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Abstract

The serotonin 2A receptor (5-HT2AR) is implicated in the pathophysiology and treat-

ment of various psychiatric disorders. [18F]altanserin and [11C]Cimbi-36 positron

emission tomography (PET) allow for high-resolution imaging of 5-HT2AR in the liv-

ing human brain. Cerebral 5-HT2AR binding is strongly genetically determined,

though the impact of specific variants is poorly understood. Candidate gene studies

suggest that HTR2A single nucleotide polymorphisms including rs6311/rs6313,

rs6314, and rs7997012 may influence risk for psychiatric disorders and mediate

treatment response. Although known to impact in vitro expression of 5-HT2AR or

other serotonin (5-HT) proteins, their effect on human in vivo brain 5-HT2AR binding

has as of yet been insufficiently studied. We thus assessed the extent to which these

variants and the commonly studied 5-HTTLPR predict neocortex in vivo 5-HT2AR

binding in healthy adult humans. We used linear regression analyses and likelihood

ratio tests in 197 subjects scanned with [18F]altanserin or [11C]Cimbi-36 PET.

Although we observed genotype group differences in 5-HT2AR binding of up to

�10%, no genetic variants were statistically significantly predictive of 5-HT2AR bind-

ing in what is the largest human in vivo 5-HT2AR imaging genetics study to date.

Thus, in vitro and post mortem results suggesting effects on 5-HT2AR expression did

not carry over to the in vivo setting. To any extent these variants might affect clinical

risk, our findings do not support that 5-HT2AR binding mediates such effects. Our

observations indicate that these individual variants do not significantly contribute to

genetic load on human in vivo 5-HT2AR binding.
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1 | INTRODUCTION

[18F]altanserin and [11C]Cimbi-36 positron emission tomography (PET)

provide high-resolution measures of serotonin 2A receptor (5-HT2AR)

levels in the living human brain (Ettrup et al., 2016; Pinborg et al., 2003).

PET studies have shown altered cerebral 5-HT2AR binding in depres-

sion (Mintun et al., 2004), schizophrenia (Rasmussen et al., 2010), and in

patients at increased risk for these disorders (Frokjaer et al., 2010;
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Hurlemann et al., 2005). 5-HT2AR function mediates antidepressant

(Artigas, 2013) and antipsychotic (Meltzer & Massey, 2011) efficacy.

A PET study from our group, performed in twins, indicates that cerebral

5-HT2AR binding is strongly genetically determined (Pinborg et al.,

2008). Identifying genetic sources of variation in brain 5-HT2AR eluci-

dates how variation emerges and highlights mechanisms mediating

genetic effects on neuropsychiatric risk.

Candidate gene studies suggest that single nucleotide polymor-

phisms (SNPs) within the HTR2A gene might affect psychiatric risk and

treatment effects. rs6311 (i.e., −1438G > A, promotor) and rs6313

(i.e., 102C > T, Exon 1, in perfect linkage disequilibrium) G/C alleles

were linked to increased risk for depression (Petit et al., 2014)

and schizophrenia (Williams et al., 1996) as well as superior antidepres-

sant (Minov et al., 2001), but lesser antipsychotic response (Arranz

et al., 1995). The rs6314 (i.e., 1354C > T, Exon 3) T allele was associated

with poor response to antipsychotic treatment (Blasi et al., 2013) and

rs7997012 (i.e., IVS2G > A, intronic) A-carriers may show greater anti-

depressant response than noncarriers (McMahon et al., 2006). Although

recent genome-wide association studies (GWAS) for depression (Wray

et al., 2018) and schizophrenia (Pardinas et al., 2018) do not support sig-

nificant independent roles in mediating clinical risk, understanding these

variants' effects on 5-HT2AR expression supports elucidation of mecha-

nisms of psychiatric pathophysiology.

In vitro studies are inconclusive regarding these SNP's impact

on 5-HT2AR protein expression. The concordant rs6311/rs6313 A/T

alleles showed higher expression in some studies (Parsons, D'Souza,

Arranz, Kerwin, & Makoff, 2004; Polesskaya & Sokolov, 2002),

though this was contradicted by others (Bray, Buckland, Hall, Owen, &

O'Donovan, 2004). rs6314 induces a histidine to tyrosine amino acid

change, alters 5-HT2AR intracellular signaling (Ozaki et al., 1997), and

was associated with lower expression levels in vitro and post mortem

(Blasi et al., 2013). Effects of rs7997012 on 5-HT2AR protein levels or

function have yet to be reported, though an association with in vivo cere-

bral serotonin transporter (SERT) binding was observed in humans (Laje

et al., 2010). PET provides the unique opportunity to assess whether

these SNPs affect 5-HT2AR binding in the living human brain. The spe-

cific impact of individual HTR2A SNPs on 5-HT2AR binding has been

insufficiently elucidated. Two previous PET studies failed to demonstrate

an effect of the HTR2A SNPs assessed here. However, these studies

were in small samples (Hurlemann et al., 2008), particularly considering

the small effect sizes attributed to singular variants in psychiatry (Bogdan

et al., 2017), or only assessed one HTR2A variant (Erritzoe et al., 2009).

