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Abstract

Vascular Endothelial Growth Factor (VEGF) is a major regulator of angiogenesis. VEGF expression is up regulated in response
to micro-environmental cues related to poor blood supply such as hypoxia. However, regulation of VEGF expression in
cancer cells is not limited to the stress response due to increased volume of the tumor mass. Lipid mediators in particular
arachidonic acid-derived prostaglandin (PG)E2 are regulators of VEGF expression and angiogenesis in colon cancer. In
addition, increased osmolarity that is generated during colonic water absorption and feces consolidation seems to activate
colon cancer cells and promote PGE2 generation. Such physiological stimulation may provide signaling for cancer
promotion. Here we investigated the effect of exposure to a hypertonic medium, to emulate colonic environment, on VEGF
production by colon cancer cells. The role of concomitant PGE2 generation and MAPK activation was addressed by specific
pharmacological inhibition. Human colon cancer cell line Caco-2 exposed to a hypertonic environment responded with
marked VEGF and PGE2 production. VEGF production was inhibited by selective inhibitors of ERK 1/2 and p38 MAPK
pathways. To address the regulatory role of PGE2 on VEGF production, Caco-2 cells were treated with cPLA2 (ATK) and COX-
2 (NS-398) inhibitors, that completely block PGE2 generation. The Caco-2 cells were also treated with a non selective PGE2

receptor antagonist. Each treatment significantly increased the hypertonic stress-induced VEGF production. Moreover,
addition of PGE2 or selective EP2 receptor agonist to activated Caco-2 cells inhibited VEGF production. The autocrine
inhibitory role for PGE2 appears to be selective to hypertonic environment since VEGF production induced by exposure to
CoCl2 was decreased by inhibition of concomitant PGE2 generation. Our results indicated that hypertonicity stimulates VEGF
production in colon cancer cell lines. Also PGE2 plays an inhibitory role on VEGF production by Caco-2 cells exposed to
hyperosmotic stress through EP2 activation.
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Introduction

Formation of new blood vessels from pre-existing vasculature is a

central process in the development of most tumors especially solid

ones. This process is called angiogenesis and is regulated by the

balance of negative and positive biochemical signals. The newly

formed blood vessels are responsible for supplying oxygen and

nutrients for the growing tumor mass and a route for dissemination

of metastatic cancerous cells. VEGF is the most prominent positive

regulator of angiogenesis due to its ability to recruit endothelial cells

to hypoxic sites and to stimulate the proliferation of this cellular

type, promoting the differentiation of vascular structures [1]. VEGF

expression correlates positively with negative outcome in cancer

patients. In colon cancer, expression of VEGF correlates with

increased metastatic potential [2], while expression of its receptor is

a marker of shorter post-operative survival [3].

VEGF expression is up regulated in response to micro-

environmental cues related to poor blood supply such as hypoxia

[4], acidosis [5] and low nutrient levels [6]. In tumors, decreased

levels of O2 leads to HIF-1a stabilization, a subunit of the

transcriptional factor HIF-1, and subsequent transcriptional

activation of genes presenting a hypoxia-responsive element

(HRE) in their promoters, such as VEGF. However, VEGF

expression regulation in cancer cells is not limited to the stress

response due to the increased volume of the tumor mass. Several

other factors have been shown to induce VEGF such as reactive

oxygen species [7–9], growth factors [10,11], cytokines [12], and

lipid mediators [13–16]. Arachidonic acid-derived prostaglandin

(PG)E2 is a major regulator of VEGF expression and angiogenesis

in several different cancer types and in colon cancer in particular.

Exogenous PGE2 induces HIF-1a stabilization [13] and VEGF

expression [17] in colon cancer cell lines. VEGF and COX-2

expression and tumor angiogenesis are positively correlated in

colon cancer samples [18–20].

