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Abstract: The mechanical properties and tear resistance of an ecofriendly flexible packaging film, i.e.,
poly(lactic acid) (PLA)/poly (butylene adipate–co–terephthalate) (PBAT) film, were investigated via
a blown film extrusion process. The application of PLA and PBAT in product packaging is limited
due to the high brittleness, low stiffness, and incompatibility of the materials. In this study, the
effects of various plasticizers, such as adipate, adipic acid, glycerol ester, and adipic acid ester, on the
plasticization of PLA and fabrication of the PLA/PBAT blown film were comprehensively evaluated.
It was determined that the plasticizer containing ether and ester functionalities (i.e., adipic acid ester)
improved the flexibility of PLA as well as its compatibility with PBAT. It was found that the addition
of the plasticizer effectively promoted chain mobility of the PLA matrix. Moreover, the interfacial
adhesion between the plasticized PLA domain and PBAT matrix was enhanced. The results of the
present study demonstrated that the plasticized PLA/PBAT blown film prepared utilizing a blown
film extrusion process exhibited improved tear resistance, which increased from 4.63 to 8.67 N/mm in
machine direction and from 13.19 to 16.16 N/mm in the transverse direction.

Keywords: poly(lactic acid); poly (butylene adipate–co–terephthalate); plasticizer; blown film;
tear resistance

1. Introduction

Poly(lactic acid) (PLA) is a well-known biodegradable polymer, which has attracted significant
attention as a possible solution to alleviate environmental pollution and waste accumulation. PLA
is derived from renewable resources, e.g., from sugars in corn starch or cassava. Moreover, after
consumption, it completely decomposes into water and carbon dioxide via composting [1–3]. PLA is
inexpensive and exhibits remarkable mechanical strength and biocompatibility [4,5]. Nevertheless,
its applications have been limited due to some unfavorable characteristics, including low fracture
toughness and flexibility, high brittleness, slow crystallization, and narrow processing window.
Consequently, the use of PLA in blown film extrusion and foam processes is restricted [6,7]. To
improve these properties and enable simple processability in the packaging industry, PLA has been
modified by the addition of compatibilizers, such as plasticizers [8–10], reactive coupling agents [11–13],
and fillers [14–16]. In addition, blending with other polymers [17–20], including copolymers and
functionalized polymers, has also been reported.

Poly(butylene adipate–co–terephthalate) (PBAT) is another commonly known biodegradable
polymer. It is derived from petroleum-based resources and exhibits high elongation at break and
good ductility. Similarly to thermoplastic elastomers, it also displays low modulus of elasticity [21,22].
However, PBAT is associated with several unfavorable properties, which limit its application. In
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addition to high cost, the material shows low stiffness and weak tensile strength [23,24]. Thus, a blend
of PBAT and PLA with complementary properties has been proposed as one of possible solutions
to solve the aforementioned issues. Numerous studies have investigated PLA/PBAT blends [25–28].
Considering the difference in their solubility parameters, the materials were found to be immiscible
and phase separation of their blends is often required [29–31]. Hence, the use of PLA/PBAT blends in
the film packaging industry is limited because of the undesirable mechanical properties, including
poor tear strength due to brittleness of PLA as well as its incompatibility with PBAT. However, these
drawbacks could be resolved by the addition of plasticizers to PLA.

Plasticization is a widely employed process to improve the processing behaviors of polymeric
materials. Furthermore, plasticization is often used to enhance the original characteristics of polymers,
including their flexibility and mechanical and thermal properties, by inducing favorable interactions
between the polymer and plasticizer [32]. This method also involves the modification of the
intermolecular bonds between the polymer chains, promoting interfacial adhesion and resulting
in increased compatibility [33]. Several PLA plasticizers, such as acetyl tributyl citrate [34–36], diethyl
adipate [37,38], lactides [8,39], and polyethylene glycol [40,41], have been studied. These results have
successfully demonstrated the plasticization of PLA by blending with other polymers such as starch
and PBAT. However, these studies were focused on a reduced glass transition temperature and the
improved elongation at break of PLA.

