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Electrocatalytic glucose oxidation is crucial to the development of non-enzymatic sensors,
an attractive alternative for enzymatic biosensors. However, due to OH− consumption
during the catalytic process, non-enzymatic detection generally requires electrolytes
having an alkaline pH value, limiting its practical application since biofluids are neutral.
Herein, via interfacial microenvironment design, we addressed this limitation by developing
a non-enzymatic sensor with an air–solid–liquid triphase interface electrodes that
synergistically integrates the functions of local alkalinity generation and electrocatalytic
glucose oxidation. A sufficiently high local pH value was achieved via oxygen reduction
reaction at the triphase interface, which consequently enabled the electrochemical
oxidation (detection) of glucose in neutral solution. Moreover, we found that the linear
detection range and sensitivity of triphase non-enzymatic sensor can be tuned by
changing the electrocatalysts of the detection electrode. The triphase electrode
architecture provides a new platform for further exploration and promotes practical
application of non-enzymatic sensors.

Keywords: hydrophobicity, three-phase interfaces, localmicroenvironment, electrocatalytic glucose oxidation, non-
enzymatic detection

INTRODUCTION

Diabetes is a chronic disease that threatens human health across the world. Notably, over 420 million
adults worldwide diabetic (Rubino, 2016; Lu et al., 2016; Ohayon et al., 2020; Zhou Y et al., 2020;
Zhang et al., 2021). Reliable glucose monitoring facilitates better blood glucose control and prevents
complications. Enzymatic electrochemical biosensors have been widely used for glucose detection;
however, biological enzymes are susceptible to factors, such as temperature, pH, and ions, hindering
the stability and scope of enzymatic biosensors (Yang et al., 2014; Sun and James, 2015; Johnston
et al., 2021). Non-enzymatic sensor based on direct electrocatalytic glucose oxidation reaction, is
highly attractive as it avoids the use of biological enzymes (Zhang et al., 2018; Teymourian et al.,
2020). In the past decades, great efforts have been devoted to the development of electrocatalysts, and
a variety of electrocatalytic materials including noble metal (Lang et al., 2013; Bae et al., 2019), metal
alloys (Yamauchi et al., 2012; Bag et al., 2020), metal oxides (Cheng et al., 2016; Mondal et al., 2017)
and carbon-related materials (Bao et al., 2017; Dung et al., 2013) have been reported. Unfortunately,
due to OH− consumption during the electrochemical glucose oxidation process, C6H12O6 (glucose) +
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2OH−→ C6H10O6 (glucolactone) + 2H2O+ 2e−, non-enzymatic
sensors generally require solutions with high pH value for
acceptable sensitivity and linear detection range (Wei et al.,
2020). In addition, serious electrode fouling will occur during
the oxidation reaction, due to the lack of sufficient OH− supply
(Adeel et al., 2021; Chen et al., 2019). With these restrictions, the
development and practical application of non-enzymatic sensors
has been limited since biofluids are neutral.

Besides the electrocatalytic materials, the reaction interface
microenvironment that governs the diffusion, adsorption and
reaction of reactants is also crucial to the performance of catalytic
reaction, but has received limited attentions (Sheng et al., 2017;
Song et al., 2018; Zhou H et al., 2020; Kim et al., 2021; Yang and
Gao, 2022). In this work, we addressed this limitation by
developing a novel non-enzymatic sensing system with an
air–solid–liquid triphase interface as illustrated in Figure 1.
This electrode architecture synergistically integrates the
functions of interfacial local alkalinity generation and
electrocatalytic glucose oxidation. Two electrodes that were
used for local OH− production and glucose detection,
respectively, and they were deposited on a hydrophobic
porous substrate in an interdigitated shape. When the sensing
system was immersed in an aqueous solution, water contacted the
electrode surface but did not enter the inner porous substrate, due
to its surface hydrophobicity (Wen et al., 2015; Liu et al., 2017).
This led to the formation of an air–solid–liquid triphase interface
where sufficient oxygen can be supplied directly from the air
phase. Oxygen can be readily reduced to OH− at the surface of
electrocatalysts, O2+ 2H2O+ 4e−→ 4OH−, leading to an increase
in the local pH. Using the triphase electrode architecture,
sufficient oxygen was utilized to generate OH− and form a
sufficient high local alkaline microenvironment, enabling the
electrocatalytic glucose oxidation in neutral solution.

