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Abstract: The transition-metal chalcogenides (TMDs) are gaining increased attention from many
scientists recently. Monolayer MoS2 is an emerging layered TMD material with many excellent
physical and electrical properties. It can be widely used in catalysis, transistors, optoelectronics
and integrated circuits. Here, the large-sized monolayer MoS2 is grown on the silicon substrate
with a 285-nm-thick oxide layer by atmospheric pressure chemical vapor deposition (APCVD) of
sulfurized molybdenum trioxide. This method is simple and it does not require vacuum treatment.
In addition, the effects of growth conditions, such as sulfur source, molybdenum source, growth
temperature, and argon flow rate on the quality and area of MoS2 are further studied systematically.
These analysis results help to master the morphology and optical properties of monolayer MoS2.
The high quality, excellent performance, and large-size monolayer MoS2 under the optimal growth
condition is characterized by optical microscopy, AFM, XPS, photoluminescence, and Raman
spectroscopy. The Raman spectrum and PL mapping show that the grown MoS2 is a uniform
triangular monolayer with a side length of 100 µm, which can pave the way for the applications of
photodetectors and transistors.

Keywords: monolayer MoS2; APCVD; Raman spectrum; growth condition; PL spectrum

1. Introduction

In recent years, two-dimensional materials have been a hot topic in Nano-electronic research [1–3].
Many scientists have conducted extensive research on graphene with ultra-thin, ultra-strong and
super-conductive properties. The pristine graphene has no band gap, so it cannot be used in the logic
circuits. To compensate for the lack of band gap in graphene, researchers have begun to focus on
the monolayer MoS2 with its graphene-like structure [4]. Monolayer MoS2 has a sandwich layered
structure, the upper and lower layers are hexagonal planes composed of sulfur atoms, and the middle
is a metal molybdenum atomic layer [5]. The atoms in monolayer MoS2 are covalently bonded,
whereas multilayer MoS2 is bonded by the weak van der Waals force, and the space between adjacent
layers is about 0.7 nm [6]. The band gap of MoS2 decreases with an increase of the number of layers
due to quantum confinement [7]. Monolayer MoS2 has a direct band gap of 1.90 eV, which has the
best luminescence properties. However, multilayer MoS2 has an indirect band gap of 1.29 eV [8,9].
As graphene-like material, the direct-bandgap semiconductor has excellent electrical and optical
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properties, so it can be used in the fabrication of photodetectors [10], transistors [11,12], sensors [13,14],
and logic circuits.

There are two methods for the synthesis of monolayer MoS2: The top-down peeling method
and the bottom-up growth method. It has been reported in the literature that the size of monolayer
triangular MoS2 is 20–30 µm generally [15–17]. Novoselov et al. obtained monolayer MoS2 with the
side length of 10 µm by the micromechanical stripping method, which is simple in process but low
in yield and poor in repeatability [18]. Zeng et al. used the lithium ion intercalation method to grew
monolayer MoS2 with the size of 20 µm [19]. This method has high stripping efficiency, large area and
wide range, but the operation is complicated and the cost is high. Yan et al. used the hydrothermal
method to obtain 4–6 nm thick MoS2 nano-sheets. The ammonium tetrathiomolybdate was used in
a hydrothermal method, which has the advantages of simple operation, mild conditions, and low
pollution, but it cannot control the synthesis of monolayer MoS2, and the crystallization quality is
poor [20]. Zhan et al. and Lin et al. deposited Mo and MoO3 on the SiO2/Si substrate and the sapphire
substrate, respectively. The deposited Mo and MoO3 are reacted with sulfur to grow the MoS2 film.
The method is complicated and it is also difficult to control the deposition of uniform monolayer
MoS2 film [21]. The current existing problem is that small-size monolayer MoS2 cannot meet the
requirements for the application of optoelectronic devices. Therefore, the growth of the monolayer
MoS2 with high quality, large size, and excellent performance has been became a research hotspot.

