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Abstract: Octocrylene is an organic sunscreen whose main action is to absorb UVB radiation and
short UVA wavelengths; it is used in various cosmetic products in order to provide an adequate
sun-protection factor or to protect the cosmetic formulations themselves from UV radiation. This
filter is believed to be a possible endocrine disruptor and is also questioned due to its allergic and/or
photoallergic potential. However, it continues to be widely used, and it has been found in various
environments, not least those of swimming pools, where it is evidently released by consumers, to the
point that it is now considered an emerging micropollutant. The present investigation presents the
possible chemical fate of octocrylene in the typical chlorination conditions of wastewater or swimming
pools. A total of 11 disinfection byproducts were identified, and 6 were identified for the first time,
and separated by HPLC. These products were identified through careful mass spectrometry studies
and 1D and 2D NMR experiments. A formation mechanism has been proposed that justifies the
chemical structures of all of the compounds identified. The ecotoxicological assessment of octocrylene
and their products was carried out by employing Phaeodactylum tricornutum, Brachionus plicatilis and
Aliivibrio fischeri as bioindicators. The ecotoxicity results reveal that toxic byproducts might be
generated during the oxidation process, increasing the potential risk to the marine environment.

Keywords: octocrylene; chlorination; hypochlorite; degradation byproducts; water treatment; Aliivibrio
fischeri; Phaeodactylum tricornutum; Brachionus plicatilis

1. Introduction

Octocrylene (OCT) is a viscous, clear and colorless oil, introduced in commercial
sunscreens and anti-aging creams about 15 years ago. It is the 2-ethylhexyl ester of 2-cyano-
3,3-diphenylacrylic acid, with the extended conjugation of the acid portion that absorbs
UVB and short-wave UVA (ultraviolet) rays, with wavelengths from 280 to 320 nm [1],
which promote tanning but also contribute to the onset of sunburn and skin cancer. It is
used in various body care products [2,3], in concentrations up to 10%, in order to provide
an adequate sun-protection factor or to protect the body care formulations themselves from
UV radiation. This filter was recently indicted for the risk of inducing potential adverse
effects on the endocrine system [4], as well as having an allergic and/or photoallergic po-
tential [5]. In recent years, there has been an increase in the number of cases of photocontact
allergic reactions to octocrylene, which has been referred to as an “emerging allergen”.
However, it has the advantage of working in synergy, allowing for wide and beneficial
photoprotection; for example, it stabilizes avobenzone (butyl methoxydibenzoylmethane),
a molecule present in the UVA filter. The European Chemicals Agency (ECHA) constantly
evaluates the safety profile of this filter, like all chemicals used in cosmetics and registered
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under European legislation. Octocrylene has been found in various environments, not least
those of swimming pools [6], where it is evidently released by consumers, to the point
that it is now considered an emerging micropollutant similar to polyfluoroalkyl substances
(PFAS) [7], blue-green algae [8], toxic fungal products [9], hormones [10], psychoactive
drugs [11,12], pesticides [13], cosmetics, and industrial additives and drugs [14–18]. These
substances, unlike conventional and unconventional pollutants, are still largely unregulated
by legislation and are not restricted by maximum permitted values. Furthermore, they are
potentially dangerous for the environment and human health, even in an overall context
of insufficient data linked to their dangerousness [19–23]. Removal of emerging contami-
nants from wastewater can be accomplished by ozonation [24], membrane filtration [25],
adsorption [26], and, above all, advanced oxidation [27,28].

In this paper, the degradation byproducts (DPs) of OCT were investigated by mimick-
ing the chlorination process normally used in swimming pools to sterilize and disinfect
water and to reduce similar emerging pollutants [6,29]. In particular, two different exper-
iments were carried out, one at concentrations of about 10−5 M, comparable to those at
which OCT is present in wastewater, and one at concentrations at least 100 times higher in
order to isolate and identify the DPs. The structures of 11 isolated DPs, 6 of which were iso-
lated for the first time, were determined by crossing the data provided by nuclear magnetic
resonance (NMR) and those obtained by mass spectrometry (MS), using matrix-assisted
laser desorption/ionization as a source and a time-of-flight analyzer (MALDI-TOF) for
mass spectroscopy. It was also possible to propose a mechanism of formation that justifies
the obtainment of the isolated products.