MATERIALS AND METHODS

Materials
The hydrophobic porous polyethylene (PE) membrane was
purchased from Entek International LLC and the hydrophilic
flat (pore-free) polyethylene terephthalate (PET) membrane was
purchased from Membrane solutions. Sodium sulfate, sodium
hydroxide, sulfuric acid, phenolphthalein, chloroauric acid,
sodium chloride, lactic acid, galactose, glucose, ascorbic acid
and acetaminophen were purchased from Sinopharm
Chemical Reagent. All reagents are analytical grade. Nafion
perfluorinated resin solution (5 wt% in lower aliphatic alcohols
and water, contained 15–20% water) was purchased from Sigma-
Aldrich. The high purity platinum target material (99.95%) was
purchased from Shijiazhuang Dongming New Material
Technology Co., Ltd. All of our experiments used deionized
water. All reagents are used as received reagents without
further purification.

Fabrication of Triphase/Diphase Electrode
1) The hydrophobic porous PE membrane was cut into a

rectangle, cleaned with alcohol 3–4 times and dried with

Ar, then was tightly against an interdigital electrode mask
and directly deposited by automatic sputter coater (GVC-
2000, Hezao) of a platinum target for 300 s at 30 mA. Thus, a
triphase Pt-Pt electrode was prepared. (2) Au electrocatalysts
were electrodeposited onto the Pt detection electrode at 0 V vs.
Ag/AgCl for 100, 200, 400 and 600 s in 5 mM chloroauric acid
solution (10 g/L in DI water), respectively. Then, a triphase Pt-
Au electrode was prepared. (3) The 50 μL mixed solution of
Nafion (5 wt% in DI water) drop cast onto the triphase Pt-Au
electrode with an area of 0.7 cm × 1.0 cm and dried in an oven
for 0.5 h at 60°C. For controlled experiment, a diphase Pt-Pt
electrode was also prepared in a similar way using a
hydrophilic non-porous PET membrane as substrate.

Characterization
The morphology was characterized by FE-SEM (SU8010,
Hitachi) and the element mapping distribution is characterized
by Evo-SEM (EVO18, Zeiss). The water contact angle was
measured by a contact angle goniometer (Jc 2000d6,
Poareach). Electrochemical measurements were carried out at
room temperature using the CHI 660E workstation (CH
Instruments, Inc.).

Measurement Methods
Electrochemical measurements were performed using a CHI
660E electrochemical workstation with a three-electrode
system. The triphase/diphase electrode consisting of an OH−

production electrode and a glucose detection electrode was used
as the working electrode. A Pt wire was as the counter electrode
and an Ag/AgCl (3 M KCl) was as the reference electrode.
Na2SO4 solution was used as the electrolyte. 1) The potential
of OH− production was determined by linear sweep voltammetry
in Ar or O2 atmosphere, at a scan rate of 50 mV s−1. 2) The pH-
potential curve measurement was conducted using
chronopotentiometer with a current of 5 μA for 30 s in
solutions with different pH. The dynamic surface pH of the
detection electrode was carried out using chronopotentiometer as
mentioned above after the OH− production step. 3) Two steps to
the working electrode were used to measure glucose
concentrations, including a negative potential of −0.6 V vs. Ag/
AgCl for 20 s on the OH− production electrode and 0.4 V vs. Ag/
AgCl for 10 s on the detection electrode. 4) Selectivity tests were
performed by amperometric measurement at 0.4 V after OH−

production step. A series of interferents (50 μM of ascorbic acid,
lactic acid, galactose, acetaminophen and sodium chloride) were
added to the solution after the addition of 0.5 mM glucose using
the triphase Nafion-coated Pt-Au electrode.