Here, the high quality, large-size monolayer MoS2 was grown on the Si substrate with
285-nm-thick SiO2 by atmospheric pressure chemical vapor deposition (APCVD) of sulfurized
molybdenum trioxide. This growth method is simple, and it does not require vacuum treatment.
The detailed growth parameters are: Temperature T = 720 ◦C, mass of the MoO3 powder M1 = 3 mg,
mass of the S powder M2 = 100 mg, argon flow rate R = 35 sccm. Compared to previous literature
reports, the grown MoS2 by APCVD is a uniform triangular monolayer with a side length of 100 µm.
The specific sections are as follows: Section 2 introduces the specific growth experiment of MoS2,
including substrate cleaning, heating process, and characterization methods. In Section 3, the growth
experiments are studied in detail, and the optimal growth conditions are obtained. In Section 4, MoS2

sample under the optimal growth conditions is characterized by optical microscopy, AFM, XPS, Raman,
and photoluminescence spectroscopy systematically. Section 5 is the conclusion of this paper.

2. Experimental Methods

The specific experiment steps are provided here. First, the 4-inch silicon wafer with a thickness
of 285 nm SiO2 was cut into square small pieces with an area of 4–6 cm2 by a diamond pen. Then,
the SiO2/Si substrates were placed into acetone, deionized water, absolute ethanol, and deionized
water for ultrasonic cleaning in 15 min, 10 min, 15 min, and 10 min, respectively [22]. And these
cleaned substrates were blown dry with the nitrogen gas gun. Subsequently, a certain mass of sulfur
powder (purity, 99.5%, Alfa Aesar, Shanghai, China) and MoO3 powder (purity, 99.95%, Alfa Aesar,
Shanghai, China) were weighed by the electronic analytical balance, and then put into two quartz
boats, respectively. Next, the first quartz boat with S powder was placed in the low temperature zone
of the tube furnace, and then the second quartz boat with MoO3 powder and SiO2/Si substrate was
placed in the middle position of the tube furnace, wherein the cleaned SiO2/Si substrate was placed
face down on the downstream from the MoO3 powder for 5 cm, as shown in Figure 1a. Afterwards,
the argon gas (purity, 99.999%) was inserted into the tube furnace in order to purge the air in the
tube furnace, a flow rate of 300 sccm (1 sccm = 1 mL/min) argon gas was then introduced in the
tube furnace for 5 min before the heating process. Figure 1b shows the growth mechanism of MoS2.
During the heating process, argon gas with a flow rate of 35 sccm was continuously supplied as the
carrier gas. It can be observed from Figure 1c that the temperature of the SiO2/Si substrate rises from
room temperature to 550 ◦C in 20 min initially, then rises to 720 ◦C in 10 min, and maintains the growth
temperature 720 ◦C in 10 min, and then cools to room temperature naturally. Finally, the samples were
taken out and some characterizations on the grown MoS2 samples were executed.
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Figure 1. (a) Schematic illustration of the single temperature zone chemical vapor deposition (CVD)
system; (b) schematic diagram of the MoS2 growth; (c) temperature change curve diagram of the
SiO2/Si substrate.

To characterize the surface morphology of grown MoS2, the new generation of high-resolution
Raman spectrometer LabRam HR Evolution produced by HORIBA Jobin Yvon, was used. First,
the MoS2 sample was placed on the stage of the microscope, then the Hg lamp emit laser light to
the MoS2 sample. Subsequently, the scattered light from the monolayer MoS2 was collected and
removed by the coupled optical path and the Rayleigh filter, respectively. Finally, the light was be
converted into electrical signal by the charge coupled device (CCD), which is a special semiconductor
device with many photosensitive elements in the LabRam HR Evolution with the single grating.
The specific test conditions were: Spectral range of 300–450 cm−1; PL of 600–800 nm; spectral resolution
≤ 0.65 cm−1; spatial resolution was Lateral ≤ 1 µm, longitudinal ≤ 2 µm; Raman spectrum of 10 mW;
PL spectrum of 25 mW; the scan time of 10 s; and the accumulation time of 3 s. The Raman and
photoluminescence characterization were measured by using the LabRam HR Evolution with 532 nm
laser and 50 × objective [23–25]. At the same time, in order to master the growth mechanism of
monolayer MoS2, the X-ray photoelectron spectroscopy and Atomic Force Microscope, were also used.