However, hypoxia is not the only external stress stimulus which

activates cellular responses in colon cancer. The continuously
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changing contents of intestinal lumen expose normal and

cancerous epithelial cells to a myriad of stimuli. Such physiological

stimulation may provide signaling for cancer promotion. In fact,

increased osmolarity that is generated during the process of

colonic water absorption and feces consolidation [21–23] appears

to activate colon cancer cells and promote COX-2 expression and

PGE2 generation but does not activate normal intestinal cells [24].

Our aim in this study was to determine the effect of hypertonic

stress on VEGF production by Caco-2 colon cancer cell line. The

potential role of autocrine PGE2 and MAPK signaling pathways in

the modulation of VEGF generation was also analyzed.

Methods

Reagents
Sodium chloride (NaCl) was obtained from Sigma Chemical

Co. (St. Louis, MO) and dissolved in sterile water for a stock

solution at 2 M concentration. The iPLA2 inhibitor, Bromoenol

lactone (BEL), the cPLA2/iPLA2 inhibitor, Arachidonyl Trifluor-

omethyl Ketone (ATK), and Prostaglandin E2 were purchased

from Cayman Chemical Co. (Ann Arbor, MI) and diluted in

ethanol accordingly to manufacturer’s instructions. The inhibitors

for COX-2, NS-398 (Cayman); p38, SB202190; JNK, SP600125;

MEK1/2, U0126 (all from BIOMOL, Plymouth Meeting, PA)

were diluted in DMSO (Sigma). Monoclonal antibodies for

immunoblot assays were anti-COX-2 IgG mouse (clone 33) from

BD Transduction Laboratories and anti-GAPDH (clone 6C5) IgG

mouse from Santa Cruz Biotechnology (Santa Cruz, CA), diluted

at 0.003 mg/mL. The goat HRP-linked secondary antibody anti-

mouse IgG from Santa Cruz Biotechnology was used at 0.1 mg/

mL.

Cell culture and treatments
Caco-2 (ATCC HTB-37, gift of Dr. José Morgado Dı́az,

Instituto Nacional de Câncer, Brazil) cell line was maintained in

Dulbecco Modified Eagle medium (DMEM) supplemented with

10% fetal bovine serum (FBS), 44 mM NaHCO3, 1 mM

NaH2PO4.H2O, 1 mM sodium pyruvate, 10 mM HEPES,

MEM vitamins solution, MEM essential and non-essential amino

acids solution, 2 mM L-glutamine, 55 mM b-mercaptoethanol,

100 U/mL penicillin, and 100 mg/mL streptomycin (all cell

culture reagents from Invitrogen). IEC-6 cell line (Rio de Janeiro

Cell Bank, Brazil) was maintained in DMEM supplemented with

5% FBS and 100 U/mL penicillin, and 100 mg/mL streptomycin.

Cells were maintained in culture flasks (cell growth surface area

25, 75 and 150 cm2). Cells were collected by 0.25% trypsin and

0.38 g/L EDTA in HBSS without Ca++ and Mg++ and 56105

cells/well were plated in 6-well flat-bottom plates (area of

9.03 cm2/well, Techno Plastic Products, Switzerland). 1.9 mL of

fresh supplemented DMEM culture medium was added to culture

wells with or without pharmacological inhibitors and cells were

incubated for 15 min (30 min for MAP kinases inhibitors) at 37uC.

All cells received the same amount of vehicle, therefore, the final

concentration was below 0.1% of DMSO or ethanol and did not

modify cell activation. Cells were stimulated with the addition of

0–100 mL of 2 M NaCl solution. DMEM was added to the well to

complete final volume of 2 mL. Final osmolarity of the medium

after addition of 100 mM NaCl was approximately 540 mOsm as

compared to 367 mOsm of isosmotic medium. Medium osmolar-

ity was empirically determined by freezing method using an

osmometer (Advanced Instruments Inc., Norwood, MA). To

minimize variation in the kinetic experiments the total time in

culture after plating was the same for every time point analyzed.

