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Abstract: Influenza viruses cause seasonal epidemics and pandemic outbreaks associated with significant
morbidity and mortality, and a huge cost. Since resistance to the existing anti-influenza drugs is rising,
innovative inhibitors with a different mode of action are urgently needed. The influenza polymerase
complex is widely recognized as a key drug target, given its critical role in virus replication and high
degree of conservation among influenza A (of human or zoonotic origin) and B viruses. We here review
the major progress that has been made in recent years in unravelling the structure and functions of this
protein complex, enabling structure-aided drug design toward the core regions of the PA endonuclease,
PB1 polymerase, or cap-binding PB2 subunit. Alternatively, inhibitors may target a protein–protein
interaction site, a cellular factor involved in viral RNA synthesis, the viral RNA itself, or the nucleoprotein
component of the viral ribonucleoprotein. The latest advances made for these diverse pharmacological
targets have yielded agents in advanced (i.e., favipiravir and VX-787) or early clinical testing, besides
several experimental inhibitors in various stages of development, which are all covered here. C© 2016

The Authors Medicinal Research Reviews Published by Wiley Periodicals, Inc. Med. Res. Rev., 36, No. 6, 1127–1173, 2016
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1. INTRODUCTION

The influenza A, B, C, and D viruses belong to the Orthomyxoviridae, a family of enveloped
viruses with a single-stranded negative-sense, and segmented RNA genome. Seasonal influenza
A and B viruses affect each year approximately 5–10% of the adult and 20–30% of the pediatric
population. In addition, there is permanent concern for sudden influenza pandemics, such as
that of 2009 or the notorious “Spanish flu” of 1918.

A universal influenza vaccine that confers broad and long-term protection remains the
“Holy Grail” in influenza research,1 as vaccination is considered as the most effective way
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to prevent influenza virus infections. The existing tri- or quadrivalent vaccines contain the
circulating A/H1N1, A/H3N2, and (one or two) B strains. They fail to provide broadly
protective and long-lasting immunity, require annual updating, and are only partially protective
in some target populations.2, 3

For prevention or treatment of influenza virus infections, two classes of antiviral drugs are
currently available. The M2-blockers, amantadine and rimantadine, inhibit influenza A virus
replication by occluding the M2 proton channel,4 but lack activity against influenza B virus.5

In addition, central nervous system side effects6 and the global spread of adamantane-resistant
influenza viruses7 undermine their clinical usefulness. The second group, the neuraminidase
inhibitors (NAIs), prevents virus release from infected cells. Zanamivir requires administration
by powder inhalation, while oseltamivir is administered orally as its prodrug oseltamivir phos-
phate. In the period 2007–2009, oseltamivir-resistant influenza H1N1 viruses were disseminated
worldwide.8 In contrast, resistance to zanamivir seems to be rare.9, 10 The search for novel M2-
inhibitors and NAIs with improved resistance profile and higher potency is still ongoing, as is
further optimization of original lead compounds.11

In conclusion, the armamentarium to prevent and treat influenza infections is currently
limited, and new influenza virus inhibitors with an entirely different mode of action are urgently
required. In this review, we focus on the influenza virus polymerase that is widely recognized
as a superior antiviral drug target,12 given its critical role in virus replication and high de-
gree of sequence conservation in influenza A and B, particularly in the active sites for RNA
binding, cleavage, or elongation. Before explaining the different antiviral strategies that are
being explored, we provide relevant background on structure and functions of the viral poly-
merase. During recent years, major breakthroughs have been made in revealing the structure of
this protein complex, its subunits, or the associated viral nucleoprotein (NP), creating unique
opportunities for structure-aided drug design.

2. STRUCTURE AND FUNCTIONS OF THE INFLUENZA VIRUS POLYMERASE
COMPLEX

To avoid overlap with other recent reviews on this topic,13–16 this section is limited to provide
an update on new findings with direct or indirect relevance for inhibitor design. The influenza
virus polymerase complex (schematically depicted in Fig. 1) is composed of three subunits:
PB1, PB2 (polymerase basic protein-1 and -2, respectively) and PA (polymerase acidic protein;
referred to as P3 in the case of influenza C). The influenza A and B virions contain eight
viral ribonucleoprotein (vRNP) segments, which have a double-helical hairpin structure and
each carry one polymerase heterotrimer. These vRNPs contain vRNA that is coated by viral
NP molecules. Viral RNA synthesis occurs in the cell nucleus in two stages (Fig. 1). (i) For
primary transcription of vRNA to mRNA, primers are generated by the PA-dependent “cap-
snatching” reaction on cellular capped RNAs. The PB2 subunit initially binds the capped
RNAs, and actual RNA synthesis is performed by PB1. (ii) Replication of vRNA proceeds
via complementary RNA (cRNA) intermediates and occurs in a primer-independent (de novo)
manner. The nascent vRNA and cRNA replicates are immediately packaged into new vRNPs
or cRNPs, respectively. The newly synthesized vRNP complexes are exported from the nucleus
to the cytoplasm, for which different pathways have been proposed (reviewed in Eisfeld et al.14).