3. The Experimental Results and Discussion

3.1. Effects of the Growth Temperature on MoS2

Figure 2a is an optical micrograph of MoS2 grown at 670 ◦C. A small amount of triangular
monolayer MoS2 on the substrate, 8–10 µm in size, was observed. The temperature was lower,
the MoO3 powder evaporated slowly, and most of the MoO3 was carried away by the argon gas, which
resulted in a small amount of MoS2 deposit on the substrate. Figure 2b shows a very regular triangular
MoS2, and that the single crystal size can reach up to 40 µm, which indicates that the gas concentration
of MoS2 is sufficient and the nucleation density of MoS2 increases when the growth temperature is
720 ◦C. In Figure 2c, the substrate exists as both triangular MoS2 and some body materials, which is
due to the temperature being too high and the MoO3 powder evaporating quickly, thereby forming
a mixture of MoO3 and MoS2. The above analysis indicates that 720 ◦C is the ideal temperature for
growth of the monolayer MoS2.

3.2. Effects of the Mass of MoO3 Powder on MoS2

The mass of MoO3 has a direct impact on the growth of MoS2 crystals. Under the premise that
other growth conditions are consistent, 1 mg, 3 mg, and 5 mg of the MoO3 powder were weighed
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during the experiment, respectively. Figure 3a is an optical microscope image of MoS2 when the mass
of MoO3 is 1 mg. It can be found that the size of the triangular single crystal MoS2 is about 10 µm,
the surface of the sample is clean, and the contrast between the sample and the substrate is obvious.
This is because the amount of MoO3 was small, which lead to low nucleation density. Figure 3b
shows that the size of single crystal MoS2 can be as large as 30 µm, and the morphology of the sample
was better, which reveals that the Mo:S ratio is >1:2 and the gas concentration of MoS2 is sufficient
in this area. Meanwhile, the nucleation density is high. In Figure 3c, there is no obvious triangular
single crystal MoS2, and the surface of SiO2/Si substrate is covered with fine black particles when the
amount of MoO3 is increased to 5 mg. The reason is that the excessive amount of molybdenum source,
which resulted in a large nucleation density and MoS2, grew toward the bulk material. From the above
comparison, it can be found that the optimum mass of MoO3 is 3 mg.Materials 2018, 11, 16 FOR PEER REVIEW  4 of 11 
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3.3. Effects of the Mass of S Powder on MoS2

In Figure 4a, when the mass of S powder was 50 mg, some small triangles and black dots were
formed on the substrate, the ratio of Mo:S was <1:2. The sulfur powder was too little to provide enough
S gas to react with MoO3, which caused the MoO3 to be deposited on the substrate in the form of
particles. Figure 4b shows that the shape of MoS2 is very regular, and the size of MoS2 can reach up to
40 µm, which reveals that the nucleation density is high and the gas concentration of MoS2 is sufficient
in this area. Meanwhile, when the Mo:S ratio was >1:2, it increased the size of MoS2. When the mass
of sulfur powder was increased to 150 mg, the shape of MoS2 in Figure 4c was the same as that in
Figure 4b. When the Mo:S ratio was >1:2, it produced lager triangles. It can be inferred that the mass of
S powder should be excessive during the experiment, which is beneficial to the growth of monolayer
MoS2. The optimum mass of S powder is 100 mg according to the above results.
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3.4. Effects of the Argon Flow Rate on MoS2

The high purity argon gas had two functions during the experiment. The first was to prevent
impure gas from entering the tube furnace so that the reaction of sulfurized molybdenum trioxide
would be carried out in the argon gas. The second was to transport S gas to the high temperature zone
to react with the MoO3 gas. Finally, the MoS2 was transferred on the surface of substrate.

