PO), amoxicillin (PO), and ceftriaxone (IM)
also represent alternative treatments to BPG [72].

In order to avoid deep painful IM BPG injection and possible allergic reactions to
BPG, some clinicians may use the PO alternatives (macrolides and tetracyclines) as a first-
line treatment. However, the current emergence of T. pallidum that displays resistance to
macrolides (erythromycin, azithromycin, etc.) raises some questions regarding these PO
regimens [73]. Macrolides are bacteriostatic antibiotics that bind reversibly to 23S rRNA
of the 50S ribosomal subunit and inhibit protein synthesis. The A2058G and A2059G
mutations were found in the treponemal 23S rRNA gene, more frequently in men who have
sex with men (MSM) and HIV patients. The incidence of macrolide-resistant T. pallidum
increased over time and its prevalence displays a geographical distribution (higher in cities
and lower in remote areas) [74].

A recent study on 25 positive T. pallidum DNA samples from active-syphilis patients
found an 88% frequency of macrolide-resistance mutations, but no resistance to tetracy-
clines, suggesting that macrolides should be avoided in syphilis guidelines [75]. Addi-
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tionally, a 2020 study comprising 146 French patients with early syphilis found an 85%
resistance to macrolides, but no point mutations for doxycycline resistance and proved the
absence of genomic resistance to tetracyclines [76].

Despite the increasing prevalence of macrolide-resistant treponemes, there is no
demonstrated penicillin resistance. Differentiation between relapse after an inefficient
therapy and reinfection is challenging. Hence, most clinicians consider = treatment failures
as a consequence of reinfection or patient-to-patient serologic variation after penicillin
treatment [77]. However, literature comprises secondary syphilis relapses after IM BPG.
Because IM BPG does not achieve treponemicidal concentrations in the cerebrospinal fluid
(CSF), a treponemal reservoir may establish in the CSF and may serve as an origin of
relapse, especially in HIV positive patients [78].

T. pallidum displays numerous chronicization mechanisms. Unlike other microor-
ganisms, it possesses a small number of surface-exposed pathogen-associated molecular
patterns (PAMPs), which could serve as potent triggering antigens for the immune response.
Therefore, T. pallidum undergoes repeated disseminations that are hardly noticed by the
innate immunity [19]. This is in line with the spread of viable treponemes during secondary
and early latent syphilis despite high concentrations of specific antibodies [79]. A recent
study cohort on 28 individuals [80] demonstrated this escape mechanism by measuring
changes of caspase-1 and caspase-3, well-known mediators of programmed cell death. T.
pallidum infection led to the programmed cell death of CD4+ and CD8+ T cells through
both pyroptosis and apoptosis, thus hindering a robust immune response.

In addition, antigenic variations in seven variable (V) regions of the TprK gene con-
tribute to the avoidance of developing an immune response in syphilis patients and to the
chronic infection status [5]. Some studies suggest that during latency treponemes reside
within hair follicles and nerves [25], thus explaining the chronic latent infection reactivation
to cause tertiary syphilis in the pre-antibiotic era [26].

A decade ago, Babollin et al. investigated this treponemal persistence by analyzing
an oligomeric protein belonging to the bacterioferritin family and produced by T. pallidum
(TpF1). The authors found an increased serum concentration of antibodies directed against
TpF1 in secondary syphilis patients, which correlated with a significantly higher mean
percentage of Treg cells in infected patients when compared to healthy controls. Treg cells
are a unique subpopulation of T cells that suppress immune responses and subsequently
contribute to the maintenance of chronic syphilis disease [81]. TpF1 promotes vascular
inflammation, angiogenesis, and cardiovascular complications in secondary and tertiary
syphilis patients [82].

3.2. Gonorrhea and Chlamydia

According to the “2020 European guideline for the diagnosis and treatment of gonor-
rhea in adults”, dual therapy comprises a single-dose ceftriaxone 1 g IM and azithromycin
2 g PO. This therapy targets both intracellular and extracellular N. gonorrhoeae and pro-
vides excellent cure rates. Ceftriaxone IM alone may be considered when azithromycin
is not available, or there is clear evidence of absent ceftriaxone resistance. Additionally,
doxycycline can be used as an alternative to azithromycin in combination with ceftriaxone.
Other antibiotics such as spectinomycin, ciprofloxacin, and gentamicin can be considered
in various settings [83].

The first N. gonorrhoeae FC428 clone resistant to ceftriaxone appeared in Japan in 2015,
presumably caused by the mutation of a mosaic allele from an oropharyngeal Neisseria [84].
This aggressive clone has lately spread globally, while the N. gonorrhoeae resistance rate saw
a worrying ascension. A Chinese study revealed an increase of the ceftriaxone-decreased-
susceptibility from 2.05% (2016) to 16.18% (2019) [85]. Therefore, this global rapid ascension
of the FC428 N. gonorrhoeae jeopardizes the current treatment guidelines and may announce
a hereafter global AMR to ceftriaxone and cefixime in gonorrhea patients [86].

Additionally, in 2022, an increasing prevalence of azithromycin-resistant gonococcus
was described in Canada and northern Spain. Most cases are associated with the clonal
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spread of the ST-12302 genogroup, as ST-12302 gonococcus was lately acknowledged as an
epidemic clone [87,88].

In 2012 the CDC ranked drug-resistant N. gonorrhoeae as a “superbug” [89] and in
2017 the World Health Organization (WHO) classified it as a “High Priority” pathogen in
“WHO Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery,
and Development of New antibiotics” [90].