The influenza virus polymerase is a major determinant of virus pathogenicity and host
adaptation.26–28 One notable key factor is the PB2-627 signature residue, which is glutamic acid
in avian viruses and lysine in human viruses, and was recently linked to species differences in
the host nuclear protein ANP32A.29
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Figure 1. Role of the influenza virus polymerase complex in vRNA transcription and replication.
The influenza polymerase is a complex containing the PA, PB1, and PB2 proteins. One polymerase heterotrimer is
attached to each vRNP segment inside the virion. These vRNPs have a double-helical hairpin structure consisting
of two antiparallel vRNA strands that are coated by NP molecules.17,18

Transcription of vRNA to mRNA starts with the “cap-snatching” reaction, in which cellular capped RNAs are bound
by PB2 and cleaved, by PA, at 10–15 nucleotides from the cap, to yield primers for viral mRNA synthesis.19,20

Termination and polyadenylation occur at a stretch of five to seven U residues near the 5ʹ end of the vRNA.21,22

Replication of vRNA proceeds through full-length complementary cRNAs, which are assembled as cRNP com-
plexes. In both transcription and replication, RNA elongation is carried out by the PB1 subunit. The vRNA
promoter is depicted as observed in the promoter-bound polymerase crystal structures, in which its 5ʹ end
forms a “hook” structure.23,24 The cRNA promoter is drawn in dashed lines, since its conformation is yet to be
determined. (Adapted from Portela et al.25)

A. The PB2 Cap-Binding Domain

The discovery that the cap-binding activity resides in the PB2 subunit was made in 1981.30, 31

In 2008, Guilligay et al.32 reported the X-ray structure of the PB2 cap-binding domain (CBD;
i.e., residues 318–483) of influenza A virus, complexed with the minimal cap analogue 7-
methylguanosine 5′-triphosphate (m7GTP; Fig. 2A). A similar approach for the influenza B
PB2-CBD (Fig. 2B)33 revealed that the binding mode of m7GTP is similar in influenza A and B,
indicating a conserved methylated cap recognition mechanism. Similar as in other cap-binding
proteins (such as the eukaryotic initiation factor eIF4E) in which the 7-methylguanine moiety
is sandwiched between two aromatic residues, a cation-π packing interaction occurs between
Phe404 and His357 in the influenza A PB2-CBD, and Phe406 and Trp359 in the influenza B
counterpart. However, the PB2-CBD has a completely different protein fold compared to other
cap-binding proteins.32 It also contains a remarkable cluster of phenylalanine residues with one
noticeable difference (Phe323 vs. Gln325; compare Fig. 2A and B) between the influenza A
and B proteins. In two other crystal structures, that is, the influenza B PB2-CBD in complex
with GTP,33 and a Q325F mutant form of this protein in complex with m7GDP,34 an inverted
conformation for the guanine and ribose moieties was seen. These data indicate structural
flexibility of the influenza B PB2-CBD, which explains its promiscuous cap recognition. In en-
zymatic assays with purified vRNPs35 and binding assays with isolated PB2-CBD,33 influenza A

Medicinal Research Reviews DOI 10.1002/med
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Figure 2. Chemical structures of the minimal cap analogue m7GTP and reported inhibitors of cap-binding and
X-ray structures of the PB2-CBD in complex with the corresponding ligands. (A–D) Comparison of the crystal
structures of the PB2-CBD of influenza A32 (A; PDB: 2VQZ) or influenza B33 (B; PDB: 5EFA) PB2-CBD in complex
with m7GTP; and influenza A PB2-CBD with bound compound “11”36 (C; PDB: 4CB6) or VX-78737 (D; PDB:
4P1U). (E) Cap-binding inhibitors Cap-3 and Cap-7.38 (F) For RO0794238,39 direct binding to the PB2-CBD
could not be demonstrated.

displays strict specificity for m7G-capped RNA, while the influenza B protein recognizes various
cap structures, including unmethylated GpppG-RNA.