Determination of PGE2 and VEGF on supernatants
The PGE2 production by Caco-2 cell line was determined by

EIA in culture supernatant accordingly to manufacturer’s

instructions (Cayman) and as described before [25]. Briefly,

culture medium was collected 24 h after cellular activation by

hypertonic stress and centrifuged at 2506g for 5 min to remove

floating cells and frozen at 270uC. PGE2 levels were assayed using

a monoclonal antibody PGE2 EIA Kit. After development plate

was read at 405 nm in a plate reader (Spectra Max 190, Molecular

Devices, Sunnyvale, CA). The VEGF production by Caco-2 cell

line was determined by ELISA in culture supernatant accordingly

to manufacturer’s instructions (R&D Systems, UK). Briefly,

culture medium was collected 24 h after cellular activation by

hypertonic stress and centrifuged at 2506g for 5 min to remove

floating cells and frozen at 270uC. VEGF levels were assayed

using a human VEGF DuoSet (R&D Systems, UK). After

development plate was read at 450 nm in a plate reader (Spectra

Max 190, Molecular Devices, Sunnyvale, CA).

Immunoblot analysis
Cells were collected with a cell scraper (COSTAR) and 100 mL

of 10% SDS was added per well of the 6-well cell culture plate.

100 mL of 26 loading buffer (1.4 M b-mercaptoethanol, 184 mM

Tris base, 80 mM Bromophenol blue, 3% glycerol, 8% SDS,

pH 6.8) was added to the cell lysate. Cellular lysates were

immediately heated at 100uC for 5 minutes prior to sonication at

30% of amplitude and 30 J of energy in a high intensity ultra-sonic

processor. Samples were resolved by electrophoresis on a SDS-

PAGE 10% polyacrylamide gel at 29 mA/gel for 1 h. Separated

proteins were transferred to nitrocellulose membranes (Santa

Cruz) and blocked in 5% non-fat dry milk in 16 TBS (Tris

10 mM; NaCl 150 mM pH 7,4) for 12 h for COX-2 labeling, or

for 2 h for all other antibodies at room temperature. After

washing, membranes were incubated with primary antibodies

diluted in TTBS (TBS with 0.2% Tween 20) and 0.05% sodium

azide for 2 hours at room temperature for COX-2 or 12 hours at

4uC for other antibodies. After secondary labeling with HRP-

linked anti-IgG antibodies, proteins were analyzed using ECL

Western Blotting Analysis System (Amersham Biosciences).

Statistical analysis
Data are expressed as mean 6 standard error of the mean (SEM)

of experiments performed in triplicates. Graphs and western blots

shown are representative of at least three independent experiments.

Multiple comparisons among groups were performed by one-way

ANOVA followed by Bonferroni’s or Dunnett’s test (Prism version

4.03, Graphpad Software, Inc. La Jolla, CA). The symbols + and *

represent p values,0.05 when compared to control non-stimulated

group or hypertonic stress/CoCl2-stimulated group respectively.

Results

Hypertonic stress induces VEGF production by Caco-2
and PGE2 modulates the angiogenic factor production in
this environmental stress

Hypertonic stress stimulates the VEGF production by Caco-2

after 24 hours of activation (Figure 1A) following the same dose

response and time course (data not shown) of PGE2 generation

under the same stimulatory conditions [24]. As PGE2 has been

described to play a role in angiogenesis and VEGF production we

determined whether PGE2 was regulating VEGF production by

Caco-2 during the stimulation with hypertonic medium. Inhibiton

of PGE2 production by treatment with cPLA2 (ATK) (Figure 1B)

Autocrine PGE2 Role in Hypertonic VEGF Production
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or COX-2 (NS-398) (Figure 1C) inhibitors increased VEGF

production. This phenomenon was reversed by the addition of

PGE2 to the cell culture medium (Figure 1D) indicating a specific

role for PGE2.