Because co-infection with Chlamydia is frequent in men who have sex with men (MSM)
and young patients with gonorrhea, the treatment guidelines for gonorrhea usually cover
Chlamydia co-infection [83]. The 2015 treatment guidelines for uncomplicated urogenital
C. trachomatis infections recommend the 7-days therapy with doxycycline (100 mg PO
twice a day) or azithromycin 1 g orally once as a first-line treatment. Second or third-
line treatment regimens comprise erythromycin, levofloxacin, ofloxacin, josamycin, or
rifampicin [91].

C. trachomatis reinfection in treated women may arise as a consequence of the per-
sistent gastrointestinal infection. Therefore, women who are free of genital C. trachomatis
infection remain at risk for gastrointestinal autoinoculation. Although there is no significant
difference in azithromycin concentration between the cecum and the cervix, the regular
azithromycin dosage is inefficient against gastrointestinal infection. Hence, azithromycin
has a lower efficacy against chlamydial gastrointestinal infection [92,93].

Furthermore, some authors suggest that single-dose azithromycin has a lower efficacy
against rectal chlamydiosis when compared to the 7-days doxycycline regimen and suggest
azithromycin effectiveness as first-line therapy should be revisited [94,95]. Chlamydia
trachomatis may develop AMR to macrolides via 23S rRNA mutations, to tetracyclines via
mutations in the tet(M) gene, and to fluoroquinolones via mutations in the gyrA, parC, and
ygeD genes. However, the majority of the mutations are found in the 23S rRNA gene and
promote AMR to macrolides [96].

A 2020 study comprising 92 patients with genital chlamydiosis found higher detection
rates of 23S rRNA and tet(M) gene mutations in the treatment failure sample and compa-
rable minimum inhibitory concentrations (MICs) between the two samples. The authors
suggest that detection of AMR genes could better explain the high treatment failure rates
than the MICs and endorse the necessity of genetic AMR testing [97].

Genital N. gonorrhoeae and C. trachomatis infections may transform into chronic dis-
eases and produce comparable injuries to the pelvic organs, both in men and women.
In approximately 10% of the male cases, the N. gonorrhoeae infection is asymptomatic. If
untreated, it can produce prostatitis, orchitis, or chronic epididymitis [98]. Polymerase
chain reaction (PCR) can be a useful tool for the diagnosis of chronic gonorrhea prostatitis.
Unlike HSV-2 infection, a study on 243 paraffin-embedded prostate tissues obtained from
patients with hyperplasia and prostate cancer found no statistically significant correlation
between prostate cancer and N. gonorrhoeae [99]. Contrarily, a meta-analysis comprising
9965 prostate cancer patients demonstrated a relation between N. gonorrhoeae prostatitis
and prostate cancer [100]. Young males infected with N. gonorrhoeae tend to have a higher
titer of prostate-specific antigen (PSA), sustaining the evidence of prostate infection and
inflammation [101].

Both the gonococcus and C. trachomatis may produce acute and chronic bacterial
prostatitis in sexually active individuals. In vitro prostatic epithelial cells respond to
C. trachomatis infection by producing an inflammatory response. Hence, high titers of IL-8
may be detected in the semen of these patients. Furthermore, an association of C. trachomatis
prostatitis and decreased sperm concentration and sperm cells viability, motility, and normal
morphology was reported [102].

Both acute and chronic bacterial prostatitis respond to antibiotic therapy (the latter
usually requires longer treatment durations). If bacterial prostatitis is not completely
treated, the prostate may become a bacterial reservoir. However, the most common pro-
statitis (more than 90% of prostatitis cases) is chronic non-bacterial prostatitis (CNBP).
Several studies have demonstrated C. trachomatis potential to trigger CNBP, even in the
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context of paraclinical confirmed C. trachomatis eradication. Prostatic chronic inflammation
usually arises in genetically susceptible individuals following the initial recognition of
C. trachomatis antigens by TLR-2 and TLR-4. Furthermore, an autoimmune prostatic process
can be initiated. Blood serology and urine PCR test may distinguish between bacterial and
non-bacterial prostatitis [99,103].

N. gonorrhoeae and C. trachomatis are among the most commonly acknowledged pelvic in-
flammatory disease (PID) pathogens (one quarter to one-third of PID cases) [104]. Tubo-ovarian
abscess, hydrosalpinx, pyosalpinx, and oophoritis are common PID clinical features [105].

N. gonorrhoeae and C. trachomatis are responsible for tubal-factor infertility (TFI), which
accounts for 30% of female fertility issues. While N. gonorrhoeae can impair ciliated cells’
function within the fallopian tubes, C. trachomatis can infect both ciliated and non-ciliated
cells, but the ciliary function is not affected. Additionally, C. trachomatis determines disrup-
tion of intercellular junctions and loss of the microvilli [106,107]. The heat shock protein
60 (hsp60) produced by C. trachomatis induces tubal inflammation, resulting in scarring
and tubal blockage, with tubal infertility. Hsp60 combined with chlamydial protease-like
activity factor can predict TFI [108–110]. Regardless of tubal patency, Chlamydia antibodies
associate increased ectopic pregnancy risk and lower chances of pregnancy [111].

3.3. Herpes Simplex

For both first-episode and recurrent genital herpes, the treatment of choice consists
of one of the well-known oral antiviral guanosine analogs (acyclovir, famciclovir, valaci-
clovir), with various duration and dosages. The usual first-episode genital herpes regimen
comprises acyclovir 400 mg PO three times a day, for five to ten days. The immunocompro-
mised patients may develop acyclovir-resistant HSV infections and often require different
management, especially during relapses or unretractable herpes infection [112].

Guanosine analogs require phosphorylation by HSV-thymidine kinase (TK) to its
active form. However, strains of HSV manage to acquire resistance to guanosine analogs
by eliminating TK or decreasing its affinity for the guanosine analogs. In HIV-positive
patients, impaired cell-mediated immunity allows these resistant strains to replicate and
delays the clearance. Foscarnet and cidofovir represent the first-line treatment in acyclovir-
resistant HSV/TK deficient strains since these intravenous antivirals do not need viral TK
for activation, with the cost of potential nephrotoxicity [112,113].