B. The PA Endonuclease Domain

Until 2009, the endonuclease activity was thought to reside in PB140 or PB2.41 A major leap
forward was made when two groups independently revealed42, 43 that the endonuclease catalytic
site resides in the N-terminal domain of PA (PA-Nter; residues 1 to �195) and published the
first crystal structures of the holo form of PA-Nter (Fig. 3A and B). Its structural core contains
a characteristic (P)DXN(D/E)XK motif (Fig. 3) conserved in all influenza viruses, which
coordinates one, two, or three manganese or magnesium ions. It is still unresolved which and
how many divalent metal ions are present in the native enzyme,42–48 although this information
is critical for efficient inhibitor design. The discrepancies in the crystal structures with regard to
the identity of these metal ions (Fig. 3A–F) are possibly related to the crystallization conditions

Medicinal Research Reviews DOI 10.1002/med
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Figure 3. Comparison of PA-Nter active site structures as determined by crystallography. The metal coordinating
and/or catalytic residues are labeled. The metal ions and water molecules are shown as purple and red spheres,
respectively. (A) The PA-Nter crystal structure determined by Dias et al.42 (PDB: 2W69) contains two metal ions
(two Mn2+ ions or one Mn2+ and one Mg2+). (B) Yuan et al.43 (PDB: 3EBJ) obtained a PA-Nter crystal with one
Mg2+ ion. (C) Zhao et al.44 (PDB: 3HW6) discerned one (Mg2+) metal (dark purple) or two (Mn2+) metal ions,
depending on the crystallization conditions. (D) Dubois et al.45 (PDB: 4E5E) identified two Mn2+ ions. (E) Bauman
et al.50 (PDB: 4M5Q) described two Mn2+ ions (in dark purple) in the PA-Nter apo protein, and a third one (light
purple) in the presence of a bound inhibitor (not shown; PDB: 4M5U). (F) In the crystal structure published by
Tefsen et al.48 (PDB: 4NFZ), one Mn2+ ion is accommodated in the PA-Nter active site.

(i.e., soaking vs. cocrystallization or different buffer composition, for instance related to pH or
which metal ion was added). More conclusive evidence requires crystal structures obtained in
the presence of an RNA substrate. As of today, only cocrystal structures with mononucleotides
have been determined.44, 46, 49

In biochemical assays with isolated recombinant PA-Nter51 or full-length PA,52 the endonu-
cleolytic activity is higher in the presence of manganese compared to magnesium. Experiments
using isothermal titration calorimetry (ITC) showed a 500-fold higher affinity for Mn2+ ions
than for Mg2+ ions.51 This observation is at least partially explainable by the presence of a
histidine residue in the PA-Nter active site, as Mn2+ ions have higher affinity for histidine
than Mg2+. However, these ITC measurements were performed in the absence of RNA sub-
strate, which may be a different situation compared to the substrate-bound enzyme state. Since
the intracellular concentration of free Mg2+ is at least 1000-fold higher than that of Mn2+,
magnesium may be more biologically relevant.53, 54 Also, in the context of the heterotrimeric
polymerase, efficient cleavage is seen in the presence of the less reactive Mg2+,55, 56 which can
be attributed to tight RNA binding by the nearby PB2-CBD.

In order to clarify this issue, Xiao and co-workers performed molecular dynamics (MD)
simulations to construct structural models of PA-Nter in the presence of one or two magnesium
ions and in complex with the RNA substrate.57 In Figure 4, both active site conformations and

Medicinal Research Reviews DOI 10.1002/med
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Figure 4. Comparison of the two- versus one-metal-ion models for the PA-Nter active site. The metal ions are
depicted as orange spheres, while the red spheres represent the water molecules coordinated to the metal
ions. (A and B) Structural models obtained by molecular dynamics (MD) simulations of the PA-Nter active site in
complex with its RNA substrate, in the presence of two (A) or one Mg2+ ion(s) (B) [reprinted with permission from
Xiao et al.57 Copyright 2014 American Chemical Society]. (C and D) Possible reaction mechanism of the PA-Nter
cleavage reaction, in the presence of two (C) or one (D) metal ion(s), based on the models of Xiao et al.57 In each
case, the metal ion has six coordinated ligands (indicated by dotted lines). (C) In the two-metal mechanism,
both metal ions are coordinated to the scissile phosphodiester of the nucleic acid substrate, and the ribose 3ʹ-O
is coordinated apically to MB