RESULTS AND DISCUSSION

The triphase electrode illustrated in Figure 1 was constructed by
choosing a hydrophobic porous polyethylene (PE) membrane
(Figure 2A) as the substrate. The PE membrane has an average
pore size of about 200 nm (Figure 2B) and a thickness of about
25 μm (Figure 2C). Contact angle (CA) analysis of the PE
membrane shows a CA of about 120 ± 2° (inset of Figure 2B),
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indicating a hydrophobic surface property. Platinum (Pt)metal, with
good oxygen reduction and electrochemical glucose oxidation
capabilities (Briega-Martos et al., 2017; Lee et al., 2018), was
chosen as a model electrocatalyst to prepare the Pt-Pt electrode.

As shown in Figure 2D,E and Supplementary Figure S1, the Pt-Pt
electrode has eight pairs of electrodes, a width of 200 μm and a gap
distance of 100 μm. After Pt deposition the porous structure of the
PE substrate was maintained (Figure 2F), which facilitates rapid

FIGURE 1 | Schematic illustration of the triphase non-enzymatic sensor. The sensor consists of a hydrophobic porous substrate, an electrode for local alkalinity
generation via oxygen reduction reaction, and an electrode for electrocatalytic glucose oxidation reaction. Sufficient oxygen supplied from the air phase was reduced to
OH− at the triphase interface, leading to a high interface pH for electrocatalytic glucose oxidation. The electrode architecture makes the non-enzymatic glucose detection
independent of the solution pH. During the experiment, a negative potential was first applied to the OH− production electrode to generate a local alkaline
microenvironment, and then a positive potential was applied to the detection electrode for electrochemical glucose oxidation.

FIGURE 2 | (A,B) Scanning electron microscopy (SEM) images of the porous polyethylene membrane substrate at low and high magnification, respectively. Insets
in (A,B) show photographs of the membrane and water droplets on it with a contact angle of about 120 ± 2°. (C) Cross-section SEM image of the membrane with a
thickness of about 25 μm. (D) Photograph of Pt-Pt electrodes sputtered on the porous substrate with eight pairs of electrodes. (E,F) are SEM images of the Pt electrode
at low and higher magnifications. The electrode band-width is 200 μm, the gap between the interdigitated electrodes is 100 μm. The Pt electrode also has a porous
structure.
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oxygen transport from the free space of the porous hydrophobic PE
membrane to the electrode surface. For the control experiment, a
conventional solid–liquid diphase electrode was also fabricated on a
non-porous flat hydrophilic polyethylene terephthalate (PET)
substrate (Supplementary Figure S2).

The performance of the triphase electrode for local alkalinity
generation was first investigated. Figure 3A shows linear sweep
voltammetry (LSV) of Pt electrode in 0.1 M sodium sulfate
(Na2SO4) solution saturated with Ar or O2. Water reduction
was apparent when the potential was negative than
approximately −0.6 V vs. Ag/AgCl (black cure in Figure 3A),
while a much higher potential was sufficient for O2 reduction to
OH− (red curve in Figure 3A; Supplementary Figure S3). In
order to obtain the high OH− production capacity and avoid the
hydrogen evolution reaction to generate hydrogen bubbles,
which would affect glucose transmission and the accuracy of
detection, a potential of −0.6 V (vs. Ag/AgCl) was chosen for
OH− production in this work. The OH− ions produced diffused
outwards and led to an increase in pH near the surface of the
adjacent glucose detection electrode.

To determine the pH value at the surface of the detection
electrode after OH− production, a chronopotentiometer was
used to apply a constant current (5 μA) at the detection

electrode in solutions with different pH values (10.0–14.0)
(Figure 3B). The relationship between the pH values and the
potentials was recorded (inset of Figure 3B) according to the
effect of OH− concentration on the potential of the oxygen
evolution reaction (4OH−→ 2H2O + O2+ 4e−) (Dresp et al.,
2021; Maruthapandian et al., 2017; Yin and Liu, 2020). Thus,
the dynamic pH value near the surface of the Pt detection
electrode was measured after OH− production. As shown in
Figure 3C, the measured interfacial pH values were all above
11 for solutions with bulk pH of 5–8.0 when the time course of
OH− production step is longer than 20 s. Thus, to ensure the
reproducibility for further experiments a time course of 20 s
was chosen for the OH− production step.