In HIV-negative immunosuppressed patients with refractory acyclovir-resistant HSV2,
pritelivir, an oral helicase-primase inhibitor, was successfully used, paving the road towards
new treatments for recalcitrant infection [114]. These clinical results are in line with some
recent preclinical, mouse model findings, that showed superior effectiveness of helicase
primase inhibitors when compared to the nucleoside analogs [115].

Imiquimod is an imidazoquinoline amine that upregulates cystatin A synthesis in
HSV infected nonimmune cells and triggers an efficient IFN-independent anti-HSV re-
sponse. Additionally, imiquimod is a potent agonist for TLR-7 that triggers strong immune
responses via recognition of the HSV in the infected cells [57]. Topical imiquimod 5%
was successfully used in some HIV patients with acyclovir-resistant anogenital HSV in-
fection [116]. Furthermore, vegetative chronic genital herpes in HIV patients may be
responsive to Imiquimod 5% [117].

Chronicization mechanisms in HSVs arise as a direct consequence of their life cycle.
HSV-1 and HSV-2 infect epithelial cells at the beginning (the lytic stage of infection) and
subsequently target sensory neurons (a life-long, latent infection stage). During the lytic
stage, painful, highly contagious sores appear. However, during the latent stage of infection,
HSV is dormant within neurons, no infectious virions are produced, and the host is not
contagious. When HSVs undergo the dormant stage within the neuronal karyon, its
input linear DNA circularizes by an end-to-end ligation and may provide the replication
template [118,119].

Autophagy represents an important host defense mechanism to get rid of pathogens.
HSVs inhibit autophagy by binding to Beclin 1, which prevents autophagophore formation.
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Moreover, Waisner and Kalamovky showed that herpetic infected cell protein 0 (ICP0)
downregulates two major autophagy adaptor proteins: sequestosome 1 (p62/SQSTM1)
and optineurin (OPTN). These proteins regulate innate immunity and inflammation and
have an antiviral function [120]. ICP0 additionally limits the anti-viral type-I IFN mediated
immune responses [121].

The latent herpetic genome is associated with repressive heterochromatin, a nucleo-
somal structure, and cellular histones. Chromatin organization is of critical importance
for the maintenance of the HSV dormancy stage. Local trauma, emotional stress, fever,
other infections, sun exposure, or hormonal disturbances may initiate the lytic stage. HSV
reactivation requires both triggers that may induce the synthesis of HSV lytic genes and a
decrease in the effectiveness of the immune response (Figure 3) [122]. Following viral genes
synthesis and reassembly, HSV undergoes an anterograde transport towards the axon tips.
At this point, the virus can spread across cell junctions and epithelial cells that participate
in neuronal synapses and the host becomes contagious. A well-studied anterograde axonal
carrier for HSV along microtubules is kinesin-1 [123]. Recent studies suggest that HSVs
incorporate kinesins proteins and use them to produce” motorized viral particles” [124].
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4. Novel Drugs and Nano Molecules
4.1. Syphilis

Despite more than a century of sustained struggle, exhaustive research of Treponema
pallidum has been impeded by the inability to culture the bacterium continuously in vitro.
In 2018, Edmondson et al. managed to culture treponemes in vitro, obtaining a long-term
multiplication. They have used a modified medium with a rabbit epithelial cell coincubation
system which managed to maintain six months of continuous treponemes growth [125].
Their discovery facilitated future in vitro studies and novel antibiotics were studied on
these cultures.

A 2021 preclinical study [126] revealed an in vitro linezolid bactericidal activity against
T. pallidum at concentrations of a minimum of 0.5 µg/mL. In vivo efficacy was demonstrated
on fifteen rabbits infected intradermally with T. pallidum. Oral linezolid showed healing
of early cutaneous lesions at a comparable time to BPG. T. pallidum absence at dark-field
microscopy was noted after three days of therapy. Contrarily, moxifloxacin and clofazimine
failed to inhibit T. pallidum growth in vitro and to cure syphilis in the rabbit models.

D-alanyl-D-alanine ligase inhibitors may represent the key to some drug-resistant
germs, including T. pallidum. This enzyme is involved in the biosynthesis of peptidoglycans,
which are essential in maintaining the integrity of the bacterial cell wall. Specific natural
molecules and kinase inhibitors have been found to work as D-alanyl-D-alanine ligase
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inhibitors, but some may find a difficult entry through the thick bacterial wall [127]. More
than two decades ago, Qing et al. found that a modified diterpenoid quinone (salvicine)
exhibits strong cytotoxic activity against various human tumor cell lines [128]. Later
on, it was shown that salvicine not only inhibits topoisomerase-II activity and tumor
growth but promotes ROSs synthesis and possesses an anti-multidrug-resistant (MDR)
activity [129]. In 2015, Dwivedi et al. showed that 126 proteins are essential for T. pallidum
viability and pathogenicity, and 106 of these are connected to vital metabolic pathways.
Six pathways, including the D-alanyl-D-alanine ligase pathway, were found unique for T.
pallidum. Targeting D-alanyl-D-alanine ligase with salvicine represented the most potent
inhibition of the upper pathways with plant-derived terpenoids and opened the door
towards the use of D-alanyl-D-alanine ligase inhibitors in syphilis [130].

4.2. Gonorrhea

Because N. gonorrhoeae may be resistant to first-line therapy with ceftriaxone, alterna-
tive treatments are quite urgent.

A randomized, controlled, double-blind, non-inferiority trial found earlier this year
that single-dose 1000 mg ertapenem (a broad-spectrum carbapenem) is not inferior to
single-dose 500 mg ceftriaxone [131].