In addition, a study in marmosets linked a SERT gene (SLC6A4) pro-

motor haplotype associated with low SERT expression and an anxiety-

prone phenotype (Santangelo et al., 2016) to reduced brain 5-HT2AR

binding (Santangelo et al., 2019). In humans, 5-HTTLPR (rs4795541)

and the associated rs25531 variant have been associated with depres-

sive pathophysiology (Caspi et al., 2003) and may affect SERT binding

(Praschak-Rieder et al., 2007), though null findings have been observed,

including from our lab (Fisher et al., 2017; Murthy et al., 2010). Although

associations between 5-HTTLPR and other serotonin receptors have

been detected with PET in humans (Fisher et al., 2012; Lothe

et al., 2009), the impact on 5-HT2AR binding has yet to be investigated.

Here, we aimed to assess whether the aforementioned HTR2A

SNPs (rs6313, rs6314, rs7997012) and the 5-HTTLPR predict neocor-

tex 5-HT2AR binding in the living human brain. To do so, we probed

their effects in a uniquely large (n = 197) [18F]altanserin and [11C]

Cimbi-36 PET data set available through the Center for Integrated

Molecular Brain Imaging (CIMBI) database (Knudsen et al., 2016).

Hereby, we explore whether these variants contribute to genetic load

on 5-HT2AR binding.

2 | MATERIALS AND METHODS

2.1 | Participants

All available [18F]altanserin and [11C]Cimbi-36 PET data acquired in

healthy subjects were extracted from the CIMBI database (Knudsen

et al., 2016), providing 291 scans (169/122 [18F]altanserin/[11C]

Cimbi-36). Eleven scans (two [18F]altanserin/nine [11C]Cimbi-36) per-

formed in subjects with self-reported non-European ancestry were

excluded to limit genetic background confounders and variation in

allele frequencies. We restricted our analyses to baseline scans to

eliminate pharmacologic intervention effects. Thus, 67 (5/62) rescans

as well as eight [18F]altanserin scans performed in subjects also

scanned with [11C]Cimbi-36 were excluded from analyses. This step

resulted in 205 scans (154/51), each performed in a unique individual.

Finally, scans without corresponding genotype information were

excluded; 5-HTTLPR data were available in two subjects for whom

HTR2A variants were not. Thus, our dataset included 197 (154/43)

and 195 (153/42) scans, each from a unique individual, for 5-HTTLPR

and HTR2A analyses, respectively.

All sampling, including scanning and blood draw for genotyping, took

place during participation in studies carried out at the Neurobiology

Research Unit, Rigshospitalet, Denmark, that have been detailed previ-

ously (Adams et al., 2004; Adams et al., 2005; Erritzoe et al., 2008;

Erritzoe et al., 2010; Erritzoe et al., 2011; Ettrup et al., 2014; Ettrup

et al., 2016; Frokjaer et al., 2008; Haahr et al., 2015; Hasselbalch

et al., 2008; Haugbol et al., 2007; Madsen et al., 2019; Marner

et al., 2009; Marner et al., 2011; Marner et al., 2012; Pinborg et al., 2003;

Pinborg et al., 2004; Pinborg et al., 2008; Rasmussen et al., 2010).

All subjects provided written informed consent and the study protocols

were approved by the Ethics Committee of Copenhagen and Frederiks-

berg, Denmark (KF-11-061-03, KF-01-124-04, KF-01-2006-20, KF-

02-058-99, KF-01-001-02, KF-01-156-04, H-4-2012-105, H-16026898,

H-15004506). Healthy subjects included in the CIMBI database are

deemed free from primary psychiatric disorders (according to the DSM-

IV axis 1 or WHO ICD-10 diagnostic classifications), severe systemic or

neurologic disease, pregnancy, head trauma, drug or alcohol abuse, and

current or prior intake of psychopharmacologic substances through an

interview with a trained clinician. Absence of psychopathologic symp-

toms is confirmed on the day of the PET-scan using the symptom check

list revised SCL-90-R (Derogatis & Savitz, 1999). Additional information

on CIMBI database inclusion criteria are detailed in (Knudsen et al.,

2016). A largely overlapping dataset was recently utilized by Stenbaek
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et al., 2019) to assess the impact of openness, a specific personality trait,

on 5-HT2AR binding. Erritzoe et al. (2009) previously assessed one

HTR2A SNP (rs6311, in perfect LD with rs6313) in a subset (n = 95) of

the data presented here.

2.2 | PET imaging

As recently detailed by Stenbaek et al. (2019), [18F]altanserin and [11C]

Cimbi-36 were synthesized according to Lemaire, Cantineau, Guillaume,

Plenevaux, and Christiaens (1991) and Ettrup et al. (2014), respectively.