In this study, we focused on the preparation of plasticized PLA/PBAT blown films utilizing suitable
plasticizers to improve tear resistance. The thermal, mechanical, and tear resistance properties as well
as the morphology of the plasticized PLA/PBAT blends and films were comprehensively evaluated.
Plasticization was carried out to determine the most appropriate plasticizer for PLA. In addition, the
effects of the type and content of plasticizers were investigated. It was found that the PBAT blown film
containing PLA plasticized by adipic acid ester, which was obtained via a blown process, exhibited
improved mechanical and tear resistance properties compared to the PLA/PBAT blown film without
any plasticizers.

2. Materials and Methods

2.1. Materials

PLA (Ingeo™ Biopolymer 4032D) was obtained from NatureWorks LLC (Minnetonka, MN, USA).
The melt flow index (MFI) of PLA was determined at 6.0 g/10 min at 190 ◦C. The load was 2.16 kg
and the d-lactic acid content was estimated at 2%. PBAT (EnPol PBG7070) was supplied by Lotte
Fine Chemical (Seoul, Korea). Adipate (bis[2–(2–butoxyethoxy)ethyl] adipate) was obtained from
Sigma-Aldrich (St. Louis, MO, USA). Adipic acid (EDENOL® 1208) and glycerol ester (LOXIOL®

P1141) were purchased from Emery Oleochemicals (Telok Panglima Garang, Malaysia). Adipic acid
ester (DAIFATTY®-101) was obtained from Daihachi Chemical Industry Co., Ltd. (Osaka, Japan). The
aforementioned reagents were used as plasticizers for PLA and their properties are summarized in
Table 1. Talc (KCM-6300, KOCH, Seocheon, Korea) and ethylene bis-stearamide wax (HI-LUBETM

bead, Sinwon Chemical, Siheung, Korea) were employed as commercial-grade processing aids to
reduce the surface friction of films and promote the usage of antiblocking and nucleating agents.

Table 1. Basic properties of the plasticizers used in this study.

Type
(Description) Product Name Molecular

Weight (g/mol)
Density
(g/cm3)

Viscosity
(mPa·s) Supplier

Adipate (AP) Bis[2–(2–butoxyethoxy)
ethyl] adipate 434.6 1.01 20.5 Sigma-Aldrich

Adipic acid
(AA) EDENOL® 1208 - 1.03 650–750 Emery

Oleochemicals
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Table 1. Cont.

Type
(Description) Product Name Molecular

Weight (g/mol)
Density
(g/cm3)

Viscosity
(mPa·s) Supplier

Glycerol ester
(GE) LOXIOL® P 1141 - 0.93 90–110 Emery

Oleochemicals
Adipic acid
ester (AAE) DAIFATTY®-101 338 1.10 19 Daihachi Chemical

Industry

2.2. Preparation of Plasticized PLA Samples

The preliminary experiments were carried out to evaluate the effects of plasticizers on the flexibility
of PLA. The PLA pellets were dried in a vacuum oven at 50 ◦C for 24 h to remove moisture. The
weight ratios of the compounds composed of PLA and the plasticizers are summarized in Table 2.
The materials were prepared utilizing a Plasti-Corder Lab-Station with a W 50 EHT mixer (Brabender,
Duisburg, Germany) equipped with a counter-rotating twin-screw compounder with a bowl volume
of 55 cm3 and roller blades. The plasticized PLA materials were produced at a barrel temperature of
170 ◦C with a rotation speed of 50 rpm and residence time of 1 min. After the torque was stabilized, a
plasticizer was added at the same temperature and rotation speed, with a residence time of 5 min. The
as-prepared compounds were cut into small pieces and shaped into 140 mm × 120 mm rectangles with
a thickness of 1 mm using a hydraulic laboratory press (Model 3851, Fred S. Carver Inc., Menomonee
Falls, WI, USA). The molding was performed at 170 ◦C using a preheating time of 4 min at a pressure
of 2000 psi for 2 min. The samples were subsequently cooled.