The only currently approved aminoacyl tRNA synthetases (aaRS) inhibitor is mupirocin.
Cephalosporin-resistant gonococcus was found sensitive to a PEGylated nano-liposomal
formulation of this isoleucyl tRNA synthetase inhibitor (nano-mupirocin). This novel drug
retains full potency against other bacteria, such as resistant Staphylococcus aureus and
Enterococcus faecium [132,133].

In 2018, a spiropyrimidinetrione that inhibits bacterial type-II topoisomerases (zo-
liflodacin) was found safe after single doses in healthy recruits [134]. Three years later,
an in vitro study of 1209 consecutive clinical N. gonorrhoeae isolates did not reveal any
cross-resistance to ciprofloxacin, azithromycin, cefixime, and ceftriaxone [135]. Patients
should take at least 2 g of a single oral dose treatment of zoliflodacin to obtain effective
N. gonorrhoeae suppression [136]. Additionally, studies revealed that the conventional
therapeutic dose of 2 g does not induce cardiac arrhythmias and is well tolerated [137].
Although zoliflodacin maintains an excellent in vitro activity against clinical N. gonorrhoeae
isolates, the rising potential to develop AMR led to further antibiotics research [138]. A
2021 study found that a single dose of MBX-4132, an acylaminooxadiazole that selectively
inhibits ribosomal trans-translation, successfully cleared MDR N. gonorrhoeae infection in
mice [139]. This molecule pioneered trans-translation inhibitors use in MDR N. gonorrhoeae.

4.3. Chlamydia

The emergence of resistant C. trachomatis has determined worldwide scientists to
search for novel drugs against these strains. Worryingly, recent evidence suggests the regu-
lation of mitochondria-mediated host cell apoptosis as a survival in vivo mechanism [140].
Corallopyronin A is an antibacterial molecule synthesized by Corallococcus coralloides. It
binds the bacterial DNA-dependent RNA polymerase and successfully inhibits both the
wild type and the rifampicin-resistant C. trachomatis. This molecule was also efficient
against C. trachomatis in ex vivo human fallopian tube model [141,142].

Yang et al. found in 2019 a nanoparticle formulation able to impair one of C. trachomatis
surface binding proteins. This nanoparticle (PDGFR-β siRNA-PEI-PLGA-PEG NP) signifi-
cantly caused autophagy in human vaginal epithelial cells and decreased a C. trachomatis
surface protein (PDGFR-β) gene expression [143].

Other attempts to decrease the use of the antibiotic in genital chlamydiosis have
arisen, as an attempt to protect the commensal flora. Recently, a 2-pyridone amide was
discovered to inhibit transcription of crucial genes in progeny EBs, which became unable
to differentiate into the RBs [144].
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4.4. Herpes Simplex

Recently, a peptide isolated from a marine bacterium (Micromonospora sp.), was shown
to display a specific inhibitory effect against HSV-2. Transmission electron microscopy
revealed that this peptide diminishes the viral spread by containing the herpetic virions
escape from the infected cells and suppresses the herpetic cytopathic effect. Furthermore, it
is potent against acyclovir-resistant HSV-2 [145].

At least nineteen antiviral active molecules derived from natural sources, such as
harmine, emodin, casuarinin, and oxyresveratrol, could represent promising alternatives
for treating HSV-2 infections. Additionally, some of these natural molecules may be effective
in acyclovir-resistant infections [146].

Nano-based materials, such as metal nanoparticles, polymeric nanoparticles, micelles,
and dendrimers, were extensively studied in the last decade as herpetic inhibitors. These
nano molecules bind the surface glycoproteins, such as gC and g120, and inhibit the viral
entrance within cells [147].

Vaginal treatment with topical acyclovir is frequently inefficient due to its low bioavail-
ability in the vaginal environment. Nano molecules used to carry acyclovir were extensively
studied in order to increase the vaginal acyclovir potency. In a recent study, acyclovir was
complexed with sulfobutyl-ether-β-cyclodextrin and then integrated into the nanodroplet
chitosan shell. This nanocarrier exhibited enhanced antiviral activity in HSV-2 infected
cell cultures when compared to the free acyclovir [148]. Additionally, some other stud-
ies revealed that zinc oxide nanoparticles and acyclovir monophosphate-loaded mucus-
penetrating nanoparticles provide efficacious protection against HSV-2 infection. Acyclovir
nanoparticles exhibit a maintained release, low-grade toxicity, better penetration, and
diffusion into the cervical tissue (Figure 4) [149].
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5. Conclusions and Future Research Perspectives

Treponema pallidum remains a peculiar and still not completely deciphered pathogen
even after a century of investigations. Although it is generally acknowledged that having
syphilis once does not grant protection from reinfection, clear scientific evidence regarding
reinfection mechanisms has not emerged yet. Prostatic and gastrointestinal STIs reservoirs
represent an important therapeutic challenge and conventional drugs may be inefficient
in preventing reinfections or sexual transmission. Tubal infertility associated with asymp-
tomatic STIs has become a global health issue.

Given the early successes in developing Treponema pallidum cultures, high attention
on shaping new molecules to be studied in preclinical studies has appeared. Linezolid
and D-alanyl-D-alanine ligase inhibitors serve as potential treponemicidal drugs and
MDR-T. pallidum inhibitors, respectively. However, the new emerging ceftriaxone-resistant
N. gonorrhoeae represents a more urgent threat than resistant T. pallidum. Mupirocin and
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zoliflodacin are currently used against this dangerous strain, and novel ribosomal trans-
translation inhibitors were lately proposed. Imiquimod may represent a successful treat-
ment against recalcitrant HSV, especially in immunocompromised patients.