The spatial distribution of OCT is strictly connected to its presence in the marine
aquatic environment; this presence is due to the anthropogenic activities responsible for its
direct emission. For this reason, an ecotoxicological assessment was carried out with marine
aquatic bioindicators such as Aliivibrio fischeri, Phaeodactylum tricornutum and Brachionus
plicatilis. Emerging organic pollutants such as UV filters therefore require biological assays
capable of detecting potential toxicity from a one-health perspective.

2. Results and Discussion
2.1. Chlorination Experiments

The OCT chlorination experiments were performed in the concentrations in which this
micropollutant was detected in swimming pool water [6], of approximately 10−5 M. Specif-
ically, the solutions of the sunscreen were treated for 10 min with 10% hypochlorite (OCT:
hypochlorite molar ratio of 2:1; concn.), under magnetic stirring and at room temperature.
Then, the tests were repeated at much higher concentrations of the contaminant (>10−3 M),
with a much lower ratio of OCT: oxidizing agent (1:20), in order to have sufficiently high
quantities of byproducts isolated to proceed with the structural identification.

The course of the reaction was monitored by HPLC, and the DPs obtained were
isolated according to Scheme 1, using column chromatography and HPLC and completely
characterized using NMR and MS analyses. Finally, DP1–DP11 (Figure 1) were isolated at
percentages of 1.12, 2.97, 0.89, 0.91, 1.15, 2.36, 1.08, 1.55, 6.39, 0.59, and 1.19, respectively.
The proposed mechanism of their formation from OCT is shown in Figure 2, and DP3–DP5
and DP7–DP9 were isolated for the first time.
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2.2. Structure Elucidation of Degradation Byproducts DP1–DP9

In the OCT treatment, the concentration of DP1–DP11 reached its maximum after
about 2 h, with a degradation of 15% and a transformation of approximately 20%; percent-
ages of byproducts ranged from 0.59% for DP10 to 6.39% for DP9. In a basic environment,
OCT can undergo a retro-aldol condensation, which leads to the formation of intermediate
I1 and the byproduct DP2. From this and other byproducts, it is usually possible to obtain
the byproduct DP11; the intermediate I1, identifiable with 2-ethylhexyl cyanoacetate, can
undergo hydrolysis of the ester bond and lead to the formation of the byproduct DP10
and α-cyanoacetic acid, probably contained in the aqueous phase rich in salts and low-
molecular-weight compounds (Scheme 1). Finally, the DP10 could decarboxylate to the
DP1 byproduct. The byproduct DP10 is also obtained from the hydrolysis of the ester bond
of the starting product, together with the byproduct DP8. The latter, by decarboxylation,
could provide the intermediate I2, which, by the hydrolysis of the cyano group, provides
the intermediate I3. Considering the degradation reaction of OCT in the presence of sodium
hypochlorite, it can be assumed that a Weerman degradation takes place that leads to the
formation of nitrene I6, through the deprotonation (I4) and chlorination (I5) of the amide
nitrogen of the intermediate I3.

The transposition of nitrene I6, or more probably the elimination of HCl from the
intermediate I5 with the concomitant transposition of the residue bound to the carbonyl,
allows for the obtainment of the isocyanate I7, from which alcoholises of the intermediate
I8 are obtained, from which, for the subsequent oxidation, the intermediate I9 is obtained.
The hydrolysis of the latter and the subsequent oxidation of the intermediate I10 obtained
provides the byproduct DP7. This can react with the DP6 present in the solution and
provide the byproduct DP3 and, for subsequent chlorination, create the byproduct DP4.
The direct chlorination to the C-2/C-3 carbons of the starting product allows for and
explains the obtainment of the byproduct DP5, from which DP9 and DP6 are obtained by
the hydrolysis of the ester bond.

2.3. Spectral Data

Octocrylene: 2-Ethylhexyl 2-cyano-3,3-diphenylacrylate. Oily liquid. 1H- and 13C-NMR,
see Table S1. MS-TOF (positive ions): m/z calculated for C24H27NO2 m/z 361.20 [M]+; found
362.47 [M + H]+ (68%).