Table 2. Compositions of the plasticized PLA compounds.

Description PLA (wt %) AP (phr) AA (phr) GE (phr) AAE (phr)

P100 100 - - - -

AP-05 100 5 - - -
AP-10 100 10 - - -
AP-15 100 15 - - -
AP-20 100 20 - - -

AA-05 100 - 5 - -
AA-10 100 - 10 - -
AA-15 100 - 15 - -
AA-20 100 - 20 - -

GE-05 100 - - 5 -
GE-10 100 - - 10 -
GE-15 100 - - 15 -
GE-20 100 - - 20 -

AAE-05 100 - - - 5
AAE-10 100 - - - 10
AAE-15 100 - - - 15
AAE-20 100 - - - 20

2.3. Preparation of Plasticized PLA and PBAT Materials

Based on the results of the preliminary experiments, to plasticize PLA independently, the extrusion
was carried out in a counter-rotating twin-screw extruder (TEK 30 MHS, SM Platek, Ansan, Korea)
with a 31.6 mm screw diameter (length (L)/diameter (D) = 40) and liquid feeder (SF3141, In Feed Corp.,
Hwaseong, Korea). Prior to the extrusion, the materials were dried in an oven at 50 ◦C for 24 h. The
extrusion was performed at a screw speed of 300 rpm. The barrel temperatures were set at a profile of
110/160/170/170/160/160/160/160/160 ◦C with the die temperature set at 160 ◦C. The extruded strand
was cooled in a water bath at room temperature and then dried for 24 h after pelletizing. Prior to
extrusion of the plasticized PLA/PBAT blend samples, the components were weighted and mixed
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mechanically at room temperature. Subsequently, the extrusion was carried out utilizing the same
conditions. The components used for the preparation of plasticized PLA and plasticized PLA/PBAT
are summarized in Table 3.

Table 3. Compositions of the plasticized PLA/PBAT compounds.

Description PLA (wt %) AAE-05 (wt %) AAE-10 (wt %) PBAT (wt %) Talc (phr) Wax (phr)

P35 35 - - 65 3 0.3
P35AAE-05 - 35 - 65 3 0.3
P35AAE-10 - - 35 65 3 0.3

2.4. Blown Film Process

The samples were prepared using a blown film machine (SJ45-MFG500, Seojin Industry, Incheon,
Korea) with a 45 mm single screw and an L/D ratio of 30. The barrel temperatures were set at a profile
of 145/145/145/140 ◦C and the annular die temperature was set at 140 ◦C. To compare the mechanical
properties of the materials, the blown film process conditions were fixed at a blow up ratio of 2.8 and
film thickness of 30 µm. Concurrently, the annular die diameter of 80 mm and die gap of 1.2 mm
were employed.

2.5. Instrumentation and Equipment

Validation of the plasticized PLA samples was performed using an MFI tester (MFI 10, Davenport,
Hampshire, UK). The MFI tester was employed to measure the processability of plasticized PLA at 190
◦C with a 2.16 kg load. The samples were cut every 30 s, and average values of five measurements
were used. The glass transition temperature (Tg), crystallization temperature (Tc), cold crystallization
temperature (Tcc), melting temperature (Tm), heat flow of crystallization (∆Hc), cold crystallization
(∆Hcc), change in enthalpy of melting (∆Hm), and degree of crystallinity (Xc) of the samples were
determined by differential scanning calorimetry (DSC; Q2000, TA instruments, New Castle, DE, USA).
The samples were first heated to 200 ◦C at a rate of 10 ◦C/min and then kept for 3 min under a nitrogen
atmosphere to eliminate the effects of previous thermal history. Subsequently, the samples were cooled
and heated again from 20 to 200 ◦C at the rate of 10 ◦C/min. The value of Xc was calculated according
to Equation (1):