To verify whether inhibition of VEGF production by Caco-2

stimulated with hypertonic stress was a consequence of PGE2

action and not a consequence of the nonespecific action of

pharmacological drugs used in the experiments, we performed the

same experiment in HCT116, a colon cancer cell line that does

not express COX-2 and produces no detectable levels of PGE2

under hypertonic stress. We did not observe any changes in the

VEGF production, excluding the possibility of interference of the

pharmacological inhibitors (Figures 1E and F). Those results

showed that PGE2 produced by Caco-2 activated by hypertonic

stress has an autocrine inhibitory action on VEGF production.

EP2 receptor plays a role in the regulation of VEGF
production through PGE2 in Caco-2 stimulated with
hypertonic stress

To determine what is the mechanism of action of PGE2 in the

regulation of VEGF production in hypertonic stress, Caco-2 cells

were activated with hypertonic medium during 24 hours and treated

with AH6809, an EP receptor antagonist. We verified the inhibition

of EP receptor signaling caused an increase of VEGF production

(Figure 2A). Then, to identify which specific receptor is involved in

this phenomenon Caco-2 were stimulated with hypertonic medium

and treated with ATK and EP receptors agonists. The cPLA2

inhibitor (ATK) removed the interference of PGE2 produced by

colon cancer cells and EP receptors were activated only by

exogenously added agonists. Accordingly, figure 2B shows that

treatment with ATK increases VEGF production and when PGE2 or

Figure 1. Endogenous PGE2 modulates VEGF production by hypertonic stress-stimulated Caco-2 cells. (A) Caco-2 cells were stimulated
with 10–100 mM of NaCl during 24 h before VEGF production analysis. VEGF production was determined by ELISA in supernatants of Caco-2 cells
stimulated with hypertonic stress (100 mM NaCl) during 24 h after pre-treatment with inhibitors of cPLA2, ATK (B); COX-2, NS-398 (C) or PGE2 (D).
HCT116 cells were stimulated with 100 mM of NaCl during 24 h after pre-treatment with inhibitors of cPLA2, ATK (E); COX-2, NS-398 (F). +, * p,0.05,
to non-stimulated cells or stimulated cells, respectively. ** p,0.05, when compared to NS-398-treated cells. Graph bars show means 6 SEM from
triplicate samples.
doi:10.1371/journal.pone.0025193.g001

Autocrine PGE2 Role in Hypertonic VEGF Production
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16,16-dimetil PGE2, a pan EP receptor agonist, were added to the

medium this effect was reversed, reinforcing that EP receptor

activation has an inhibitory effect on VEGF production. Increase in

VEGF production by inhibition of endogenous PGE2 was also

reversed by butaprost, a specific EP2 receptor agonist (Figure 2B).

Activation with EP1, 17-phenyl-trino-PGE2, or EP3, Sulprostone,

agonists had no effect on increased VEGF production. Since EP4

expression seems to be absent in Caco-2 cells [26], our results indicate

that endogenous PGE2 modulates VEGF production induced by

hypertonic stress through activation of EP2.

EP2 is a rhodopsin type receptor coupled to Gs and mediates

increases in camp [27]. Thus we tested if PKA played a role in

PGE2 effects mediated through EP2 during hypertonic stress.

Inhibition of PKA by H-89 increased VEGF production by Caco-

2 cells exposed to hypertonic medium (Figure 2C). Reinforcing the

potential inhibitory pathway involving PGE2-EP2-cAMP-PKA.

Role of endocrine PGE2 on CoCl2-induced VEGF
production

We also verified whether PGE2 had a role in the regulation of

VEGF production under a standard simulatory condition. To

activate the Hypoxia-Induced Factor (HIF) pathway and simulate

hypoxia, Caco-2 cells were activated with CoCl2. After 24 hours of

stimulation with CoCl2, Caco-2 presented marked production of

PGE2 (Figure 3A) and increased expression of COX-2 (Figure 3B).