DP1: Heptane. Identified by comparison with an authentic sample.
DP2: Benzophenone. Identified by comparison with an authentic sample.
DP3: 2-Ethylhexyl 2,2-diphenylacetate. White powder. 1H- and 13C-NMR, see Table S2.

MS-TOF (positive ions): m/z calculated for C22H28O2 m/z 324.21 [M]+; found 325.47
[M + H]+.

DP4: 2-Ethylhexyl 2-chloro-2,2-diphenylacetate. White powder. 1H- and 13C-NMR, see
Table S3. MS-TOF (positive ions): m/z calculated for C22H27ClO2 m/z 358.17 [M]+; found
361.82 [M + H]+, 359.78 [M + H]+.

DP5: (2S)-2-Ethylhexyl 2,3-dichloro-2-cyano-3,3-diphenylpropanoate. White powder. 1H-
and 13C-NMR, see Table S4. MS-TOF (positive ions): m/z calculated for C24H27Cl2NO2 m/z
431.14 [M]+; found 436.33 [M + H]+, 435.36 [M + H]+, 434.38 [M + H]+, 433.35 [M + H]+,
432.36 [M + H]+.

DP6: 2-Ethylhexan-1-ol. Identified by comparison with an authentic sample.
DP7: 2,2-Diphenylacetic acid. White powder. 1H- and 13C-NMR, see Table S5. MS-TOF

(positive ions): m/z calculated for C14H12O2 m/z 212.08 [M]+; found 213.27 [M + H]+.
DP8: 2-Cyano-3,3-diphenylacrylic acid. White powder. 1H- and 13C-NMR, see Table S6.

MS-TOF (positive ions): m/z calculated for C16H11NO2 m/z 249.08 [M]+; found 250.19
[M + H]+.

DP9: (S)-2,3-dichloro-2-cyano-3,3-diphenylpropanoic acid. White powder. 1H- and 13C-
NMR, see Table S7. MS-TOF (positive ions): m/z calculated for C16H11Cl2NO2 m/z 319.02
[M]+; 324.18 [M + H]+, 323.16 [M + H]+, 322.19 [M + H]+, 321.18 [M + H]+, 320.21 [M + H]+.

DP10: 2-ethylhexanoic acid. Identified by comparison with an authentic sample.
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DP11: Benzoic acid. Identified by comparison with an authentic sample.

2.4. Toxicity Assessment

Octocrylene has a relatively high environmental stability in aquatic environments and
is hardly removed from wastewater treatment plants [30,31]. Previous studies showed that
OCT was poorly removed from wastewater treatment plants (0–10% degradation in aerobic
conditions) [32].

Toxicity data were reported in Figure 3A–C for P. tricornutum, B. plicatilis and A. fischeri,
in that order, considering the effect of OCT and its byproducts.
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Figure 3. Toxicity data regarding exposure of P. tricornutum (A), B. plicatilis (B) and A. fischeri (C)
to OCT and its byproducts (DP1-DP11). Data with different letters (a–d) are significantly different
(Tukey post hoc, p < 0.05).

Chronic toxicity with P. tricornutum was also identified, as 83% of DPs showed growth
inhibition effects ranging between 20% and 50% (OCT, DP1, DP3, DP4, DP6, DP7, DP8,
DP9, DP10 and DP11). DP5 has no toxicity, while DP2 was the most toxic compound
(Figure 3A).

The effects of this UV filter and its chlorinated derivates on the acute toxicity of
B. plicatilis change, probably due to the lower sensibility of the bioindicator. The toxicity
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has been evaluated by observing the mortality rate of B. plicatilis after 24 h of exposure. As
reported in Figure 3B, no significant effect on mortality was observed in rotifers exposed
to OCT and its degradation byproducts. In fact, all the investigated samples showed a
toxicity ranging between 10% and 32%, with the exception of DP3, which had a residual
toxicity of approximately 47%. In the latter case study, DP2, on the other hand, has a
toxicity of only 20%, while DP3 appears to be the most toxic degradation byproduct for the
aforementioned bioindicator.