Figure 5a shows a mixture of MoO2 and MoS2 on the substrate. Owing to the sufficient S, gas could
not be transported to the top of the MoO3, and the synthesis efficiency of MoS2 gas was relatively
low, which limited the growth response of MoS2 when the argon flow rate is 20 sccm. In Figure 5b,
it is observed that the shape of the MoS2 is triangular, and the MoS2 single crystal has a size of
60 µm when the argon gas flow rate is 35 sccm. The suitable argon flow rate caused the reaction of
sulfurized molybdenum trioxide more thoroughly, which can make the gas concentration of MoS2

higher. In Figure 5c, the size of the MoS2 single crystal is greatly reduced, and the number of monolayer
MoS2 is also sparse. It can be inferred that the surface of SiO2/Si substrate is not conducive to the
nucleation and growth of monolayer MoS2 when the gas flow is 50 sccm. When the flow rate of argon
gas becomes larger, the gas concentration and the nucleation density of MoS2 become smaller, resulting
in the size of the triangular MoS2 becomes smaller. In summary, the optimal argon flow rate is 35 sccm.
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According to the above analysis, the optimal growth conditions for monolayer MoS2 were
obtained by atmospheric pressure chemical vapor deposition. The optimal growth parameters were:
720 ◦C temperature, 3 mg MoO3 powder, 100 mg S powder, and 35 sccm argon gas. At the same time,
the Atomic Force Microscope, Raman spectroscopic, and X-ray photoelectron spectrum were used to
analyze the prepared monolayer MoS2 sample under optimal growth conditions.

4. The Characterization of Monolayer MoS2 under Optimal Growth Conditions

In Figure 6, it is observed that the grown MoS2 is a triangle with a size of 100 µm, which is much
larger than the peeled off sample micromechanically. When the growth of MoS2 is under optimal
growth conditions, the gas concentration of MoS2 is the largest and the nucleation density reaches a
maximum. Moreover, the surface of the grown MoS2 is uniform, and the contrast between the sample
and SiO2/Si substrate is obvious. Therefore, the grown MoS2 by optimal conditions can be judged to
be a single-layer initially.
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Raman spectrum has become an effective method for the detection and identification of films
prepared by chemical vapor deposition (CVD). The optical properties of monolayer MoS2, obtained
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under optimal growth conditions, are characterized by Raman and PL spectroscopies. These spectral
measurement conditions were in a super-clean lab with constant temperature and humidity. Figure 7a
shows two obvious characteristic peaks in the Raman spectrum of MoS2, E1

2g: 384.6 cm−1, A1g:
403.6 cm−1, which is fitted by the Gaussian-Lorenze curve. The E1

2g peak corresponds to the vibration
of sulfur atoms in the horizontal plane, and A1g peak represents the vibration of sulfur atoms in the
vertical horizontal plane direction. Due to the gradual increase of the van der Waals force, the E1

2g

characteristic peak was blue-shifted, and the A1g characteristic peak was red-shifted when the number
of layers was reduced [26]. Therefore, the layer number of MoS2 sample can be determined based on the
wavenumber difference of two characteristic peaks A1g and E1

2g modes. It can be seen from the above
two peak positions in Figure 7a that the wavenumber difference is about 19 cm−1, and the intensity
ratio of E1

2g/A1g ≈ 0.95, which indicates that the grown MoS2 sample is a monolayer. Figure 7b is a
triangular MoS2 single crystal with Raman mapping image of the A1g peak intensity (4000 points total),
which is randomly selected on the grown MoS2 sample. It can be seen from Figure 7b that the thickness
of triangular MoS2 is uniformly high. To the best of our knowledge, when MoS2 transforms from bulk
material into monolayer material, the band gap changes from indirect band gap to direct band gap,
and the fluorescence efficiency is enhanced significantly. Figure 7c shows the PL spectrum fitted by
the Gaussian-Lorenze curve, the two main exciton peaks of the monolayer MoS2 luminescence are
located at 642 nm (B excitons) and 691 nm (A excitons), respectively. The neutral excitons of A and
B arise from valence band to conduction band transitions within the direct band gap of monolayer
MoS2, directly. The relative contribution of excitons and triangles determines the peak position of PL
spectrum. The shape of PL spectrum is consistent with the previous reported result of monolayer
MoS2 obtained by mechanically exfoliated, CVD, physical vapor deposition (PVD), and so on [27–29].
Due to strain during thermal growth and different test environments, the peak position of A and B
exciton results in a small fluctuation shift, which is within the allowable range [30]. According to
the conversion relationship between wavelength and electron volt, the photon energy is inversely
proportional to the wavelength:

E = h × H =
h
k
× C

λ
=

1243
λ

(1)

In the formula (1), the symbol E, h, C, λ and k refer to the energy, Planck constant, light speed,
wavelength and constant, respectively. Their units respectively are eV, J·s, nm/s, nm and J/eV.

The strongest luminescence peak is at 691.6 nm, the transition energy level is about 1.80 eV in
Figure 7c. It is known that the direct band-gap of monolayer MoS2 is 1.8–1.9 eV, which can further
prove that the sample is a monolayer MoS2. Figure 7d is the power-dependent PL spectrum of
monolayer MoS2 under ambient condition, it can be seen that the PL intensity increases as laser power
increases, and the relative positions of the A and B neutral excitons in the PL spectrum take place
red-shifting, when the laser power increases due to the n-type doping of SiO2/Si substrate.

In order to obtain the binding energy of grown MoS2, the X-ray photoelectron spectroscopy (XPS)
of Theta 300 XPS system, produced by Thermo Fisher, was adopted. The specific test conditions were:
Source Gun Type: Al K Alpha; Spot Size: 650 µm; Lens Mode: Standard; Analyser Mode: Pass Energy
30.0 eV of CAE; Energy Step Size: 0.100 eV; Number of Energy Steps: 181, the number of scans in
S2p and Mo3d is 8 and 7, respectively. The X-ray photoelectron spectrum image of the MoS2 sample
is shown in Figure 8, it can be observed that the MoS2 sample have Mo4+ and S2− signals, which is
consistent with the results reported in the literature [31]. The 3d orbital peaks of Mo are at 229.17 eV
and 232.17 eV, corresponding to 3d5/2 and 3d3/2 orbitals respectively. The 2p orbital peaks of S are
at 161.97 eV and 163.27 eV, corresponding to 2p3/2 and 2p1/2 orbitals respectively. At the same time,
the atomic percentages of Mo3d and S2p elements are 5.42% and 11.36%, respectively, which indicates
that the ratio of the atomic numbers of Mo and S is approximately 1:2. It indicates the presence of
monolayer MoS2.
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Figure 7. Raman and photoluminescence spectrum of the monolayer MoS2. (a) is the Raman spectrum
of MoS2 corresponding to Figure 6, wherein the black line corresponds to Figure 6a, and the red line
corresponds to Figure 6b; (b) is the Raman mapping of A1g; (c) shows the MoS2 photoluminescence
spectrum corresponding to Figure 6. The black line corresponds to Figure 6a, and the red line
corresponds to Figure 6b; (d) is the power-dependant PL spectrum under ambient condition.
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Figure 9a shows that the surface roughness of MoS2 sample is extremely low, the contrast and
height of the sample surface are not changed obviously, which indicates the formation of monolayer
MoS2 [32]. The height of the MoS2 sample in Figure 9b is around 0.72 nm. Therefore, it further
evidences that the grown MoS2 is a single layer.
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5. Conclusions

The large-size and high-quality monolayer MoS2 is grown on the Si substrate with a 285-nm-thick
oxide layer by APCVD. The effects of MoO3 powder, S powder, temperature and argon flow rate
on the growth of MoS2 are analyzed systematically. The optimum growth condition parameters for
monolayer MoS2 are: 720 ◦C temperature, 3 mg MoO3 powder, 100 mg S powder and 35 sccm argon
gas. The above results can effectively help us to understand the morphology and optical properties of
monolayer MoS2. The optical microscopy, XPS, AFM, Raman, and photoluminescence spectroscopy
are used to characterize the grown monolayer MoS2 under optimal condition. The results show that
the grown MoS2 sample is a single layer with the size of 100µm, which can pave the way for the
applications of photodetectors and transistors.
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