Further experiments were performed after additon of 1 mM of

CoCl2 to the medium after 24 hours of activation. Moreover,

CoCl2-stimulated PGE2 generation is dependent on COX-2 as it

was completely inhibited by NS-398 (Figure 3C).

Similar to hypertonic stress stimulation, CoCl2-activated cell

also produced VEGF (Figure 3D). However, autocrine PGE2

appears to have an opposite effect in this condition since NS-398

treatment inhibited VEGF production (Figure 3E). Those results

indicate that PGE2 has a stimulatory autocrine role on VEGF

production in CoCl2 activation.

Role of MAPKs in VEGF production by Caco-2 cells
To determine if the VEGF production was differentially

regulated in Caco-2 cells beyond the potential autocrine role of

PGE2, we turned to the identification of MAPK pathways involved.

Since we have shown before a role for ERK 1/2, JNK and p38 in

PGE2 generation [24] and to avoid the potential problem this may

pose to interpret the results, experiments were performed in the

presence of 1 mM of NS-398. Pharmacological inhibition of ERK

1/2 and p38 pathways indicated a common role in activation by

either hypertonic stress or CoCl2 (Figures 4A and B). JNK role was

more restricted, as SP 600125 markedly inhibited VEGF produc-

tion induced by CoCl2 activation while it did not affect VEGF

production induced by hypertonic stress (Figures 4A and B).

Discussion

The role of PGE2 in cancer development is usually described as

an autocrine factor capable of modulating many aspects of the

Figure 2. EP2 receptor plays a role in endogenous PGE2 regulation of VEGF production by Caco-2 stimulated with hypertonic stress.
(A) Caco-2 cells were stimulated by hypertonic stress (100 mM NaCl) during 24 h after pre-treatment with EP and DP receptors antagonist, AH 6809
(A); with inhibitor of cPLA2, ATK (10 mM); PGE2; EP receptors agonist, 16,16-dimethyl Prostaglandin E2; EP1 and EP3 receptors agonist, 17-phenyl trinor
Prostaglandin E2; EP2 receptor agonist, butaprost and EP3 receptor agonist, sulprostone (B); or with PKA inhibitor, H-89. PGE2 and its analogs were
used at 0.1 mM. VEGF production was determined by ELISA in supernatants of Caco-2 cells. +, * p,0.05, when compared to non-stimulated cells or
stimulated cells, respectively. ** p,0.05, when compared to ATK-treated cells. Graph bars show means 6 SEM from triplicate samples.
doi:10.1371/journal.pone.0025193.g002

Autocrine PGE2 Role in Hypertonic VEGF Production
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Figure 3. PGE2 stimulates VEGF production by Caco-2 cells activated with CoCl2. Caco-2 cells were stimulated with 0.1–1 mM of CoCl2
during 24 h before PGE2 and VEGF production (A and D, respectively) and COX-2 protein expression (B) analysis. PGE2 and VEGF production by Caco-
2 cells stimulated with 1 mM of CoCl2 during 24 h after pre-treatment with inhibitor of COX-2, NS-398 (C and E, respectively). VEGF production by
Caco-2 cells stimulated with 0.1–1 mM of CoCl2 during 24 h (D). PGE2 and VEGF production were determined by ELISA in supernatants of Caco-2
cells. COX-2 and GAPDH expression in cell pellets was analyzed by Western blotting. +, * p,0.05, when compared to non-stimulated cells or
stimulated cells, respectively. Graph bars show means 6 SEM from triplicate samples.
doi:10.1371/journal.pone.0025193.g003

Figure 4. Role of MAPKs in VEGF production by Caco-2 cells. Inhibitors of JNK, SP600125; p38, SB202190; and MEK 1/2, U0126 were added
before stimulation with hypertonic stress (100 mM NaCl) (A) or 1 mM CoCl2 (B) for 24 h. Caco-2 cells were pretreated with 1 mM of NS-398 to prevent
endogenous PGE2 production in all samples. VEGF production was determined by ELISA in supernatants of Caco-2 cells. +, * p,0.05, when compared
to non-stimulated cells or stimulated cells, respectively. Graph bars show means 6 SEM from triplicate samples.
doi:10.1371/journal.pone.0025193.g004

Autocrine PGE2 Role in Hypertonic VEGF Production
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cancer cell biology, in particular those of epithelial origin [28,29].