Nano-based materials have become of great interest, notably in C. trachomatis and
HSV vaginal infections, as they may increase local absorption. Molecules derived from
natural products and bacteria-produced medications shed light on non-antibiotic therapies
in genital chlamydiosis and herpetic infections. During the last ten years, important
steps were made to mobilize attention towards these AMR infections. A switch towards
translational medicine is warranted in this matter. Further discoveries in the field of
nanomaterials will increase medications’ potency in the battle with these germs.

Author Contributions: This paper was carried out in collaboration between the three authors.
Conceptualization, O.S., V.J. and L.G.S.; writing—original draft preparation, L.G.S.; writing—review
and editing, O.S., V.J. and L.G.S.; visualization, O.S. and L.G.S.; supervision, O.S. and V.J. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Eisinger, R.W.; Erbelding, E.; Fauci, A.S. Refocusing Research on Sexually Transmitted Infections. J. Infect. Dis. 2020, 222,

1432–1434. [CrossRef] [PubMed]
2. Sexually Transmitted Disease Surveillance, Centers for Disease Control and Prevention. 2017. Available online: https://www.cdc.

gov/std/stats17/2017-STD-Surveillance-Report_CDC-clearance-9.10.18.pdf (accessed on 15 November 2021).
3. James, C.; Harfouche, M.; Welton, N.J.; Turner, K.M.E.; Abu-Raddad, L.J.; Gottlieb, S.L.; Looker, K.J. Herpes simplex virus: Global

infection prevalence and incidence estimates, 2016. Bull. World Health Organ. 2020, 98, 315–329. [CrossRef] [PubMed]
4. Tien, V.; Punjabi, C.; Holubar, M.K. Antimicrobial resistance in sexually transmitted infections. J. Travel Med. 2020, 27, 101.

[CrossRef]
5. LaFond, R.E.; Molini, B.J.; Van Voorhis, W.C.; Lukehart, S.A. Antigenic Variation of TprK V Regions Abrogates Specific Antibody

Binding in Syphilis. Infect. Immun. 2006, 74, 6244–6251. [CrossRef] [PubMed]
6. Ekelesidis, T. The Cross-Talk between Spirochetal Lipoproteins and Immunity. Front. Immunol. 2014, 5, 310. [CrossRef]
7. Lewis, D.A. The Gonococcus fights back: Is this time a knock out? Sex. Transm. Infect. 2010, 86, 415–421. [CrossRef]
8. Unemo, M.; Lahra, M.M.; Cole, M.; Galarza, P.; Ndowa, F.; Martin, I.; Dillon, J.-A.R.; Ramon-Pardo, P.; Bolan, G.; Wi, T. World

Health Organization Global Gonococcal Antimicrobial Surveillance Program (WHO GASP): Review of new data and evidence to
inform international collaborative actions and research efforts. Sex. Health 2019, 16, 412–425. [CrossRef]

9. Aitolo, G.L.; Adeyemi, O.S.; Afolabi, B.L.; Owolabi, A.O. Neisseria gonorrhoeae Antimicrobial Resistance: Past to Present to
Future. Curr. Microbiol. 2021, 78, 867–878. [CrossRef]

10. Mestrovic, T.; Ljubin-Sternak, S. Molecular mechanisms of Chlamydia trachomatis resistance to antimicrobial drugs. Front. Biosci.
2018, 23, 656–670.

11. Cossé, M.M.; Hayward, R.D.; Subtil, A. One Face of Chlamydia trachomatis: The Infectious Elementary Body. Curr. Top. Microbiol.
Immunol. 2018, 412, 35–58.

12. Whitley, R.; Baines, J. Clinical management of herpes simplex virus infections: Past, present, and future. F1000Research 2018,
7, 1726. [CrossRef]

13. Bacon, T.H.; Levin, M.J.; Leary, J.J.; Sarisky, R.T.; Sutton, D. Herpes Simplex Virus Resistance to Acyclovir and Penciclovir after
Two Decades of Antiviral Therapy. Clin. Microbiol. Rev. 2003, 16, 114–128. [CrossRef] [PubMed]

14. Lolis, M.S.; González, L.; Cohen, P.J.; A Schwartz, R. Drug-resistant herpes simplex virus in HIV infected patients. Acta
Dermatovenerol. Croat. 2008, 16, 204–212. [PubMed]

15. Osias, E.; Hung, P.; Giacani, L.; Stafylis, C.; Konda, K.A.; Vargas, S.K.; Reyes-Díaz, E.M.; Comulada, W.S.; Haake, D.A.;
Haynes, A.M.; et al. Investigation of syphilis immunology and Treponema pallidum subsp. pallidum biology to improve clinical
management and design a broadly protective vaccine: Study protocol. BMC Infect. Dis. 2020, 20, 444. [CrossRef]

16. Fraser, C.M.; Norris, S.J.; Weinstock, G.M.; White, O.; Sutton, G.G.; Dodson, R.; Gwinn, M.; Hickey, E.K.; Clayton, R.;
Ketchum, K.A.; et al. Complete Genome Sequence of Treponema pallidum, the Syphilis Spirochete. Science 1998, 281, 375–388.
[CrossRef] [PubMed]

17. Radolf, J.D.; Lukehart, S.A. Immunology of Syphilis. In Pathogenic Treponemes: Cellular and Molecular Biology; Caister Academic
Press: Norfolk, UK, 2006; pp. 285–322.