The acute toxicity of OCT and its chlorinated derivatives towards A. fischeri was shown
in Figure 3C. After 30 min of exposure, the bioluminescence inhibition swung between 14%
and 90%, except for the parent compound OCT, which was the only compound to exhibit
biostimulation behaviour. So, 16% of the tested samples did not exceed 20% of the effect
(DP1 and DP3), 33% of the degradation byproducts are included in the range between 26%
and 33% of the effect (DP5, DP9, DP10 and DP11), while there was another 33% increase
in toxicity up to 60% of the effect (DP4, DP6, DP7 and DP8). DP2 (90% of the effect), once
again, appears to be the most toxic product. The toxicity trend observed in A. fischeri is in
good agreement with our previous results on P. tricornutum.

The discharge into the marine environment of chlorinated sewage effluents containing
these degradation byproducts represents the worst-case scenario for environmental safety;
indeed, in our study, these byproducts could have negatively influenced the physiology
of single-celled organisms such as A. fischeri and P. tricornutum, but they did not affect
rotifers. This study highlighted the concerns and the potential risks from OCT byproducts
that may emerge and impact the quality of the marine ecosystem, especially concerning
uncontrolled doses.

3. Materials and Methods
3.1. Drug and Reagents

Octocrylene (99%) was purchased from Sigma Aldrich (Milan, Italy). All of the other
chemicals and solvents were purchased from Sigma Aldrich (Milan, Italy) and were of
HPLC grade and used as received. All of the chemicals were of analytical grade and
supplied by Sigma Aldrich.

The toxicity tests were conducted with two combinations. In the first combination,
osmotic adjustment solution (OAS) (22 g L−1 NaCl) was used as a control for optimal
conditions according to the ISO 11348-3 standard [33]. In the second combination, synthetic
sea water was used as the control solution according to the ISO 10,253 standard [34,35].
The synthetic sea water used for analytical procedures comprised the following salts: NaCl
(22 g L−1), MgCl2·6H2O (9.7 g L−1), Na2SO4 (3.7 g L−1), CaCl2 (1.0 g L−1), KCl (0.65 g L−1),
NaHCO3 (0.2 g L−1) and H3BO3 (0.023 g L−1).

3.2. Chlorination Reaction
3.2.1. Apparatus and Equipment

Column chromatography (CC) was carried out with Kieselgel 60 (230–400 mesh,
Merck, Darmstadt, Germany). HPLC was performed on a Shimadzu LC-8A system using
a Shimadzu SPD-10A VP UV-VIS detector (Shimadzu, Milan, Italy). Preparative HPLC
was performed using an RP Gemini C18-110A preparative column (10 µm particle size,
250 mm × 21.20 mm i.d. Phenomenex, Bologna, Italy) with a flow rate of 8.0 mL/min.
The 1H- and 13C-NMR spectra were recorded with an NMR spectrometer operated at
400 MHz and at 25 ◦C (Bruker DRX, Bruker Avance) and referenced in ppm to the residual
solvent signals (CDCl3, at δH 7.27 and δC 77.0; and CD3OD, at δH 3.30 and δC 49.0). The
proton-detected heteronuclear correlations were measured using a gradient heteronuclear
single-quantum coherence (HSQC) experiment, optimized for 1JHC = 155 Hz, and a gradient
heteronuclear multiple bond coherence (HMBC) experiment, optimized for nJHC = 8 Hz.
The MALDI-TOF mass spectrometric analyses were performed on a Voyager-De Pro MALDI
mass-spectrometer (PerSeptive Biosystems, Framingham, MA, USA). The samples were
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lyophilized using a LyovaporTM-200 (Buchi, Cornaredo (MI), Italy), with a compressor with
cooling capacity: 1.97 kW for 50 Hz and minimum condenser temperature: −55 ◦C.