The triphase Pt-Pt electrode was then used for glucose detection
(Supplementary Figure S4). The cyclic voltammograms of the
triphase or diphase detection electrodes in 0.10M Na2SO4, with
or without 20 mM glucose after OH− production step, are shown in
Figure 3D. The anodic current increased upon the addition of
glucose for the triphase electrode (red solid curve), while a negligible
anodic current increase was recorded (red dotted curve) for the
diphase electrode, due to the lack of sufficient oxygen and the
insufficient alkalinity needed for electrocatalytic glucose oxidation.
Figure 3E shows that the anodic current response of the triphase

FIGURE 3 | (A) Linear sweep voltammetry curves of the Pt detection electrode in Ar and O2 saturated 0.10 M Na2SO4 solution. (B) Potentials of the detection electrode
measured in solutions of different pH with a constant current (5 μA). Inset is the linear relationship between potentials derived at 20 s and solution pH values. (C) Changes in pH
value over time at the detection electrode upon application of a potential of −0.6 V at the OH− production electrode in electrolyte with different pH values. The error bar represents
the standard deviation for two replicatedmeasurements. (D)Cyclic voltammetry curves obtained in a 0.1 MNa2SO4 solutionwith or without 20 mMglucose using a triphase
or diphase Pt-Pt electrode after theOH− production step. (E)Amperometric i-t curves corresponding to the triphase Pt-Pt electrodewith glucose concentrations up to 40 mM. (F)
Corresponding calibration plots of triphase and diphase electrodes derived from (E) and Supplementary Figure S5 at 6 s ΔCurrent = Currents - Current0; Current0 is the
background current; and Currents is the current measured in the solution with different glucose concentrations.
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electrode increased with glucose concentration to approximately
40mM. The current response versus glucose concentration
(Figure 3F) shows that the triphase electrode displayed a linear
detection range to about 30 mM (red line), and the sensitivity was
2.1 μA mM−1 cm−2. In remarkable contrast, negligible current
increase was observed for the diphase electrode as the glucose
concentration increased (Figure 3F; Supplementary Figure S5).
These results confirm sufficient oxygen was supplied at the triphase
interface, and non-enzymatic glucose detection was achieved in
neutral solution.

The performance of the triphase non-enzymatic sensor can
be further improved by alternating the electrocatalysts of the
detection electrode. Au is a commonly used and stable
electrocatalyst with high activity towards glucose oxidation in
alkaline solution (Zhong et al., 2017). To improve the device
performance, different amounts of Au nanoparticles were
electrodeposited on the detection electrode (Pt) by adjusting
deposition time. The morphologies of the Pt-Au electrode were
further characterized. As shown in Figure 4A, the color of the
detection electrode turned from black to dark yellow after Au
catalyst deposition. Figure 4B shows SEM image of the Pt-Au
electrode. The existence and distribution of the Au catalysts
were confirmed by elemental mapping (Figure 4B, right) and
energy dispersive X-ray spectroscopy (EDS) analysis
(Supplementary Figure S6). Au particles have a diameter of

200-500 nm (Figure 4C) and were uniformly distributed on the
surface of the detection electrode.

We then explored the performance of the triphase electrode after
Au deposition. As shown inFigure 4D, a strong anodewave (red solid
curve) is observed on the detection electrode at 0.4 V (vs. Ag/AgCl),
due to the carbonyl oxidation of glucose. Interestingly, its glucose
oxidation current was much higher than that of the detection Pt
electrode without Au electrocatalyst (red dotted curve). This indicates
that the introduction ofAu can effectively improve the performance of
glucose oxidation. Thus, the performance of Pt-Au electrodes with
different Au electrodeposition times (100, 200, 400 and 600 s) was
further investigated. As shown in Figure 4E and Supplementary
Figure S7, with the increase in electrodeposition time, the sensitivity
of the electrode for glucose detection increased, but the linear
detection upper limit decreased (Figure 4F). We reasoned that
increasing the amount of Au catalysts would increase the number
of available active sites for glucose oxidation and consequently lead to
a higher reaction rate and sensitivity. A higher reaction rate generally
results in faster OH− consumption at the interface microenvironment
and makes the detection of glucose at high concentrations difficult.
These results indicate that glucose detection with different sensitivity
and linear range can be obtained by modifying the electrocatalysts on
the detection electrode.