http://doi.org/10.1093/infdis/jiz442
http://www.ncbi.nlm.nih.gov/pubmed/31495889
https://www.cdc.gov/std/stats17/2017-STD-Surveillance-Report_CDC-clearance-9.10.18.pdf
https://www.cdc.gov/std/stats17/2017-STD-Surveillance-Report_CDC-clearance-9.10.18.pdf
http://doi.org/10.2471/blt.19.237149
http://www.ncbi.nlm.nih.gov/pubmed/32514197
http://doi.org/10.1093/jtm/taz101
http://doi.org/10.1128/iai.00827-06
http://www.ncbi.nlm.nih.gov/pubmed/16923793
http://doi.org/10.3389/fimmu.2014.00310
http://doi.org/10.1136/sti.2010.042648
http://doi.org/10.1071/sh19023
http://doi.org/10.1007/s00284-021-02353-8
http://doi.org/10.12688/f1000research.16157.1
http://doi.org/10.1128/cmr.16.1.114-128.2003
http://www.ncbi.nlm.nih.gov/pubmed/12525428
http://www.ncbi.nlm.nih.gov/pubmed/19111144
http://doi.org/10.1186/s12879-020-05141-0
http://doi.org/10.1126/science.281.5375.375
http://www.ncbi.nlm.nih.gov/pubmed/9665876


Int. J. Mol. Sci. 2022, 23, 3550 13 of 18

18. Tomson, F.L.; Conley, P.G.; Norgard, M.V.; Hagman, K.E. Assessment of cell-surface exposure and vaccinogenic potentials of
Treponema pallidum candidate outer membrane proteins. Microbes Infect. 2007, 9, 1267–1275. [CrossRef]

19. Radolf, J.D.; Tramont, E.C.; Salazar, J.C. Mandell, Douglas and Bennett’s Principles and Practice of Infectious Diseases; Bennett, J.E.,
Dolin, R., Blaser, M.J., Eds.; Churchill Livingtone Elsevier: Philadelphia, PA, USA, 2014; pp. 2684–2709.

20. Grosenbaugh, D.A.; Rissi, D.R.; Krimer, P.M. Demonstration of the ability of a canine Lyme vaccine to reduce the incidence of
histological synovial lesions following experimentally-induced canine Lyme borreliosis. Veter. Immunol. Immunopathol. 2016, 180,
29–33. [CrossRef]

21. Edmondson, D.G.; Norris, S.J. In Vitro Cultivation of the Syphilis Spirochete Treponema pallidum. Curr. Protoc. 2021, 1, e44.
[CrossRef]

22. Radolf, J.D.; Deka, R.K.; Anand, A.; Šmajs, D.; Norgard, M.V.; Yang, X.F. Treponema pallidum, the syphilis spirochete: Making a
living as a stealth pathogen. Nat. Rev. Microbiol. 2016, 14, 744–759. [CrossRef]

23. Moore, M.W.; Cruz, A.R.; LaVake, C.J.; Marzo, A.L.; Eggers, C.H.; Salazar, J.C.; Radolf, J.D. Phagocytosis of Borrelia burgdorferi and
Treponema pallidum Potentiates Innate Immune Activation and Induces Gamma Interferon Production. Infect. Immun. 2007, 75,
2046–2062. [CrossRef]

24. Leader, B.T.; Godornes, C.; VanVoorhis, W.C.; Lukehart, S.A. CD4+ Lymphocytes and Gamma Interferon Predominate in Local
Immune Responses in Early Experimental Syphilis. Infect. Immun. 2007, 75, 3021–3026. [CrossRef] [PubMed]

25. Sell, S.; Salman, J.; Norris, S.J. Reinfection of chancre-immune rabbits with Treponema pallidum. I. Light and immunofluorescence
studies. Am. J. Pathol. 1985, 118, 248–255. [PubMed]

26. Ho, E.L.; Lukehart, S.A. Syphilis: Using modern approaches to understand an old disease. J. Clin. Investig. 2011, 121, 4584–4592.
[CrossRef] [PubMed]

27. Christodoulides, M. Preparation of Lipooligosaccharide (LOS) from Neisseria gonorrhoeae. Methods Mol. Biol. 2019, 1997, 87–96.
[PubMed]

28. Gulati, S.; Shaughnessy, J.; Ram, S.; Rice, P.A. Targeting Lipooligosaccharide (LOS) for a Gonococcal Vaccine. Front. Immunol.
2019, 10, 321. [CrossRef]

29. Schneider, H.; Hale, T.L.; Zollinger, W.D.; Seid, R.C.; A Hammack, C.; Griffiss, J.M. Heterogeneity of molecular size and antigenic
expression within lipooligosaccharides of individual strains of Neisseria gonorrhoeae and Neisseria meningitidis. Infect. Immun.
1984, 45, 544–549. [CrossRef]

30. Criss, A.K.; Seifert, H.S. A bacterial siren song: Intimate interactions between Neisseria and neutrophils. Nat. Rev. Microbiol. 2012,
10, 178–190. [CrossRef]

31. Calton, C.M.; Wade, L.K.; So, M. Upregulation of ATF3 inhibits expression of the pro-inflammatory cytokine IL-6 duringNeisseria
gonorrhoeaeinfection. Cell. Microbiol. 2013, 15, 1837–1850. [CrossRef]

32. Jayasundara, P.; Regan, D.G.; Seib, K.L.; Jayasundara, D.; Wood, J.G. Modelling the in-host dynamics of Neisseria gonorrhoeae
infection. Pathog Dis. 2019, 77, ftz008. [CrossRef] [PubMed]

33. Feinen, B.; Russell, M.W. Contrasting Roles of IL-22 and IL-17 in Murine Genital Tract Infection by Neisseria gonorrhoeae. Front.
Immunol. 2012, 3, 11. [CrossRef]

34. Handing, J.W.; Ragland, S.A.; Bharathan, U.V.; Criss, A.K. The MtrCDE Efflux Pump Contributes to Survival of Neisseria
gonorrhoeae From Human Neutrophils and Their Antimicrobial Components. Front. Microbiol. 2018, 9, 2688. [CrossRef]
[PubMed]