Xc(%) =
∆Hm − ∆Hcc

∆Hm,100
× 100, (1)

where ∆Hm,100 denotes the heat of melting of 100% crystalline PLA (93.7 J/g) [42].
The dynamic mechanical analysis (DMA) of the samples was conducted employing a dynamic

mechanical analyzer (N535, Perkin-Elmer, Boston, MA, USA). The measurements were performed at
temperatures from −10 to 100 ◦C at a heating rate of 5 ◦C/min and a frequency of 1 Hz under nitrogen
atmosphere. The samples with dimensions of 30 mm × 10 mm × 1 mm were prepared utilizing a
hydraulic laboratory press.

The morphologies of the film samples were investigated using field-emission scanning electron
microscopy (FE-SEM; SU8220, Hitachi, Tokyo, Japan) with an acceleration voltage of 5 kV. The samples
were cryogenically fractured in liquid nitrogen and sputtered with Pt for 60 s.

Subsequently, the mechanical properties and tear strength of the blown film samples were
evaluated using a universal testing machine (UTM; LR5K Plus, Lloyd Instruments, West Sussex, UK)
with a load cell of 500 N and an Elmendorf tear tester (ElmaTear 855, James H. Heal & Co. Ltd., Halifax,
UK). Furthermore, the tensile properties and tear strength were analyzed according to the ASTM D882
and ASTM D1922 standards. To obtain an average value, five overlapped film samples were prepared
and tested in the machine direction (MD) and transverse direction (TD) for each group.
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3. Results

3.1. Effects of PLA Plasticizer Type and Content on Processability

The flow behavior of melted polymers is important in polymer manufacture and processing,
including the production of blown and cast films as well as foaming extrusion. The flow behavior of
polymers is influenced by various factors, such as the temperature, molecular weight, molecular weight
distribution, and addition of fillers and plasticizers [43,44]. The flow behavior can be evaluated by
observing the MFI [45]. As a single point test, MFI is a remarkably sensitive technique for distinguishing
a change in polymer additives. In the present study, MFI measurements were conducted to investigate
the effects of plasticizers on the shear viscosity of PLA. Figure 1 shows the variation of MFI for the
plasticized PLA samples with increasing plasticizer content. Evidently, the value of MFI increased
with increasing plasticizer amount. It is noteworthy that glycerol ester also acted as a lubricant,
which was demonstrated by a sharp increase in MFI (up to 67) compared to other plasticizers. In
addition, the sharp increase in MFI could be ascribed to the decomposition of PLA as well as the
incompatibility between PLA and the plasticizer. These results showed that glycerol ester was not an
adequate plasticizer for the blown film process. Furthermore, an increase in the content of adipate,
adipic acid, and adipic acid ester resulted in a gradual increase in the MFI values of the plasticizers.
This result was attributed to the molecules permeating the intermolecular spaces between the PLA
chains, increasing the mobility of the chain segment and facilitating the flow of PLA [46,47]. Thus, the
materials could be effectively applied in blown film processes by controlling their content and type.
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types and contents.