2+. MA
2+ would lower the pKa of the attacking water molecule, together with the

catalytic Lys134 and the adjacent 3ʹ phosphodiester, thus activating this water molecule as a nucleophile. MA
2+

might also assist the nucleophilic attack by moving toward MB
2+, bringing the activated water molecule closer

to the scissile phosphodiester. MB
2+ can stabilize the pentacovalent intermediate formed during the SN2-type

phosphodiester bond cleavage. (D) When the one-metal mechanism is operative, this metal ion is coordinated
to the scissile phosphodiester. Its role would be to stabilize the transition state of the nucleophilic attack, like
MB

2+ in the two-metal mechanism. Additionally, the single metal ion could decrease the pKa of the nucleophilic
water, together with the catalytic Lys137, while His41 would act as the general base that deprotonates the water
molecule.

possible one- and two-metal-ion reaction mechanisms are compared and explained in full detail
in the figure legend.

The two-metal-ion model is favored by the ITC data for Mn2+ binding to PA-Nter.51 Doan
et al.55 found that the endonuclease activity in vRNP complexes isolated from virions depends
on metal ion concentration in a cooperative manner, with Hill coefficients close to or larger
than 2. Also, synergistic activation of the cleavage activity was observed with combinations
of different metal ions. This suggests that PA-Nter requires two metal ions to perform RNA
cleavage. The possibility was raised that binding of the second ion is stabilized when an RNA
substrate or inhibitor is present.51, 57

Medicinal Research Reviews DOI 10.1002/med
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C. The Heterotrimeric Influenza Polymerase Complex

The crystal structure of the large (�260 kDa) polymerase complex was first resolved in 2014
by Cusack and co-workers,23, 24 who succeeded to achieve high resolution (2.7 Å) structures of
the polymerase heterotrimer, in complex with the vRNA promoter and originating from bat
influenza A (FluA; Fig. 5A) or human influenza B (FluB; Fig. 5B) virus. The crystal structures
of the apo influenza C polymerase complex (FluC; without bound promoter; Fig. 5C),58 and
FluB polymerase in complex with a 5ʹ cRNA fragment (Fig. 5D),56 were revealed more recently.

A first striking observation is the complex intertwining of the three subunits, which results
in vastly more extensive intersubunit interactions than previously assumed (see other review
articles13, 59 for the literature until 2013). Equally intriguing are some prominent conformational
differences among the different crystal structures, which most likely represent functionally
different states of the enzyme complex. Third, these crystallization studies are the first to reveal
the architecture of the PB1 active site. These three insights undoubtedly create several new
avenues for structure-aided drug design.

The polymerase body is formed by PB1, enclosed by the PA linker (which connects the N-
and C-terminal domains of PA) on one side, and the N-terminal domain of PB2 (PB2-N) at
the other side. Akin to other RNA-dependent RNA-polymerase (RdRp) enzymes, the overall
structure of the catalytic core of PB1 resembles a right hand (Fig. 5E). It contains fingers,
fingertips, palm, and thumb domains, formed mainly by conserved RdRp motifs designated
“pre-A”/F, A, B, C, D, and E. By comparison with other polymerase structures, three conserved
aspartic acids (Asp305, Asp444, and Asp445 in FluB) within the active site of PB1 were
identified, which have a crucial role in catalysis60 and together coordinate two divalent metal
ions (Fig. 5, inset panel E).

The promoter-bound FluA and FluB polymerase complexes have a similar “open” confor-
mation, a U-shaped structure (Fig. 5A and B), in which one arm is formed by PA-Nter and the
other by the PB2-CBD. These domains face each other in the FluA structure, suggesting that
this crystal represents the cap-snatching mode. In the FluB structure, the PB2-CBD is rotated
by 70° toward the PB1 active site where primer elongation takes place (compare Fig. 5A and B,
in orange). Hence, this FluB structure is thought to represent the cap-dependent priming step.
In sharp contrast, in the crystal structures of the apo FluC polymerase (i.e., without bound
promoter58; Fig. 5C) and the 5ʹ cRNA-bound FluB polymerase (Fig. 5D),56 the polymerase
adopts a “closed” conformation in which cap-snatching is disfavored; it is not yet clear whether
these structures represent an inactive or “only replication-competent” state. Several interdo-
main interactions immobilize the PB2-CBD (Fig. 5C and D, in orange) and PA-Nter (which is
named P3 in the case of influenza C) is repositioned and packed against the PB2-NLS-domain
(Fig. 5C and D, in maroon). This pronounced difference between the open and closed forms
of the polymerase complex is related to a radical in situ rearrangement of a large part of PB2.
Hence, the regulatory role of the vRNA promoter, as evidenced by enzymatic studies,61, 62 may
be related to triggering the transition from the closed preactivation state to the active transcrip-
tion state. The crystallization studies further indicated that the influenza polymerase complex
contains several hinge regions that provide high flexibility to enable its multiple roles in viral
RNA synthesis.56 Stabilization of one of its conformations by an inhibitor, such that a vital
rearrangement cannot take place, would be an excellent approach to inhibit the polymerase
complex.