35. Edwards, J.L.; Apicella, M.A. The Molecular Mechanisms Used by Neisseria gonorrhoeae To Initiate Infection Differ between
Men and Women. Clin. Microbiol. Rev. 2004, 17, 965–981. [CrossRef] [PubMed]

36. Li, M.O.; Wan, Y.Y.; Sanjabi, S.; Robertson, A.K.; Flavell, R.A. Transforming growth factor-beta regulation of immune responses.
Annu. Rev. Immunol. 2006, 24, 99–146. [PubMed]

37. Liu, Y.; Russell, M.W. Diversion of the Immune Response to Neisseria gonorrhoeae from Th17 to Th1/Th2 by Treatment with Anti-
Transforming Growth Factor β Antibody Generates Immunological Memory and Protective Immunity. mBio 2011, 2, e00095-11.
[CrossRef] [PubMed]

38. Ghilardi, N.; Ouyang, W. Targeting the development and effector functions of TH17 cells. Semin. Immunol. 2007, 19, 383–393.
[CrossRef]

39. Zhu, W.; Ventevogel, M.S.; Knilans, K.J.; Anderson, J.E.; Oldach, L.M.; McKinnon, K.P.; Hobbs, M.M.; Sempowski, G.D.;
Duncan, J.A. Neisseria gonorrhoeae Suppresses Dendritic Cell-Induced, Antigen-Dependent CD4 T Cell Proliferation. PLoS ONE
2012, 7, e41260. [CrossRef]

40. Escobar, A.; Candia, E.; Reyes-Cerpa, S.; Villegas-Valdes, B.; Neira, T.; Lopez, M.; Maisey, K.; Tempio, F.; Ríos, M.;
Acuña-Castillo, C.; et al. Neisseria gonorrhoeaeInduces a Tolerogenic Phenotype in Macrophages to Modulate Host Immunity.
Mediat. Inflamm. 2013, 2013, 127017. [CrossRef]

41. Stamm, W.E.; Batteiger, B.E. Chlamydia trachomatis trachoma, perinatal infections, lymphogranuloma venereum, and other
genital infections. Princ. Pract. Infect. Dis. 2010, 72, 2443–2461.

42. Carey, A.J.; Beagley, K. Chlamydia trachomatis, a Hidden Epidemic: Effects on Female Reproduction and Options for Treatment.
Am. J. Reprod. Immunol. 2010, 63, 576–586. [CrossRef]

43. Abdelrahman, Y.M.; Belland, R.J. The chlamydial developmental cycle. FEMS Microbiol. Rev. 2005, 29, 949–959. [CrossRef]

http://doi.org/10.1016/j.micinf.2007.05.018
http://doi.org/10.1016/j.vetimm.2016.08.014
http://doi.org/10.1002/cpz1.44
http://doi.org/10.1038/nrmicro.2016.141
http://doi.org/10.1128/iai.01666-06
http://doi.org/10.1128/iai.01973-06
http://www.ncbi.nlm.nih.gov/pubmed/17403876
http://www.ncbi.nlm.nih.gov/pubmed/3881974
http://doi.org/10.1172/jci57173
http://www.ncbi.nlm.nih.gov/pubmed/22133883
http://www.ncbi.nlm.nih.gov/pubmed/31119619
http://doi.org/10.3389/fimmu.2019.00321
http://doi.org/10.1128/iai.45.3.544-549.1984
http://doi.org/10.1038/nrmicro2713
http://doi.org/10.1111/cmi.12153
http://doi.org/10.1093/femspd/ftz008
http://www.ncbi.nlm.nih.gov/pubmed/30770529
http://doi.org/10.3389/fimmu.2012.00011
http://doi.org/10.3389/fmicb.2018.02688
http://www.ncbi.nlm.nih.gov/pubmed/30515136
http://doi.org/10.1128/cmr.17.4.965-981.2004
http://www.ncbi.nlm.nih.gov/pubmed/15489357
http://www.ncbi.nlm.nih.gov/pubmed/16551245
http://doi.org/10.1128/mbio.00095-11
http://www.ncbi.nlm.nih.gov/pubmed/21610119
http://doi.org/10.1016/j.smim.2007.10.016
http://doi.org/10.1371/journal.pone.0041260
http://doi.org/10.1155/2013/127017
http://doi.org/10.1111/j.1600-0897.2010.00819.x
http://doi.org/10.1016/j.femsre.2005.03.002


Int. J. Mol. Sci. 2022, 23, 3550 14 of 18

44. Carabeo, R.A.; Hackstadt, T. Isolation and Characterization of a Mutant Chinese Hamster Ovary Cell Line That Is Resistant
to Chlamydia trachomatis Infection at a Novel Step in the Attachment Process. Infect. Immun. 2001, 69, 5899–5904. [CrossRef]
[PubMed]

45. Su, H.; Caldwell, H.D. Sulfated polysaccharides and a synthetic sulfated polymer are potent inhibitors of Chlamydia trachomatis
infectivity in vitro but lack protective efficacy in an in vivo murine model of Chlamydial genital tract infection. Infect. Immun.
1998, 66, 1258–1260. [PubMed]

46. Taraktchoglou, M.; Pacey, A.A.; Turnbull, J.E.; Eley, A. Infectivity of Chlamydia trachomatis Serovar LGV but Not E Is Dependent
on Host Cell Heparan Sulfate. Infect. Immun. 2001, 69, 968–976. [CrossRef] [PubMed]

47. Lau, A.; Hocking, J.S.; Kong, F.Y. Rectal chlamydia infections: Implications for reinfection risk, screening, and treatment guidelines.
Curr. Opin. Infect. Dis. 2021, 35, 42–48. [CrossRef]