All PET scans were acquired using either an 18-ring GE-Advance scan-

ner (General Electric, Milwaukee, WI, n = 142 [18F]altanserin) or a Sie-

mens ECAT High Resolution Research Tomograph (HRRT, CTI/Siemens,

Knoxville, TN, n = 12/43 [18F]altanserin/[11C]Cimbi-36). Both were used

in 3D acquisition mode and with in-plane resolutions of approximately

6 mm and <2 mm, respectively (Knudsen et al., 2016). [18F]altanserin

scans were performed as detailed by Pinborg et al. (2003), using a bolus

plus infusion radioligand administration scheme. A 10 min transmission

scan was followed by 40 min of dynamic PET scanning (frames:

5 × 8 min), which started 2 hr after initiation of [18F]altanserin adminis-

tration (Pinborg et al., 2003). [11C]Cimbi-36 scans were performed after

bolus radioligand administration using a protocol established by Ettrup

et al., 2014 and Ettrup et al. (2016). A 6 min transmission scan was

followed by 120 min (frames: 6 × 10 s, 6 × 20 s, 6 × 60 s, 8 × 2 min,

and 19 × 5 min) of dynamic PET scanning, which commenced with [11C]

Cimbi-36 injection. PET data from the GE-Advance scanner were

reconstructed using a filtered back projection algorithm followed by

attenuation-, dead time-, and scatter correction. Scans performed on

the HRRT scanner were reconstructed using a 3D-OSEM-PSF algorithm

(Hong et al., 2007; Knudsen et al., 2016; Sureau et al., 2008).

2.3 | MR imaging

Each subject underwent one magnetic resonance imaging (MRI) ses-

sion for acquisition of a high-resolution, T1-weighted structural brain

scan. MRI scans were utilized for coregistration, gray matter-, white

matter-, and cerebrospinal fluid segmentation, as well as region of

interest (ROI) delineation. MRI scans were acquired using either a Sie-

mens 1.5 T Vision scanner (Erlangen, DE, n = 63 [18F]altanserin), a Sie-

mens 3 T Magnetom Trio scanner (n = 91 [18F]altanserin), a Siemens

3 T Magnetom Verio scanner (n = 21 [11C]Cimbi-36) or a Siemens 3 T

Prisma scanner (n = 22 [11C]Cimbi-36) (Knudsen et al., 2016). See pre-

vious publications for scan protocol details (Ettrup et al., 2014;

Madsen et al., 2019; Stenbaek et al., 2019).

2.4 | PET data processing

As previously described (Knudsen et al., 2016; Stenbaek et al., 2019),

motion correction utilized the AIR algorithm based on Woods, Cherry,

and Mazziotta (1992) and PET scans were smoothed using a 12 or

10 mm within-frame Gaussian filter for the GE-Advance and HRRT

scanners, respectively. The AIR algorithm was also used for cor-

egistration of scans acquired on the GE-Advance scanner. For HRRT

scans, Statistical Parametric Mapping (SPM8) was used for this

purpose.

[18F]altanserin BPP and [11C]Cimbi-36 BPND were calculated

based on Pinborg et al. (2003) and (Ettrup et al. (2014) and Ettrup

et al. (2016), respectively. BPP and BPND are considered indices of

5-HT2AR density (Innis et al., 2007). The neocortex was defined as

the primary ROI and delineated using corresponding subject-level MRI

data and PVElab as published by Svarer et al., 2005). PVElab defines

the neocortex to include the middle/inferior frontal-, middle/inferior

temporal-, superior frontal-, superior temporal-, and pre/post central

gyri as well as occipital-, orbitofrontal-, and parietal cortices. Several

biological and methodological characteristics motivated selection of

this singular ROI for analyses. Neocortex has high 5-HT2AR binding,

whereas subcortical levels are low (Ettrup et al., 2014) and show lower

reproducibility (Ettrup et al., 2016). [11C]Cimbi-36 has serotonin 2C

receptor affinity, relevant in hippocampus (Finnema et al., 2014), con-

founding genetic associations. In the neocortex, BPP and BPND values

from [18F]altanserin and [11C]Cimbi-36 scans are correlated (Ettrup

et al., 2016), supporting pooling of data. Finally, 5-HT2AR binding is

strongly correlated between neocortical subregions (Figure 1). Thus,

our focus on a neocortex ROI represents a statistically efficient strat-

egy for evaluating genetic predictors of brain 5-HT2AR binding.

2.5 | Genotyping

Genotyping was done on material from either buffy coat lymphocytes

or whole blood samples. Samples or extracted DNA were stored

at −20�C in the CIMBI biobank until analyzed. DNA extractions

were performed with Qiagen DNA extraction kits (Qiagen, Hilden,

Germany, https://www.qiagen.com). Quality control of DNA samples

utilized Thermo Scientific NanoDrop spectrophotometry (Thermo Fisher

Scientific, Waltham, MA, https://www.thermofisher.com). In case of

insufficient purity, DNA decontamination was carried out by sodium

acetate precipitation, using 0.1 volume of 3 M sodium acetate and 3 vol-

umes of ice-cold 96–99% ethanol. To verify consistent genotype results,

five previously genotyped rs6313, rs6314, and rs7997012 samples were

re-analyzed with perfect correspondence. rs6311 genotype information

was available in 129 subjects and used to confirm perfect LD with

rs6313. All other SNPs are in linkage equilibrium based on LDmatrix tool

(https://ldlink.nci.nih.gov/?tab=ldmatrix).