3.2. Effects of PLA Plasticization on the Thermal Properties

We subsequently investigated the effects of the plasticizer type and content by DSC to confirm the
thermal behavior of the plasticized PLA. Figure 2 shows the secondary heating DSC curves for the
plasticized PLA samples, depending on the type of plasticizer with 20 phr. Moreover, the results of
DSC measurements for all samples are summarized in Table 4 and Figure S1. As shown in Figure 2, the
neat PLA (P100) sample exhibited a transition curve (Tg), cold crystallization peak (Tcc), and a double
melting peak (Tm); however, no obvious crystallization peak (Tc) was detected. This is because PLA is
a semicrystalline polymer with a slow rate of crystallization. It arises from a semirigid backbone and
displays low chain mobility due to the short length of the repeating unit [48,49]. Notably, Tg and Tcc of
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all plasticized PLA samples decreased upon the addition of the plasticizer. In particular, the addition of
adipate and adipic acid ester resulted in lower peaks than those observed for other plasticizers because
adipate and adipic acid ester exhibit lower molecular weights and contain ether and ester moieties,
which are compatible with the ester functionalities in the PLA structure. In addition, the presence of
one melting peak and the increase of Xc for all analyzed samples correlated with the increase in the
adipate and adipic acid ester content. Particularly, the Xc value for AAE-20 increased from 2.38% to
31.59%. This could be related to the increased crystallization rate of PLA, which was a consequence of
enhanced chain mobility owing to good compatibility between the plasticizer and PLA [50,51]. Hence,
the plasticizers assisted free movement of the chains, which led to more ordered chain packing in the
crystalline lattices of PLA. Accordingly, the formation of the crystallization peaks (Tc) of AP-15, AP-20,
AAE-15, and AAE-20 was observed in the first cooling curves (Figure S2).
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Table 4. DSC data for neat PLA and PLA plasticized with varying plasticizer types and contents.

Description Tg (◦C) Tc (◦C) Tcc (◦C) Tm (◦C) ∆Hc (J/g) ∆Hcc
(J/g)

∆Hm
(J/g) Xc (%)

P100 60.18 - 112.32 170.43 - 33.56 35.79 2.38
AP-05 50.04 - 96.81 168.34 - 27.25 33.96 7.16
AP-10 39.48 - 86.15 165.84 - 21.63 36.54 15.91
AP-15 28.86 78.71 77.04 164.63 3.51 12.67 35.27 24.12
AP-20 - 76.23 72.34 163.06 5.08 9.27 33.97 26.39
AA-05 52.96 - 102.19 169.86 - 27.29 31.76 4.77
AA-10 46.49 - 104.68 169.67 - 26.06 34.07 8.55
AA-15 45.30 - 90.54 167.95 - 21.59 35.21 14.54
AA-20 47.70 - 93.21 168.34 - 20.68 33.93 14.14
GE-05 55.01 - 101.90 168.74 - 26.85 31.53 4.99
GE-10 52.98 - 100.84 168.11 - 23.82 28.64 5.14
GE-15 52.30 - 103.18 167.76 - 29.17 33.73 4.87
GE-20 51.28 - 100.58 166.94 - 25.55 30.73 5.53

AAE-05 49.43 - 95.98 167.84 - 24.83 32.83 8.54
AAE-10 42.55 - 89.09 165.83 - 21.48 32.83 12.11
AAE-15 32.98 81.10 81.43 163.78 3.15 15.88 33.01 18.28
AAE-20 - 74.26 66.92 161.80 12.40 3.83 33.07 31.59
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3.3. Dynamic Mechanical Properties of Plasticized PLA

To further investigate the plasticization of PLA, we subsequently conducted DMA. The results of
the analysis for PLA with various plasticizer types and content are presented in Figure 3 and Figure S3,
and Table S1. The tanδ peak, defined as the ratio of the loss modulus to the storage modulus with
temperature, was related to the Tg of polymer [52]. The value of the tanδ peak, which was indicated
by the Tg of P100, was observed at 68.8 ◦C. Notably, tanδ gradually shifted to a lower temperature
upon the addition of plasticizers. For the adipic acid ester, tanδ shifted with increasing content of the
plasticizer until 31.3 ◦C. Moreover, similar tendency was observed for adipate. On the other hand, the
remaining plasticizers did not cause a significant change in tanδ. This result was in good agreement
with previous findings on PLA plasticized by adipate and adipic acid ester. Furthermore, as it can be
observed in Figure S3 and Table S1, the decrease in the tanδ values was a consequence of the increase
in the free volume and chain mobility of PLA with the increasing plasticizer content. As previously
discussed, we confirmed that the plasticization effects of adipic acid ester resulted in improvement
of the PLA brittleness. Thus, this plasticizer was deemed as the most suitable for plasticization of
PLA. The plasticizer content was appropriated up to 10 phr in consideration of the processability and
plasticization of PLA.
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3.4. Effects of the Plasticized PLA on the Morphology of the Blends with PBAT