D. Recent Structural Insights: A First Step Toward Solving Some Unknowns

The recent crystallographic analyses also help to interpret some issues that are already debated
since many years.13 A first issue with relevance for inhibitor design is related to the potential

Medicinal Research Reviews DOI 10.1002/med
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Figure 5. Comparison of the crystal structures of the heterotrimeric influenza polymerase complex containing
full-length PA, PB1, and PB2. The models are shown in the same orientation, and the same coloring was
applied for the different subdomains. (A) Bat FluA polymerase with bound vRNA promoter [PDB: 4WSB].23 (B)
Superposition model of the FluB polymerase crystal structure with a template–primer (orange–green) duplex and
incoming NTP (black) (taken from a poliovirus polymerase crystal structure). The yellow spheres represent the
capped primer bound to PB2, after cleavage by the PA endonuclease domain. This primer is now directed toward
the PB1 catalytic cavity, where primer elongation occurs. (Adapted by permission from Macmillan Publishers
Ltd: Nature, Reich et al.,24 copyright 2014.) (C) Influenza C polymerase (PDB: 5D98) in apo form.58 (D) FluB
polymerase structure with bound cRNA 5′ end56 (PDB: 5EPI). (E) Domain arrangement of FluB PB1, illustrating
the right-hand-like polymerase fold. The inset shows a closeup of the PB1 catalytic residues, which coordinate
two divalent metal ions (not shown). (F) Subdomain names and color scheme as applied in panels A–E, based
on the FluB polymerase numbering. For clarity, the PB1 subunit is colored uniformly in cyan in panels A–D, while
its different subdomains are differentiated in panel E.

Medicinal Research Reviews DOI 10.1002/med
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substrate or sequence specificity of the cap-snatching reaction. The observation that the capped
host RNAs is cleaved at a distance of 10–15 nucleotides from the 5ʹ-cap can be explained by
the 50 Å distance between the cap-binding and endonuclease domains in the “open” FluA
structure.23 Regarding the type of RNA substrate, the previous assumption that only host
(pre-)mRNAs are targeted, is contradicted by recent data that noncoding RNAs are
the primary source of capped primers.63–65 The evidence for sequence preference is
inconclusive,19, 20, 42, 52, 62, 66–68 but recent deep sequencing studies63, 69 indicate a preference for
capped primers ending with a purine residue. The selection could be determined20, 70–72 (i) at the
level of RNA cleavage and/or (ii) transcription initiation when requiring base-complementarity
between the 3ʹ end of the vRNA template and a given cellular RNA. To gain insight into the
first selection mechanism, a cocrystal of PA-Nter (or the entire polymerase complex) with an
RNA substrate is required. This could elucidate substrate-dependent changes in the active
site of PA-Nter, with relevance for design of optimized PA inhibitors. One indication in fa-
vor of such base preference comes from crystallization studies of PA-Nter in complex with
a ribomononucleotide, which proved successful for uridine 5ʹ-monophosphate (UMP)44, 46, 49

(Fig. 6H–J) and adenosine 5ʹ-monophosphate (AMP),44 but not cytidine 5ʹ-monophosphate
(CMP) and guanosine 5ʹ-monophosphate (GMP).44, 46

Substrate selection at the level of initiation is corroborated by the polymerase crystal
structures, more specifically the model that was proposed24 (Fig. 5B) by superposition of the
influenza B PB1 structure on the poliovirus polymerase primer–template complex.80 This model
suggests that the 3ʹ end of the vRNA would pass the PB1 active site by three nucleotides, creating
a template overhang that could form three base pairs with the capped primer.

A second intriguing issue is how the different conformations captured in the crystal struc-
tures of the heterotrimeric polymerase complex, relate to the cis/trans RNA synthesis model81

for which experimental support was provided by the cryo-electron microscopic analyses of
vRNPs.17, 18 Namely, the branched arrangement of the RNP complexes in which a smaller
nascent RNP seems to bud from a larger full-length RNP, indicate that genome replication is
performed in trans by a second polymerase heterotrimer. On the other hand, vRNA transcrip-
tion would be performed by the cis-acting polymerase that resides in the vRNP complexes.
Given the high flexibility of the polymerase heterotrimer (see above), it is plausible that struc-
tural rearrangements occur in each of its functional states which, furthermore, might also be
regulated by specific host cell factors.