3.2.2. Chlorination Experiments

A 10−5 M OCT solution was treated for 10 min with 10% hypochlorite (molar ratio
OCT/HClO 2:1 concentration, spectroscopically determined λmax 292 nm, ε 350 dm3/mol
cm) at room temperature [36]. The presence of OCT was quantified using a Lambda
12 UV-Vis spectrophotometer (Perkin Elmer, USA). Absorbance peaks were determined
at 310 nm. The absorbance values were converted into a concentration using a calibration
curve prepared from standard solutions with known OCT concentrations. DP1–DP11
were isolated from the methylene chloride extract of the aqueous solution (Scheme 1 and
Figure 1) and identified by comparing their retention times with those of commercially
available standard compounds, or isolated by performing preparative experiments with a
solution of OCT at a concentration higher than 10−3 M and treated with 6% hypochlorite at
room temperature for 2 h. The pH of the solution, measured and recorded continuously
using a pH-meter, increased immediately from the initial pH of 8.0 to 10.8, and the pH
remained at this value during the reaction. An aliquot of the solution was taken every
15 min, quenched by sodium thiosulphate excess, filtered, and dried by lyophilisation, and
the residue was dissolved in a saturated sodium bicarbonate solution and extracted with
ethyl acetate. The course of the reaction was monitored using HPLC. The DPs obtained
were isolated using CC and HPLC and were completely characterized using NMR and
MS analyses.

3.2.3. Chlorination Procedure and Product Isolation

Octocrylene (607 mg, 1.68 mmol) was dissolved in 22 mL of acetonitrile, and the
solution was diluted with water until a final volume of 0.9 L was reached. A sodium
hypochlorite solution (approximately 6% active chlorine, molar ratio OCT/HClO 1:20;
concentration spectroscopically determined at λmax of 292 nm, ε = 350 dm3/mol cm) was
added drop by drop to this solution under magnetic stirring at room temperature. The
reaction was stopped after 2 h with an excess of sodium thiosulphate and concentrated by
lyophilisation. The residue was dissolved in water and pH-adjusted to 5.0, and this solution
was extracted using methylene chloride. The crude organic fraction (835 mg) was chro-
matographed on silica gel CC, eluted with a gradient of chloroform:methanol (99:1 to 10:90,
v/v) to yield 9 fractions. The fraction Fr. 2 (62 mg), eluted with chloroform:methanol (97:3),
was chromatographed on silica gel CC, eluted with a gradient of petroleum ether:acetone
(98:2 to 90:10, v/v) to yield DP1 (27 mg). The fraction Fr. 4 (49 mg), eluted with chlo-
roform:methanol (90:10), was chromatographed on silica gel CC, eluted with a gradient
of petroleum ether:acetone (90:10 to 50:50, v/v) to yield DP2 (29 mg). The fraction Fr. 7
(58 mg), eluted with chloroform:methanol (60:40), was separated by semipreparative HPLC
using a reversed-phase column Phenomenex Gemini 10 µm 110 Å C18 (250 × 21.20 mm)
and eluted with a gradient of CH3COONH4 (A, pH 4.0; 10 mM) and methanol (B), starting
with 30% B for 5 min and followed by the installation of a gradient to obtain 100% B over
30 min, at a solvent flow rate of 8 mL/min to yield DP3 (7 mg) and DP4 (3 mg). The
fraction Fr. 8 (405 mg), eluted with chloroform:methanol (80:20), was chromatographed on
silica gel CC, eluted with a gradient of methylene chloride:methanol (90:10 to 0:100, v/v) to
yield 9 fractions.

The fraction Fr. 8.2 (61 mg), eluted with methylene chloride:methanol (90:10), was
chromatographed on TLC, eluted with chloroform:methanol (80:20), to yield DP5 (47 mg).
The fraction Fr. 8.4 (131 mg), eluted with methylene chloride:methanol (80:20), was chro-
matographed on TLC, eluted with chloroform:methanol (70:30), to yield DP9 (89 mg). The
fraction Fr. 8.6 (43 mg), eluted with methylene chloride:methanol (65:35), was separated by
analytical HPLC using a reversed-phase column Phenomenex Gemini 10 µm 110 Å C18
(250 × 21.20 mm) and eluted with a gradient of CH3COONH4 (A, pH 4.0; 10 mM) and
methanol (B), starting with 30% B for 5 min and followed by the installation of a gradient
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to obtain 100% B over 30 min, and eluted again with the same mixture for another 10 min,
at a solvent flow rate of 8 mL/min to yield DP8 (20 mg). The fraction Fr. 8.8 (53 mg), eluted
with methylene chloride:methanol (60:40), was chromatographed on TLC and eluted with
petroleum ether:acetone (65:35), to yield DP7 (20 mg).