48. Witkin, S.S.; Minis, E.; Athanasiou, A.; Leizer, J.; Linhares, I.M. Chlamydia trachomatis: The Persistent Pathogen. Clin. Vaccine
Immunol. 2017, 24, e00203-17. [CrossRef]

49. Bavoil, P.M.; Hsia, R.-C.; Ojcius, D.M. Closing in on Chlamydia and its intracellular bag of tricks. Microbiology 2000, 146, 2723–2731.
[CrossRef]

50. Scidmore, M.A.; Rockey, D.D.; Fischer, E.R.; Heinzen, R.A.; Hackstadt, T. Vesicular interactions of the Chlamydia trachomatis
inclusion are determined by chlamydial early protein synthesis rather than route of entry. Infect. Immun. 1996, 64, 5366–5372.
[CrossRef]

51. Grieshaber, S.; Grieshaber, N.; Yang, H.; Baxter, B.; Hackstadt, T.; Omsland, A. Impact of Active Metabolism on Chlamydia
trachomatis Elementary Body Transcript Profile and Infectivity. J. Bacteriol. 2018, 200, 65–83. [CrossRef]

52. Tan, M.; Bavoil, P. (Eds.) Intracellular Pathogens I: Chlamydiales; American Society for Microbiology Press: Washington, DC,
USA, 2012.

53. Murthy, A.K.; Arulanandam, B.P.; Zhong, G. Chlamydia Vaccine: Progress and Challenges. Intracell. Pathog. Chlamydia I 2014,
311–333. [CrossRef]

54. Bastidas, R.J.; Elwell, C.A.; Engel, J.N.; Valdivia, R.H. Chlamydial Intracellular Survival Strategies. Cold Spring Harb. Perspect.
Med. 2013, 3, a010256. [CrossRef]

55. Hybiske, K.; Stephens, R.S. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc. Natl. Acad. Sci. USA 2007,
104, 11430–11435. [CrossRef] [PubMed]

56. Shimada, K.; Crother, T.R.; Arditi, M. Innate immune responses to Chlamydia pneumoniae infection: Role of TLRs, NLRs, and
the inflammasome. Microbes Infect. 2012, 14, 1301–1307. [CrossRef] [PubMed]

57. Scurtu, L.G.; Simionescu, O. Soluble Factors and Receptors Involved in Skin Innate Immunity—What Do We Know So Far?
Biomedicines 2021, 9, 1795. [CrossRef] [PubMed]

58. Itoh, R. Chlamydia pneumoniae harness host NLRP3 inflammasome-mediated caspase-1 activation for optimal intracellular
growth in murine macrophages. Biochem. Biophys. Res. Commun. 2014, 452, 689–694. [CrossRef]

59. Groves, M.J. Genital Herpes: A Review. Am. Fam. Physician 2016, 93, 928–934.
60. Cunningham, A.L.; Diefenbach, R.; Miranda-Saksena, M.; Bosnjak, L.; Kim, M.; Jones, C.; Douglas, M.W. The Cycle of Human

Herpes Simplex Virus Infection: Virus Transport and Immune Control. J. Infect. Dis. 2006, 194, S11–S18. [CrossRef]
61. Lamers, S.L.; Newman, R.M.; Laeyendecker, O. Global Diversity within and between Human Herpesvirus 1 and 2 Glycoproteins.

J. Virol. 2015, 89, 8206–8218. [CrossRef]
62. Eisenberg, R.J.; Atanasiu, D.; Cairns, T.M.; Gallagher, J.R.; Krummenacher, C.; Cohen, G.H. Herpes Virus Fusion and Entry: A

Story with Many Characters. Viruses 2012, 4, 800–832. [CrossRef]
63. Holmes, T.D.; Wilson, E.B. Licensed human natural killer cells aid dendritic cell maturation via TNFSF14/LIGHT. Proc. Natl.

Acad. Sci. USA 2014, 111, E5688–E5696. [CrossRef]
64. Kwon, H.; Bai, Q.; Baek, H.J. Soluble V domain of nectin-1/HveC enables entry of herpes simplex virus type 1 (HSV-1) into

HSV-resistant cells by binding to viral glycoprotein D. J. Virol. 2006, 80, 138–148.
65. Desai, P.; Abboud, G.; Stanfield, J. HVEM Imprints Memory Potential on Effector CD8 T Cells Required for Protective Mucosal

Immunity. J. Immunol. 2017, 199, 2968–2975. [CrossRef] [PubMed]
66. Wakeley, M.E.; Shubin, N.J.; Monaghan, S.F.; Gray, C.C.; Ayala, A.; Heffernan, D.S. Herpes Virus Entry Mediator (HVEM): A

Novel Potential Mediator of Trauma-Induced Immunosuppression. J. Surg. Res. 2020, 245, 610–618. [CrossRef]
67. Chew, T.; Taylor, K.E.; Mossman, K.L. Innate and Adaptive Immune Responses to Herpes Simplex Virus. Viruses 2009, 1, 979–1002.

[CrossRef] [PubMed]
68. Egan, K.P.; Wu, S.; Wigdahl, B.; Jennings, S.R. Immunological control of herpes simplex virus infections. J. Neurovirol. 2013, 19,

328–345. [CrossRef]
69. Freeman, M.L.; Sheridan, B.S.; Bonneau, R.H. Psychological Stress Compromises CD8+T Cell Control of Latent Herpes Simplex

Virus Type 1 Infections. J. Immunol. 2007, 179, 322–328. [CrossRef] [PubMed]
70. Mork, N.J.; Kofodolsen, E.; Sorensen, K.; Bach, E.; Orntoft, T.F.; Østergaard, L.; Paludan, S.R.; Christiansen, M.; Mogensen, T.H.

Mutations in the TLR3 signaling pathway and beyond in adult patients with herpes simplex encephalitis. Genes Immun. 2015, 16,
552–566. [CrossRef]
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