3. STRATEGIES TO INTERFERE WITH THE INFLUENZA VIRUS POLYMERASE,
THE NP, OR AN ASSOCIATED HOST CELL FACTOR

A. General Reflections

In the following section, we describe the diverse strategies that have been explored to block
influenza virus RNA synthesis, from the stage of rational design or serendipitous screening,
to unravelling the presumed mechanism of action (which includes analysis of the resistance
profile), and evaluation in cell culture or mouse models, or, if appropriate, in clinical trials (see
Table I for a concise overview). We added in this table some published antiviral activity data, in
the awareness that these values may show large variations depending on assay conditions, for
instance related to virus input, incubation time, or the parameters used to monitor inhibition
of virus replication or cytotoxicity of the test compounds. In our own experience, in vitro
evaluation based on cytopathic effect (CPE) reduction is more stringent compared to plaque
reduction or virus yield assays. In the latter approach, a reduction in virus titer of at least two-
log10 is required to conclude that a given compound has meaningful activity. For this reason,

Medicinal Research Reviews DOI 10.1002/med
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we marked with an asterisk the published compounds for which the anti-influenza effect in
cell culture has been confirmed in at least two independent studies. We also mentioned the
published resistance mutations. Resistance studies help to reveal the precise interaction with
the viral target and represent the gold standard to validate the proposed mechanism of action
of any new class of antiviral molecules.

During compound testing, influenza B virus is sometimes ignored, although it accounts for
about 25% of seasonal influenza cases. The protein sequences of PA, PB1, and PB2 are, overall,
highly conserved among influenza A and B viruses, but even subtle amino acid differences in a
binding pocket may render an inhibitor inactive against either of the two virus types. Several
inhibitor classes described below were designed to interact with critical functional residues
(for instance crucial for binding the capped RNA or NTP substrates). Still, high inhibitor
binding affinity often requires involvement of adjacent and less conserved sites, which can
give influenza A or B specific activity, or a reduced barrier for the virus to acquire resistance.
In other words, although the viral polymerase complex is, generally speaking, an excellent
target for developing broad influenza A and B inhibitors that do not readily select for resis-
tance, this theoretical assumption requires biological verification for every single class of new
inhibitors.

Besides application in seasonal influenza infections, antiviral drugs are essential to combat
serious zoonotic infections (in particular, by highly pathogenic avian influenza A viruses). This
seems less of a concern for inhibitors that directly interact with active domains in PA, PB1, or
PB2, since these regions are highly conserved among human and avian influenza A viruses. On
the other hand, there are species-dependent amino acid differences in some parts of the protein
complex, supposedly related to a regulatory role for host cell factors such as ANP32A,29, 162

RNA polymerase II,163 or nuclear import or export proteins.14 The insights into the influenza
virus host interactome are rapidly growing164 and will hopefully rationalize the concept of host
cell based antiviral therapeutics. As of today, some approaches (described in Section 3,H) have
already been proposed, although their mechanistic details remain to be established.

B. Nucleoside and Nucleobase Analogue Inhibitors

1. Ribavirin and Structurally Related Carboxamide Analogues
Ribavirin [1-(β-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide; Fig. 7A] was already discovered
in 1972.86 This nucleoside analogue inhibits many diverse RNA viruses including influenza
virus. Ribavirin has been a first-line therapeutic for hepatitis C virus infections, but its clinical
utility in the management of influenza infections seems limited. In clinical trials performed
in the 1970s and 1980s, ribavirin was found to be ineffective against experimentally induced
influenza,165 though some benefit was provided at higher drug doses,166 and in vivo data
support its potential usefulness in combination therapy.167 Although it has severe side effects
(e.g., hemolytic anemia) and teratogenic properties,168 ribavirin may be a last resort for clinicians
encountering rare cases of multidrug-resistant influenza viruses.169