PGE2 has been shown to increase proliferation, metastatic

capacity and production of pro-angiogenic factors [17,30,31].

However, such studies usually lack information on the stimuli that

will drive the arachidonic acid cascade and ultimately PGE2

generation beyond induced expression of COX-2. We have

recently demonstrated that a hyperosmotic milieu can induce

COX-2 expression and PGE2 generation in Caco-2 colon cancer

cells [24]. Most importantly, hyperosmolarity can trigger the

limiting step in PGE2 generation by activating cPLA2-a and

inducing the release of free arachidonic acid. Normal intestinal

epithelial cells showed no production of PGE2 under the same

hyperosmotic stimulus. Having identified a relevant physiological

stimulus for colon cancer cells, we investigated the effect of

hypertonic medium on the production of the major pro-

angiogenic factor, VEGF, and the potential autocrine influence

of PGE2.

Exposure of Caco-2 cells to hypertonic medium led to a

significant production of VEGF. As demonstrated before this

VEGF production occurred in parallel with the PGE2 generation.

PGE2 is described as a potent inducer of VEGF based on

experiments where COX-2 overexpression increased VEGF

production by colon and breast cancer cell lines. Furthermore,

this VEGF production was inhibited by selective COX-2

inhibitors. We therefore sought to investigate the autocrine

influence of PGE2 generation on Caco-2 cells stimulated by

hypertonic medium. Suprisingly, inhibition of either cPLA2 or

COX-2, by ATK or NS-398 respectively, further increased the

production of VEGF. This effect could be attributed to inhibition

of PGE2 generation as restoration of PGE2 levels by exogenous

addition reverted VEGF production to its original levels in ATK

treated Caco-2 cells. HCT116 cells can also be activated by

hypertonic medium to produce VEGF. However, HCT116 cells

neither express COX-2 nor produce PGE2 [31] despite the cells

being activated or not. Thus, the lack of effect of ATK and NS-

398 on HCT116 excludes any potential off target effects of these

inhibitors [32].

PGE2 acts on a group of G-protein-coupled receptors (GPCRs).

There are four GPCRs responding to PGE2 designated subtypes

EP1, EP2, EP3 and EP4, leading to distinct signaling pathway and

overall biological effect [27]. To determine the dependence of

PGE2 autocrine effects on EP signaling, we used a nonspecific

antagonist of all four EP receptors, AH 6809. The treatment with

AH 6809 mimicked the effect of inhibition of VEGF production

by PGE2, indicating that PGE2 signals through its plasma

membrane receptors to down regulate VEGF production induced

by hypertonic medium. The particular subtype involved appears

to be EP2 as its selective agonist, Butaprost, is able to fully

substitute for PGE2. On the opposite, neither EP1 nor EP3

agonists treatments presented the inhibitory effect on VEGF

production. EP2 seems to couple with increased cAMP levels and

subsequent activation of PKA, as inhibition of PKA by H-89

reproduces the effects of inhibiting PGE2 generation or action. It is

important to note that the experiments were performed with PGE2

and its analogs in concentrations that were compatible with the

endogenously produced levels. Effects in VEGF production by

colon cancer cells have been ascribed to PGE2 using concentra-

tions of up to 100 mM [13] what far exceed the amount of PGE2

actually needed to activate its receptors [27] or what is produced

in the tumoral mass [33].