All rs6311, rs6313, rs6314, and rs7997012 genotypes were

determined using Applied Biosystems TaqMan 50-exonuclease allelic

discrimination assays (Thermo Fisher Scientific). Previously available

genotyping was performed using the ABI 7500 multiplex PCR

machine (Thermo Fisher Scientific), while current genotyping utilized

the Roche LightCycler 480 II (Roche, Penzeberg, Germany, https://

www.lifescience.roche.com).

All 5-HTTLPR (rs4795541, rs25531) genotyping was performed

as described by Madsen et al., 2016). rs4795541 genotyping used

4520 SPIES ET AL.

https://www.qiagen.com
https://www.thermofisher.com
https://ldlink.nci.nih.gov/?tab=ldmatrix
https://www.lifescience.roche.com
https://www.lifescience.roche.com


TaqMan 50-exonuclease allelic discrimination assays and PCR.

rs25531 genotyping comprised PCR amplification from the forward

and reverse primers 50-GGCGTTGCCGCTCTGAATGC-30 and 50-

GAGGGACTGAGCTGGACAACCAC-30 followed by MspI restriction

enzyme degradation and separation by gel electrophoresis. All kits

used in genotyping procedures were utilized according to the manu-

facturers' instructions.

2.6 | Statistical analyses

Hardy–Weinberg equilibrium (HWE) was evaluated with a chi-square

test. HWE was not evaluated for 5-HTTLPR because this variant was

an inclusion criterion in some of the original studies.

2.6.1 | Genotype grouping

Subjects were grouped for each HTR2A variant based on genotype,

resulting in three groups for each SNP with the exception of the

rs6314, for which we identified only one YY homozygote (i.e., rs6313

TT vs. CT vs. CC; rs6314 HH vs. Y-carriers; rs7997012 AA vs. AG

vs. GG). For the 5-HTTLPR, LG or S alleles were coded together as an

S0 allele and genotypes were grouped accordingly (i.e., S0S0, LAS0, LALA).

This grouping is based on evidence that the LG and S alleles are asso-

ciated with similarly low SERT expression levels (Hu et al., 2006). See

Table 1 for an overview of genotype grouping used in statistical

analyses.

2.6.2 | Analyses of genotype effects on neocortex
5-HT2AR binding

[18F]altanserin BPP and [11C]Cimbi-36 BPND data were pooled for

analyses and will subsequently be referred to as 5-HT2AR binding.

Continuous variables were mean-centered prior to model fit. First, the

effects of the covariates age, sex, radioligand ([18F]altanserin, [11C]

Cimbi-36), PET scanner (HRRT, GE), MR scanner field strength (1.5 T,

3 T), and BMI were assessed in a linear regression model. Age, sex

(Moses-Kolko et al., 2011), and BMI (Erritzoe et al., 2009) were previ-

ously shown to affect 5-HT2AR binding. MR scanner field strength,

radioligand, and PET scanner were included to address methodological

heterogeneity. Interaction effects between radioligand and the

covariates age, sex, and BMI were tested for, but were nonsignificant

(all punc > .05).

Next, likelihood ratio testing was used to test for a main effect of

each variant (rs6313, rs6314, rs7997012, 5-HTTLPR) by comparing

the covariate model with and without each variant. Each variant was

evaluated separately. Genotype effects were not moderated by PET

ligand (all punc > .05), which is supportive of pooling [18F]altanserin

BPP and [11C]Cimbi-36 BPND. Likelihood ratio testing was also per-

formed to test for the combined effect of all variants on neocortex

5-HT2AR. Specific genotype effects were then estimated by linear

regression analyses.

F IGURE 1 Heat map of correlation
coefficients between neocortex ROI
subregions. Heat map depicts strength of
correlations of 5-HT2AR binding (pooled [18F]
altanserin BPP: n = 154; [11C]Cimbi-36 BPND:
n = 43) between subregions included in the
neocortex ROI and insula. Insula is not
included in the PVE lab neocortex ROI, but
correlation with neocortex ROI subregions is

strong. Each rectangle depicts one region-to-
region correlation; a darker orange color
depicts higher Spearman correlation
coefficients. front, frontal; mid/inf, middle/
inferior; ROI, region of interest; sup, superior;
temp: temporal

TABLE 1 Genotype grouping for statistical analyses

Variant Alleles

rs6313 TT CT CC

27 88 80

rs6314 HH Y-carriers

165 30 (one homozygote)

rs7997012 AA AG GG

45 92 58

5-HTTLPRa LALA LAS0 S0S0

55 95 47

Note: HTR2A variants: n = 195. 5-HTTLPR: n = 197.
a5-HTTLPR comprises rs4795541 and rs25531 with S0 denoting either

composite LG allele or S allele, in accordance with Hu et al. (2006).
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Visual and graphical (e.g., QQ plot) evaluation of our model

including only covariates indicated nonnormally distributed residuals.