Generally, polymer blends can be classified as one phase or phase-separated structures, such
as sea-island and co-continuous morphologies. The sea-island morphology is associated with poor
mechanical properties, which arise from weak interfacial adhesion between the phases as well as
stress at the interface boundaries [53,54]. To improve the phase-separated structures and enhance the
mechanical properties of PLA/PBAT blends, SEM was used to investigate the morphology of plasticized
PLA in a PBAT matrix. Figure 4 shows the SEM images of the fracture surfaces of PLA/PBAT as
well as PLA/PBAT blends plasticized using adipic acid ester. As it can be seen, a sea-island structure
containing spherical particles of PLA was observed for P35. Non-uniform dispersion in the PBAT
matrix with spherical PLA particles was also observed. Moreover, interfacial debonding between the
spherical particles and the matrix were noted. On the other hand, the PLA/PBAT blends plasticized
by the addition of adipic acid ester exhibited a smooth surface morphology. It was also found that
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the voids between the interfaces faded. Notably, the disappearance of the voids between PLA and
PBAT increased with increasing plasticizer content. The interfacial adhesion between the PLA domain
and the PBAT matrix improved and formed a continuous phase when plasticized PLA was used. The
obtained results indicated that adipic acid ester acted as a plasticizer and modified the interfacial
adhesion at the phase boundaries. Hence, the plasticizer could affect the tear resistance of the film.Polymers 2020, 12, x FOR PEER REVIEW 8 of 13 
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3.5. Effects of the Plasticized PLA on the Mechanical Properties of the PBAT Blown Film

In a blown film process, the biaxial stretching in MD and TD occurs simultaneously, orienting the
polymer chains of the blown film toward the plane of the film. In the present study, the blown films
were quenched by cool air, which led to the crystallization and immobilization of the biaxial oriented
chains [55,56]. Hence, the biaxial stretching and quenching processes could affect the mechanical
properties, such as tensile strength and flexibility, as well as tear resistance. The changes in the tensile
strength, elongation at break, and Young’s modulus of the PBAT blown film containing plasticized
PLA are summarized in Figure 5 and Table 5. Overall, the tensile strength, elongation at break, and
Young’s modulus in MD were higher than those in TD due to more oriented structures resulting from
high stresses during the take-up winder process in MD. It is noteworthy that the tensile strength of
the PBAT blown film containing plasticized PLA decreased with increasing content of the adipic acid
ester plasticizer. In contrast, the elongation at break increased in both MD and TD. In particular, the
tensile strength in MD decreased more than in TD. On the other hand, the change in the Young’s
modulus showed a different tendency, i.e., it decreased in MD and increased in TD. These results could
be attributed to reducing the intermolecular interactions as well as the increase in the chain mobility of
PLA because, the orientations of the PLA structures were modified due to the permeation of the adipic
acid ester plasticizer into the PLA chains. In addition, the different tendency in the Young’s modulus of
MD and TD could be attributed to increase in the crystallinity. The Young’s modulus in high-oriented
MD direction is decreased by restricting the orientation of the film, whereas the Young’s modulus
in low-oriented TD direction is increased by increasing the crystallinity [57–59]. Consequently, the
addition of the adipic acid ester plasticizer in the PLA/PBAT blown film affected lower tensile strength,
higher elongation at break and the different tendency in the Young’s modulus of MD and TD.
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Table 5. Mechanical properties and tear strength of the neat PLA/PBAT and plasticized PLA/PBAT
blown film.