The fraction Fr. 9 (31 mg), eluted with chloroform:methanol (90:10), was separated
by analytical HPLC using a reversed-phase column Phenomenex Kromasil 10 µm 100 Å
C18 (250 × 10.00 mm) and eluted with a gradient of CH3COONH4 (A, pH 4.0; 10 mM)
and acetonitrile (B), starting with 20% B for 5 min and followed by the installation of
a gradient to obtain 100% B over 30 min, at a solvent flow rate of 4 mL/min to give
3 fractions. The fraction 9.1 was purified by HPLC using a column Discovery RP-amide
C16 (150 × 4.6 mm), 5 µm, and eluted with 0.1% TFA in acetonitrile:water (25:75), at a
solvent flow rate of 0.8 mL/min to give DP11 (2 mg). The fractions Fr. 9.2 and Fr. 9.3 were
identified as DP6 (5 mg) and DP10 (2 mg), respectively.

3.3. Ecotoxicity Data

The toxicity of OCT and its degradation byproducts was assessed regarding the
following organisms: A. fischeri, P. tricornutum and B. plicatilis. A Microtox® acute ecotoxicity
test was performed using the marine bioluminescent bacteria A. fischeri (NRRL-B-11177) to
assess the toxicity of OCT and DPs. The bacteria were supplied in a freeze-dried form by
Aqua Science LLC (Newark, Delaware, USA) and were stored at −20 ◦C to preserve their
microbial activity. The acute toxicity endpoint was determined after 30 min of exposure
according to ISO 11348-3 [33].

An algal growth-inhibition test was performed using benthic diatom P. tricornutum.
The algal culture was kept at 20 ± 2 ◦C and 6000–10,000 Lux light, to obtain a cellular
density of 106 cells/mL. Inocula were taken from pre-cultures set up three days before the
experiment to adjust the initial cell density to approximately 104 cells/mL [35]. The test
was carried out and miniaturized for 24-well sterile polystyrene micro-plates. The growth
inhibition rate was calculated after 72 h exposure using a UV–Vis spectrophotometer (Hach
Lange DR5000) and a 5 cm cuvette.

The acute toxicity test with estuarine rotifer B. plicatilis was performed according to
the standard procedure of Rotoxkit M® using certified dehydrated cysts (MicroBioTests
Inc.). The test was conducted in multiwell plates with 300 µL per well. Six wells with ten
rotifers each were filled to assess the toxicity of the parent compound and of its 11 DPs.
Incubation was carried out for 48 h, at 25 ◦C, in darkness. The number of dead rotifers
after the exposure period was observed under a stereomicroscope (LEICA EZ4-HD). The
significance of the differences between the mean values of the different tests and controls
was verified using Addinsoft XLSTAT (2016.02.27444 Version) by analysis of variance
(ANOVA) with a 0.05 significance level. In addition, the post-hoc analyses were carried out
with Tukey’s test.

4. Conclusions

This paper investigated the fate, following degradation treatment by chlorination, of
one of the most widely used sunscreens, namely, octocrylene, conventionally considered
an emerging micropollutant. The reaction was carried out by simulating the disinfection
treatment employed in swimming pool waters, using excess sodium hypochlorite. Af-
ter the chlorination treatment, chromatographic techniques were used to isolate eleven
degradation byproducts, which were fully characterized by MS and NMR analyses and
via comparison with a commercial standard. Four of them were isolated for the first time.
Compared to the initial quantity considered, OCT was recovered unchanged for 45% and
transformed into the corresponding byproducts for 20%. A possible mechanism for the
degradation of OCT and its degradation byproducts has been hypothesized. Half of the
investigated DPs possessed anywhere from slightly to highly toxic effects. Thus, acute
toxicity evaluation demonstrated that the presence of OCT in the water distribution system
might pose a more significant threat to safety and quality of the water and the environment.
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In fact, if on the one hand the disinfection process involves the partial degradation of OCT,
it is also true, however, that it involves the formation of degradation byproducts, which are
in some cases even more toxic than the starting product.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27165286/s1, Table S1: 1H, 13C and 2D NMR data of
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