This was likely due to inclusion criteria of original studies, some of

which specifically recruited overweight (Erritzoe et al., 2009) or

elderly individuals (Marner et al., 2009; Marner et al., 2011). To derive

estimates robust to this deviation, parameter estimates, 95% confi-

dence intervals (95% CI) and p-values for linear regression models

were estimated with 1,000 bootstrap resamples. For all linear regres-

sion analyses, only bootstrapped results are reported. Statistical signif-

icance of likelihood ratio testing was assessed with a permutation test

(10,000 permutations).

2.6.3 | Radioligand subgroup models

Linear regression analyses and likelihood ratio testing was also

performed within the [18F]altanserin (HTR2A: n = 153; 5-HTTLPR:

n = 154) and [11C]Cimbi-36 (HTR2A: n = 42; 5-HTTLPR: n = 43)

subgroups in order to address potential radioligand differences

in genotype effects. Analyses were performed as described

above for the pooled sample with the exception that covariates

lacking more than one level were dropped (i.e., radioligand for

both subsamples, PET scanner, and MR field strength for [11C]

Cimbi-36).

2.6.4 | Exploratory analyses of genotype effects
on insula 5-HT2AR binding

In addition, exploratory analysis probing for effects of 5-HTTLPR

genotype on insula 5-HT2AR binding was performed in the n = 197

pooled sample based on animal studies reporting effects of SLC6A4

genotype on 5-HT2AR binding (Santangelo et al., 2019). Again, linear

regression analyses and likelihood ratio testing were implemented

using the same procedures as for the neocortex ROI.

Statistical analyses were performed using IBM SPSS Software

26.0.0.0 and R (v3.5.0, https://cran.r-project.org/). p < .05 was consid-

ered statistically significant.

3 | RESULTS

3.1.1. | Descriptive results

See Table 2 for descriptive information. HTR2A variants were in HWE

(df = degrees of freedom, rs6313: X2 = 0.13, df = 1, p = .72; rs6314:

X2 = 0.05, df = 1, p = .82; rs7997012: X2 = 0.53, df = 1, p = .47). As

expected (Spurlock et al., 1998), rs6311 and rs6313 were in perfect

LD, validating the consideration of only rs6313.

3.1.2. | Covariate model

In the covariate model, age (parameter estimate [95% CI], p value:

−.02 [−0.02, −0.01], p < .001, units: [11C]Cimbi-36 BPND change per

year), radioligand (0.81 [0.31, 1.31], p < .001, units: change in

5-HT2AR binding from [11C]Cimbi-36 BPND to [18F]altanserin BPP),

and BMI (0.03 [0.002, 0.06], p = .04, units: [11C]Cimbi-36 BPND

change per kg/m2) had significant effects on neocortex 5-HT2AR

binding. Effects of PET scanner (−0.45 [−0.98, 0.06], p = .09, units:

[11C]Cimbi-36 BPND change from HRRT to GE-Advance scanner), MR

field strength (−0.12 [−0.23, 0.001], p = .05, units: [11C]Cimbi-36

BPND change from 3 to 1.5 T) and sex (−0.07 [−0.16, 0.02], p = .13,

units: [11C]Cimbi-36 BPND change from female to male) were not sta-

tistically significant predictors of 5-HT2AR binding but nevertheless

included when estimating genetic effects.

TABLE 2 Descriptive information

[18F]altanserin (n = 154) [11C]Cimbi-36 (n = 43)

Mean ± SD Median Range Mean ± SD Median Range

Age (years) 40.76 ± 17.97 35.10 18.47–81.73 26.84 ± 5.81 26.42 18.43–49.82

BMI (kg/m2) 25.51 ± 4.70 24.44 18.38–45.91 23.86 ± 2.84 23.08 19.32–33.20

Inj. dosea (MBq) 275.19 ± 64.83 278.00 143.00–447.00 497.74 ± 100.62 511.12 213.00–604.04

SAa (GBq/μmol) 76.14 ± 62.32 55.71 10.30–357.78 345.13 ± 243.01 273.14 73.36–1,039.63

Inj. massa (μg) 2.84 ± 2.22 2.12 0.26–10.99 0.84 ± 0.48 0.75 0.11–1.50

Neocortical bindingb 1.46 ± 0.56 1.47 0.32–4.66 1.30 ± 0.21 1.28 0.99–2.02

PET scanner (GE/HRRT) 142/12 0/43

MR field strength (1.5 T/3 T) 63/91 (1.5 T: Siemens Vision 3 T: Siemens Magnetom Trio) 0/43 (3 T: Siemens Prisma, Siemens Magnetom Verio)