Description Direction Tensile Strength
(MPa)

Elongation at
Break (%)

Young’s Modulus
(MPa)

Tear Strength
(N/mm)

P35
MD 36.08 ± 1.44 304 ± 15.2 1782 ± 752 4.63 ± 0.44
TD 21.77 ± 0.63 235 ± 25.4 528 ± 140 13.19 ± 0.33

P35AAE-05
MD 29.40 ± 2.42 318 ± 18.6 1411 ± 577 6.87 ± 0.42
TD 19.29 ± 0.67 258 ± 6.9 635 ± 268 13.34 ± 0.47

P35AAE-10
MD 29.32 ± 1.31 325 ± 25.2 1332 ± 520 8.67 ± 0.31
TD 17.74 ± 0.84 275 ± 9.7 829 ± 167 16.16 ± 0.54

3.6. Influence of Plasticized PLA in the PBAT Blown Film of Tear Resistance

In the polymer fracture mechanism, the voids and interfacial debonding are affected by the
non-linearity in the stress–strain relations of the polymer composites. In particular, the interfaces in
the polymer blends result in easy fracturing at the interface rather than in the matrix, resulting in low
fracture energy [60–62]. Figure 6 and Table 5 show the tear strength results obtained for the PBAT
blown film with neat PLA and plasticized PLA in MD and TD. The tear strength was considerably
higher in TD than in MD as a consequence of the high-orientation of the film. The outcomes revealed
that the tear strength of the PBAT film containing plasticized PLA was higher than the pure PLA/PBAT
film. Specifically, the tear strength increased from 4.63 to 8.67 N/mm in MD (187%) and from 13.19
to 16.16 N/mm in TD (122%). As mentioned earlier, the presence of plasticized PLA enhanced the
interfacial adhesion with PBAT, resulting in the reduction of defects such as voids. In addition,
the plasticized PLA/PBAT blend has more homogeneous, because the plasticizer was preferentially
located in amorphous phases than crystalline phases and increased the free volume [63–65]. Thus, this
improvement can be attributed to disperse and absorb the energy required to propagate a crack or a
tear. In other words, this indicates that tear resistance improvement is considerably affected by the
change in the morphology of the interface than crystallinity. However, the change in the tear resistance
of MD and TD revealed a different tendency, because the increase in crystallinity restricted the MD
orientation of the film [66]. As can be seen from Figure 6, the change in the tear resistance of MD,
which is considerably stretched by the take-up winder, is large.
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Figure 6. Tear strength of the neat PLA/PBAT and the plasticized PLA/PBAT blown film.

4. Conclusions

In this study, plasticizers with various chemical structures, including adipate, adipic acid, glycerol
ester, and adipic acid ester, were used for plasticization of PLA to improve the tear resistance of a
PLA/PBAT blown film. The thermal and dynamic mechanical properties of plasticized PLA were
comprehensively investigated. We demonstrated that adipic acid ester effectively promoted the chain
mobility of the PLA matrix. Thus adipic acid ester containing ether and ester functionalities and
exhibiting low molecular weight was deemed as the most suitable plasticizer for PLA. Furthermore, a
blend of plasticized PLA and PBAT was prepared by twin-screw extrusion, affording a plasticized
PLA/PBAT blown film. Plasticized PLA was found to have a remarkable effect on the morphology,
mechanical properties, and tear resistance of the film. The plasticized PLA/PBAT film displayed
improved tear resistance of approximately 187% (MD) and 122% (TD) compared to neat PLA/PBAT
films. The presence of plasticized PLA in PBAT resulted in the formation of a continuous phase by
improving the interfacial adhesion between the PLA domain and the PBAT matrix. In conclusion, we
demonstrated that the plasticizer type and content affects the thermal and mechanical properties as
well as the processability of PLA. Importantly, the tear resistance of the plasticized PLA/PBAT blown
films was significantly influenced by the plasticization of PLA. The results of the present study provide
a platform for application of PLA/PBAT blow films as potential biopolymers for the development of
ecofriendly packaging films.
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