The mode of action of ribavirin is rather complex, since it appears to inhibit virus repli-
cation through a combination of different mechanisms. After phosphorylation by adenosine
kinase170 or cytosolic 5ʹ-nucleotidase II,171 ribavirin 5ʹ-monophosphate inhibits the cellular
enzyme inosine monophosphate dehydrogenase (IMPDH), resulting in a decrease in the intra-
cellular GTP pool and, hence, indirect inhibition of viral RNA synthesis.172–174 Other proposed
mechanisms include direct inhibition of the viral polymerase by ribavirin 5ʹ-triphosphate,175, 176

immunosuppression,177 and lethal virus mutagenesis.85 It was recently demonstrated that rib-
avirin induces mutagenesis in the influenza virus genome by acting as an ambiguous purine
analogue and increasing G-to-A and C-to-U mutations.85 Serial virus passaging in the presence
of the compound gave rise to a mutant virus with twofold resistance to ribavirin and a lower
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Figure 7. Chemical structures of proven or tentatively proposed polymerase inhibitors. (A) Nucleoside or nucle-
obase analogue inhibitors ribavirin,86 favipiravir82 (T-705), 2ʹ-deoxy-2ʹ-fluoroguanosine98 (2ʹ-FdG), “8a,”97 and
“3c.”96 The rotating carboxamide moiety (encircled) in ribavirin and favipiravir explains their ambiguous base
pairing, since their base part mimics guanine as well as adenine. (B) Compounds for which the detailed mech-
anism of action at the level of the polymerase has not yet been revealed. (C) Compounds targeting a host cell
factor that has been linked to viral polymerase function. See Table I for references on the individual compounds.

degree of resistance to favipiravir (described below). This mutant virus carried mutation V43I
in PB1, which was associated with increased polymerase fidelity and reduced pathogenicity
in mice.85 This Val43 residue lies in close proximity of the putative NTP entrance channel, as
predicted in the polymerase crystal structure of Pflug et al.,23 which could explain how the V43I
mutation may affect the activity of ribavirin, for instance by modifying the interaction of the
polymerase with GTP or ribavirin 5ʹ-triphosphate. The last analysis is difficult to reconcile with
the observation that ribavirin 5ʹ-triphosphate is a rather weak inhibitor of the viral polymerase
in enzymatic assays, with reported IC50 values of 70 μM173 or �100 μM.176 By using random
mutagenesis, Binh et al.90 identified PB1 mutation D27N, which conferred a 1.8-fold resistance
to ribavirin. This mutation was also picked up by Pauly et al. after serial passaging of influenza
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virus under ribavirin.89 By inspecting the published crystal structure,23 we noticed that Asp27
is located outside the catalytic site, in the vicinity of the 5ʹ vRNA promoter binding site. Pauly
et al. further confirmed that ribavirin and two other nucleoside analogues, 5-azacytidine and
5-fluorouracil, are lethal mutagens for influenza virus in vitro.89

With the aim to improve the efficacy or safety, Dong et al. obtained an alkoxyalkylphospho-
diester prodrug of ribavirin, prodrug “2,” which still requires in vivo validation.87 Viramidine,
the 3-carboxamidine prodrug of ribavirin,178 was found to be slightly less active against in-
fluenza virus in vitro and in vivo, but also showed less toxicity.88 In addition to ribavirin,
the following carboxamide-containing nucleoside analogues exhibit broad antiviral activity,
presumably by inhibition of IMPDH: 5-fluoro-1-β-D-ribofuranosylimidazole-4-carboxamide
(FICAR),179 5-ethynyl-1-β-D-ribofuranosylimidazole-4-carboxamide (EICAR),91 5-ethynyl-1-
β-D-ribofuranosyl-1H-[1–3]triazole-4-carboxylic acid amide (ETCAR),92 selenazofurin,93 and
pyrazofurin.94 All these are cytostatic molecules mainly explored as anticancer agents.180 The
substituted thiadiazole compound LY217896 was shown to display broad anti-influenza virus
activity95 via IMPDH inhibition,181 but proved ineffective in a placebo-controlled clinical
trial.182

2. Favipiravir
Favipiravir (6-fluoro-3-hydroxy-2-pyrazinecarboxamide; Fig. 7A), also known as T-705, was
approved in Japan in March 2014 for restricted use in uncomplicated influenza virus infections,
and is currently in Phase 3 clinical trials in the USA and Europe. Unpublished clinical data
suggest that the antiviral effects of favipiravir are similar to those of oseltamivir.183 In one
reported Phase 2 study,11 favipiravir significantly reduced the time to resolution of symptoms.
No signs of drug resistance were seen in more than 700 samples tested.

Favipiravir has broad activity against influenza A, B, and C viruses,82 including the 2009
pandemic A/H1N1 virus,184 highly pathogenic avian influenza H5N1185 and H7N9186 viruses,
and virus strains with resistance to M2 blockers or NAIs.187 Among all nucleobase/nucleoside
inhibitors of influenza virus reported thus far, favipiravir is absolutely unique in having a clearly
superior therapeutic window (i.e., antiviral EC50 value in the range of 0.1–10 μM82–84 and no
cytotoxicity at 6400 μM82).