Apart from the linear dynamic range and sensitivity,
selectivity is also a crucial parameter for non-enzymatic

FIGURE 4 | (A) Photograph of the triphase electrodes after 400 s Au electrocatalyst deposition on the Pt detection electrode. (B) SEM image of the triphase Pt-Au
electrodes (left) and the corresponding Au elemental mapping distribution (right). (C) SEM images of the Au nanoparticles with diameter ranging from 200 to 500 nm. The
inset is an enlarged SEM view of the Au nanoparticles. (D) Cyclic voltammetry curves of the Pt-Pt and Pt-Au electrodes obtained in solutions with or without glucose
(0.5 mM). (E)Corresponding calibration plots of the electrodes with different Au electrodeposition times (100, 200, 400 and 600 s) derived from their amperometric
i-t curves (Supplementary Figure S7) at 6 s. (F) Relationship between the linear detection range (black curve) and the sensitivity (red curve) of electrodes with different
Au electrodeposition times.
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sensors. To reduce the influence of interferents, the surface of
the Pt-Au electrode was coated with a layer of Nafion, as
illustrated in Figure 5A. Figure 5B is a SEM top view of the
Nafion film on the Pt-Au electrode surface. The negatively
charged Nafion film can selectively restrict the diffusion of
some kinds of anions from the solution to the electrode
surface without affecting the detection of glucose (Cao et al.,
2013; Chen et al., 2015). The performance of nafion-coated Pt-
Au electrode was evaluated after the OH− production step. As
shown in Figure 5C, the glucose oxidation current of the nafion-
coated triphase Pt-Au electrode significantly increased after
0.5 mM glucose addition (red curve).

Interfering compounds, including ascorbic acid, lactic acid,
galactose, acetaminophen, and sodium chloride (NaCl), were
then added into the sample matrix in large excess compared
with that in human perspiration (Lu et al., 2019; Zhu et al., 2019).
As shown in Figure 5D, negligible interferences were observed
with the triphase Pt-Au electrode while measuring glucose in the
presence of interfering compounds. Figure 5E shows the
electrode responses in glucose solution with concentrations up
to 2.5 mM. A linear detection upper limit of about 1.5 mM and
sensitivity of 179.1 μA mM−1 cm−2 were obtained (Figure 5F).
This result indicates that the Nafion layer on the electrode surface

can not only reduce the effects of some kinds of interference but
also ensure the detection of glucose. In addition, the repeatability
of the nafion-coated electrode was also assessed. Supplementary
Figure S8 shows 100 successive measurements of 0.5 mM glucose
using the same biosensor. A relative standard deviation of only
2.34% was observed for these measurements, indicating good
repeatability.

CONCLUSION

In summary, we have fabricated a triphase electrode that enables
electrocatalytic glucose oxidation and non-enzymatic sensing in
neutral solution. Using the air-solid-liquid triphase electrode,
sufficient oxygen was available from the air phase for the
generation of a local interfacial alkaline microenvironment
via oxygen reduction reaction. This sensor is superior to
other non-enzymatic ones because it does not require an
electrolyte with high pH. Moreover, the triphase non-
enzymatic electrode with tunable performance including
sensitivity and linearity, can be obtained by choosing suitable
electrocatalysts, which endows great potential for practical
applications in different scenarios.

FIGURE 5 | (A) Schematic of the Nafion layer on the Pt-Au electrode surface. (B) SEM image of the Nafion film-coated electrode. The inset is an enlarged view of the
surface of the Au electrode. (C) Cyclic voltammetry curves obtained in a 0.1 M Na2SO4 solution with or without 0.5 mM glucose, using the nafion-coated triphase Pt-Au
electrode, respectively. (D)Histogram of the interference effects on the electrode while measuring 0.5 mM glucose at 0.4 V vs. Ag/AgCl. The concentration of interferents
was 0.05 mM, including ascorbic acid, lactic acid, galactose, acetaminophen and sodium chloride (NaCl). (E) Amperometric i-t curves corresponding to the nafion-
coated electrode with glucose concentrations up to 2.5 mM. (F) Corresponding calibration plots of nafion-coated triphase electrode derived from (E) at 6 s.
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