Sex (m/f) 94/60 25/18

Abbreviations: BMI, body mass index; HRRT, High Resolution Research Tomograph; Inj., injected (dose/mass); MR, magnetic resonance; PET, Positron

emission tomography; SA, specific activity; SD, standard deviation.
aInj. dose: n = 129/43; SA: n = 81/43; Inj. mass: n = 77/43 ([18F]altanserin/[11C]Cimbi-36).
b[18F]altanserin: BPP; [

11C]Cimbi-36: BPND.
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3.1.3. | Genotype effects on neocortex 5-HT2AR
binding

We did not observe evidence that any of the genetic variants consid-

ered were statistically significant predictors of 5-HT2AR binding

(likelihood ratio estimation effects, rs6313: X2 = 0.38, p = .84; rs6314:

X2 = 2.15, p = .15; rs7997012: X2 = 2.70, p = .28; 5-HTTLPR:

X2 = 1.80, p = .43; all variants combined: X2 = 7.56, p = .42). See

Figure 2 for depiction of specific genotype effects and Table 3 for

respective parameter estimates, 95% CI, and % differences in

5-HT2AR between genotype groups.

3.1.4. | Radioligand subgroup models

We did not observe evidence that any of the genetic variants consid-

ered were statistically significant predictors of 5-HT2AR binding in

the [18F]altanserin (rs6313: X2 = 0.37, p = .84; rs6314: X2 = 2.56,

p = .11; rs7997012: X2 = 1.32, p = .54; 5-HTTLPR: X2 = 1.06, p = .61)

nor [11C]Cimbi-36 (rs6313: X2 = 0.37, p = .86; rs6314: X2 = .00003,

p = .99; rs7997012: X2 = 5.66, p = .08; 5-HTTLPR: X2 = 4.32, p = .15)

subsamples.

3.1.5. | Genotype effects on insula 5-HT2AR binding

Linear regression analysis and likelihood ratio testing did not reveal an

effect of 5-HTTLPR genotype on insula 5-HT2AR binding (5-HTTLPR:

X2 = 3.00, p = .24). All reported results are unadjusted for multiple

comparisons.

4 | DISCUSSION

We did not find evidence for a statistically significant effect of

three common HTR2A SNPs (rs6313, rs6314, rs7997012), nor the

F IGURE 2 Genotype effects on covariate-adjusted 5-HT2AR
binding. Orange circles represent covariate-adjusted (i.e., age, sex,
radioligand, positron emission tomography (PET) scanner, MR scanner

field strength, and BMI) 5-HT2AR binding from 195 (HTR2A variants)
and 197 (5-HTTLPR) healthy subjects. Negative binding values result
from this adjustment, all observed BP values were greater than 0. Black
lines illustrate mean ± SD. No statistically significant effects of rs6313,
rs6314, rs7997012, nor 5-HTTLPR on covariate-adjusted 5-HT2AR
binding were observed. See Table 3 for parameter estimates and 95%
CI. 5-HT2AR: serotonin 2A receptor. 95% CI: 95% confidence intervals

TABLE 3 Genotype effects on neocortical 5-HT2AR binding

Genotype/comparison Estimatea 95% CI

rs6313

TT 1.21 1.06, 1.38

TC 1.22 1.09, 1.36

CC 1.19 1.09, 1.31

TT vs. TC −0.01 (1.06%) −0.17, 0.16

TT vs. CC 0.02 (1.42%) −0.14, 0.18

TC vs. CC 0.03 (2.45%) −0.09, 0.15

rs6314

Y-carriers 1.09 0.93, 1.25

HH 1.21 1.11, 1.32

Y-carriers vs. HH −0.11 (10.24%) −0.24, 0.01

rs7997012

GG 1.23 1.10, 1.36

AG 1.25 1.13, 1.39

AA 1.14 1.02, 1.27

GG vs. AG −0.02 (1.97%) −0.15, 0.10

GG vs. AA 0.09 (7.10%) −0.06, 0.24

AG vs. AA 0.11 (8.90%) −0.04, 0.28

5-HTTLPRb

S0S0 1.24 1.09, 1.40

LAS0 1.20 1.10, 1.31

LALA 1.15 1.01, 1.28

S0S0 vs. LAS0 0.04 (3.34%) −0.09, 0.18

S0S0 vs. LALA 0.09 (7.43%) −0.07, 0.27

LAS0 vs. LALA 0.05 (4.23%) −0.06, 0.17

Note: 5-HT2AR: serotonin 2A receptor. 95% CI: 95% confidence intervals.
aGenotype differences (%) noted where relevant.
b5-HTTLPR comprises rs4795541 and rs25531 with S0 denoting either

composite LG allele or S allele, in accordance with Hu et al. (2006).
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commonly studied 5-HTTLPR, on 5-HT2AR binding assessed with

[18F]altanserin and [11C]Cimbi-36 PET. This represents the largest

evaluation of genetic predictors of a human in vivo 5-HT protein

marker to date. Our findings indicate that effects previously shown on

gene expression and protein function in vitro (Parsons et al., 2004),

post mortem (Blasi et al., 2013; Polesskaya, Aston, & Sokolov, 2006;

Polesskaya & Sokolov, 2002; Turecki et al., 1999) and in animal stud-

ies (Santangelo et al., 2019) demonstrate only very limited translation

to 5-HT2AR binding in healthy adult humans. Although nominal

effects detected for rs6313 and rs6314 were consistent with related

in vitro reports (Blasi et al., 2013; Polesskaya & Sokolov, 2002), all

observations were not statistically significant. Thus, despite evidence

from twin studies for a substantial impact of genetic load on 5-HT2AR

binding (Pinborg et al., 2008), our findings suggest only marginal pene-

trance of the individual variants considered here. The potential expla-

nations for this disparity differ between the individual SNPs due to

their diverging effects on the HTR2A gene and how it is regulated.