It has been shown the activation of EP2-cAMP-PKA-GSK-3

signaling pathway leads to decrease of beta-catenin phosphoryla-

tion, allowing its translocation and activation of Tcf/Lef

dependent-transcription (for a review, see [34]) of genes involved

in cancer, such as COX-2 and VEGF. However, in our model of

hypertonic stress, EP2 signaling pathway activation causes

repression of VEGF production. To better understand the

regulation of this pathway in the hypertonic stress we investigated

the role of GSK-3in this activation with the use of SB216763, a

competitive GSK-3 a and b inhibitor (50–5000 nM, data not

shown). The treatment increased the VEGF production, indicating

that the inhibitory effect of EP2 on the angiogenic factor

production is not dependent on this kinase. One possibility for

the distinct effect of EP2 activation in hypertonic stress is that this

regulation is occurring through cAMP. Some studies have been

shown cAMP can inhibit the production of cytokines by inhibiting

Ras-dependent signals by PKA, inactivating MEK/ERK signaling

or by blocking phosphorylation of p38 MAPK [35–37]. As ERK/

p38 MAPK pathway is involved in our model inducing VEGF

production, such findings could be indicative of the mechanism by

which EP2 signaling is blocking VEGF production in hypertonic

stress.

To determine whether the inhibitory role of PGE2 may be

extended to other stimuli, we used CoCl2 to induce HIF-1a
stabilization and mimick the response to hypoxia [13]. As shown

for hypertonic stimulation, CoCl2 induced PGE2 generation was

dependent on COX-2. The PGE2 generation was also paralleled

by VEGF production. Induction of VEGF production by CoCl2
has been shown before in human fibroblasts [38], lung cancer cell

line [39], retina epithelium [40], glioma cell lines [41], prostate

cancer cell lines [42] and in astrocytes [43], however there was no

attempt to investigate the potential production of PGE2 or its

autocrine effects. Inhibition of COX-2 inhibited VEGF produc-

tion induced by CoCl2, indicating a stimulatory role for PGE2 and

that the autocrine effect of PGE2 is dependent on the type of

stimuli used.

Hypertonic medium induces activation of several MAP kinases

that may be involved in regulating VEGF expression [24]. Since

these MAP kinases are also involved in stimulating cPLA2-a
activity and production of PGE2, we eliminated the inhibitory

effect of PGE2 before attempting to analyse their role on VEGF

production. Caco-2 cells activated by hypertonic medium in the

presence of NS-398 clearly show a marked dependence on p38

and less so on ERK 1/2 to produce VEGF. CoCl2-induced VEGF

production by Caco-2 cells showed similar sensitivity profile to

MAP kinase inhibitors with the exception of a marked reduction

by the JNK inhibitor. The distinct roles for JNK pathway indicate

that differences in hypertonic medium and CoCl2-induced

production of VEGF go beyond sensitivity to autocrine inhibitory

effects of PGE2. It is currently under investigation if such signaling

differences may be responsible for the distinct effects of PGE2 on

each type of stimuli.

One of the hallmarks in the current model for the regulation of

angiogenesis in the tumor mass, particularly in colon cancer, is the

regulation of endothelial cell function by the cancerous cells.

Accordingly, the role of PGE2 in angiogenesis is limited to an

autocrine stimulation of pro-angiogenic factors production by the

tumor cell. Although interesting, this model neither comprises the

potential external stimuli involved in COX-2 expression and

VEGF production nor situations where the cell expressing COX-2

and producing PGE2 is other than the cancer cell. For instance,

ectopic growth of HCT116 and HT29, cells that do not express

COX-2 or produce PGE2, is dependent on COX-2 expression by

endothelial and stromal cells [44]. COX-2 expression in mouse

models of familial adenomatous polyposis, Min [33,44] and

ApcD716 [45] mice, is restricted to stromal and interstitial cells.

Differences in JNK dependency and autocrine PGE2 inhibitory

Autocrine PGE2 Role in Hypertonic VEGF Production
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effect on VEGF production by the same colon cancer cell line are

a clear indication on how the model must also take into account

that these cells are exposed to different microenvironmental

stimuli.
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