The rs6311/rs6313 A/T-alleles have been linked to increased pro-

motor activity (Parsons et al., 2004), mRNA levels (Polesskaya &

Sokolov, 2002) and post mortem 5-HT2AR binding (Turecki et al.,

1999). In our sample, TC and TT individuals showed nominally increased

5-HT2AR binding relative to CC individuals, but observed group differ-

ences were ≤2.5% and not statistically significant. Thus, although we

did not reject our null hypothesis, we observed effects nominally similar

to previous in vitro and post mortem studies (Parsons et al., 2004;

Polesskaya & Sokolov, 2002; Turecki et al., 1999). Importantly, rs6311/

rs6313 may regulate transcription in a manner moderated by epigenetic

mechanisms, including gene methylation (Polesskaya et al., 2006) and

interaction with transcription factors (Falkenberg, Gurbaxani, Unger, &

Rajeevan, 2011; Smith et al., 2013). Thus, we cannot rule out that epi-

genetic processes obscured main effects of this variant on 5-HT2AR

binding. Although epigenetic markers can be assayed from peripheral

blood samples, this information is not available for the current data

and the correspondence between peripheral blood and relevant neuro-

nal populations is unclear. The above mentioned positive post mortem

studies suggest that genotype effects override epigenetic-induced vari-

ance. However, negative post mortem studies have also been published

(Blasi et al., 2013; Bray et al., 2004). The susceptibility of these variants

to epigenetic influence may explain these discrepancies, particularly

as the corresponding studies were performed in small samples. In our

uniquely large healthy adult sample, we estimate a small, nonsignificant

main effect of rs6313 on 5-HT2AR binding.

Previous studies linked rs6314 HY genotype to lower post mor-

tem prefrontal mRNA levels (Blasi et al., 2013). Although not statisti-

cally significant (p = .15), we estimated a nominally consistent 10.2%

lower 5-HT2AR binding in Y-carriers compared to HH homozygotes.

rs6314 results in an amino acid change (histidine to tyrosine) (Ozaki

et al., 1997). rs6313 is also exonic and could thus potentially also alter

protein structure, though it has not been demonstrated in in vitro

studies. Such conformational changes could influence binding of [18F]

altanserin or [11C]Cimbi-36 to 5-HT2AR. For example, they may influ-

ence the affinity of these radioligands for 5-HT2AR, KD, which is

inversely proportional to binding potential. To our knowledge, rs6313

or rs6314 effects on radioligand affinity have not been evaluated.

However, if these variants were to proportionally affect both available

5-HT2AR (i.e., Bavail) and radioligand KD, their effects might not be

elucidated in our study. Generally, conformational or functional

changes to 5-HT2AR that do not affect [18F]altanserin or [11C]Cimbi-

36 binding would not be detected with PET. Our binding outcome is

thus likely insensitive to rs6314-induced changes in intracellular sig-

naling (Ozaki et al., 1997). Both [18F]altanserin and [11C]Cimbi-36

likely bind intracellularly localized 5-HT2AR, which comprises �90%

of 5-HT2AR (Cornea-Hebert, Riad, Wu, Singh, & Descarries, 1999);

it is unknown whether internalization alters [18F]altanserin and

[11C]Cimbi-36 binding. If unaffected, variant effects on subcellular

localization would not be detected in our analyses. In summary, the

numerically lower 5-HT2AR binding observed in the HY genotype is

consistent with previous studies (Blasi et al., 2013), yet not statisti-

cally significant.

We did not observe a statistically significant impact of rs7997012

on 5-HT2AR binding. rs7997012 A allele was previously associated

with improved antidepressant treatment response (McMahon et al.,

2006). Neither in vitro nor in vivo effects of rs7997012 on HTR2A gene

expression have been reported previously, but an earlier PET study

reported a marginal effect on SERT binding (Laje et al., 2010). We esti-

mated 8.9 and 7.1% increases in 5-HT2AR binding in AG and GG

groups compared to AA individuals, respectively; AG and GG individuals

showed similar 5-HT2AR binding (�2% difference). In two cohorts, our

lab has reported a nonlinear relation between 5-HT2AR and SERT bind-

ing (Erritzoe et al., 2010; Haahr et al., 2015). Thus, it is plausible that

small rs7997012 effects on 5-HT2AR binding mediate effects on SERT,

a model that requires further evaluation in independent samples.

in vitro expression studies would support inference of the nominal dif-

ferences that we observed, resolving rs7997012 functional effects.

We did not observe a statistically significant effect of 5-HTTLPR

on 5-HT2AR binding. Our data nominally indicate that LAS0 and S0S0

status are associated with 4.2 and 7.4% higher 5-HT2AR binding com-

pared to LALA individuals, a somewhat linear effect. Notably, this

remains not statistically significant even when considering LALA versus

S0-carriers (p = .27, data not shown), emphasizing a large degree of

statistical uncertainty. We performed an exploratory analysis probing

for an effect of 5-HTTLPR on insula 5-HT2AR binding, which was also

nonsignificant (p = .24). This was motivated by a recent marmoset

study showing an SLC6A4 haplotype associated with heightened anxi-

ety and reduced insula 5-HT2AR binding (Santangelo et al., 2016;

Santangelo et al., 2019). The convergence with an anxiety phenotype

is intriguing considering similar 5-HTTLPR effects (Lesch et al., 1996).

We observed nominally higher 5-HT2AR with the S allele, as was

observed within our neocortex ROI, inconsistent with what would be

expected. However, the 5-HTTLPR polymorphism does not occur in

marmosets and is thus not included in the studies by Santangelo et al.,

who assess a different SLC6A4 variant. Thus, although we express

caution in drawing a direct parallel to (Santangelo et al., 2016), our

human in vivo results do not reflect their observations.

The variants included in this study were chosen based on their

impact on 5-HT protein expression (Blasi et al., 2013; Hu et al., 2006;
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Laje et al., 2010; Polesskaya et al., 2006), allele frequencies, as well as

reported associations with disease risk (Caspi et al., 2003; Choi

et al., 2004; Petit et al., 2014; Williams et al., 1996) and treatment

outcomes of affective and psychotic disorders from candidate gene

studies (Anttila et al., 2007; Arranz et al., 1995; Arranz et al., 1998;

Blasi et al., 2013; Chen, Shen, & Chen, 2009; Choi, Kang, Ham,

Jeong, & Lee, 2005; Kato et al., 2006; McMahon et al., 2006; Minov

et al., 2001; Peters et al., 2009). This was done to allow for cautious

interpretation of genotype effects vis-à-vis clinical findings. 5-HT2AR

binding appears altered in depression (Mintun et al., 2004) and schizo-

phrenia (Rasmussen et al., 2010), and receptor function is modulated

by antidepressant and antipsychotic drugs (Artigas, 2013; Meltzer &

Massey, 2011). Thus, genetic influence on 5-HT2AR binding could

potentially moderate clinical effects. The relative effects we observed

between genotype groups were <10% and not statistically significant,

which does not support this assumption. It should be kept in mind

that previous clinical effects were observed in diseased populations,

whereas we assessed healthy subjects here. It is unclear whether our

findings carry over to clinical populations, based on potential geno-

type by diagnosis interaction effects.

Our study is not without limitations. [18F]altanserin and [11C]

Cimbi-36 PET data were pooled, introducing data heterogeneity.

Radioligand differences in KD as well as differences between [18F]

altanserin fP and [11C]Cimbi-36 fND may confound this data pooling,

although such confounds are approximated by the inclusion of PET

tracer as a covariate. Notably, we observed nonsignificant effects con-

sidering each radioligand separately. However, such a split-sample

strategy also negatively affects statistical power. Our healthy popula-

tion varied in, for example, age and BMI. Although this can introduce

measurement error and decrease statistical power, we note that col-

lecting 200 datasets at only two PET scanners is a particularly homog-

enous sample than is otherwise available. Variation in ancestry was

addressed by excluding from analyses persons self-reported to be of

non-European ancestry. A limitation of the current study is that

genetic relatedness and ethnic heterogeneity is not available and not

directly modeled. The limitation of evaluating candidate genetic vari-

ants as predictors of brain imaging measures has been considered at

length (Bogdan et al., 2017). In particular, recent GWAS do not sup-

port significant independent roles for the variants assessed here in

depression (Wray et al., 2018) or schizophrenia (Pardinas et al., 2018).

However, the sample sizes necessary for GWAS are currently not fea-

sible in conjunction with human in vivo PET data. In the absence of

available genome-wide data, focusing on variants selected based on

in vitro evidence and clinical candidate gene studies is a potentially

useful alternative strategy. In addition, we point out that our outcome

measure (5-HT2AR binding) is more proximal to a genetic effect on

protein levels vis-à-vis functional and structural brain MRI markers.

In conclusion, this study assessed the effect of three common

HTR2A SNPs and the 5-HTTLPR on 5-HT2AR binding in the largest

sample size to date (n = 197). Although we do not find evidence for

statistically significant differences, we note effects nominally consis-

tent with previous studies linking these variants to 5-HT2AR levels

and the 5-HT system more broadly. Our study suggests not more than

a limited direct effect of these variants on 5-HT2AR binding in the

adult human brain.
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