Mechanistically, favipiravir is a nucleobase mimetic that undergoes intracellular conversion
to its ribofuranosyl 5ʹ-triphosphate metabolite. The cellular hypoxanthine guanine phosphori-
bosyltransferase (HGPRT) converts favipiravir into its ribose-5′-monophosphate (RMP), which
is further metabolized, by cellular kinases, to favipiravir-ribosyl-5′-triphosphate (favipiravir-
RTP).83 Its requirement for very high dosing (in the order of 1600–2400 mg per day in some
clinical trials) may, at least partially, be related to the low efficiency of its metabolic activation.83

This limitation could be solved by designing prodrug forms of favipiravir that bypass one or
more of its activation steps.

Favipiravir-RTP is recognized by influenza virus RNA polymerase as an alternative for the
natural substrates GTP and, to a lesser degree, ATP.188–190 The precise mechanism of action of
favipiravir remains to be fully explained, and two nonmutually exclusive hypotheses have been
proposed. Similarly to what is described above for ribavirin, favipiravir can cause lethal virus
mutagenesis by inducing a high rate of mutations and generating a nonviable viral phenotype.
In virus grown under favipiravir, Baranovich et al.84 observed a reduction in virus infectivity
without a corresponding decrease in the number of viral RNA copies, together with a dose-
dependent increase in mutation frequency in the influenza virus genome (primarily G-to-A and
C-to-U). The biochemical basis for this mutagenic effect was revealed in the enzymatic studies by
Jin et al.,189 since the influenza polymerase was shown to efficiently incorporate favipiravir-RTP
both opposite to C and U, meaning that favipiravir-RTP mimics GTP as well as ATP. This

Medicinal Research Reviews DOI 10.1002/med



THE INFLUENZA VIRUS POLYMERASE COMPLEX � 1147

ambiguous base-pairing behavior is related to the rotating carboxamide moiety (encircled
in Fig. 7A). The second hypothesis, “non-obligate chain termination,” is supported by the
biochemical observation that incorporation of a single molecule of favipiravir-RMP (which
carries a normal 3ʹ-hydroxyl group) into a nascent influenza RNA strand causes inhibition of
viral RNA extension.190 However, another study did not confirm these results and concluded
that at least two consecutive incorporation events of favipiravir-RMP are needed to terminate
viral RNA elongation.189 Hence, the RNA chain-terminating effect may prevail at higher
favipiravir concentrations, while at lower compound concentrations, the mutagenic effect may
become apparent. Interestingly, the compound appears to have an exceptionally high barrier
for selecting resistance, since no favipiravir-resistant influenza virus was obtained in cell culture
after up to 30 serial virus passages in the presence of favipiravir.84, 191 From a drug development
perspective, this quality is of course clearly advantageous. On the other hand, it obstructs
experiments aimed at providing conclusive evidence on favipiravir’s mechanism of action.

Next to its activity against influenza virus,82 favipiravir inhibits the replication of various
other RNA viruses.192 Until now, few structural analogues of favipiravir have been reported.
The 6-fluoro substituent is not required for antiviral activity,83, 191 whereas the 3-hydroxyl group
is indispensable.83 An example of a base-modified analogue is “3c” (Fig. 7A), which displayed
comparable antiviral activity as T-705 in cell culture and influenza polymerase enzymatic
assays.96 A recent example of a sugar-modified analogue is the 2ʹ,4ʹ-bridged analogue “8a”
(Fig. 7A), which has anti-influenza virus activity comparable to that of favipiravir.97 This
compound has the 3ʹ-hydroxyl of the pentose in the inverted xylo position. Evaluation of “8a”
(or, rather, its 5ʹ-triphosphate) at the level of the viral polymerase was not yet reported.

3. 2ʹ-Deoxy-2ʹ-Fluoroguanosine and Other Nucleoside Analogues
2ʹ-Deoxy-2ʹ-fluoroguanosine (2ʹ-FdG; Fig. 7A) was reported years ago as a broad inhibitor
of influenza A and B viruses in cell culture.98 Its analogues 2ʹ-deoxy-2ʹ-fluoroadenosine and
2ʹ-deoxy-2ʹ-fluoroinosine were significantly less active.99 In vivo, 2ʹ-FdG was shown to reduce
influenza virus titers in the respiratory tract of mice and ferrets.193 Mechanistically, 2ʹ-FdG-
triphosphate was found to inhibit the influenza polymerase complex by nonobligate chain
termination. This agrees with the observation that a virus selected for resistance to 2ʹ-FdG,
contained a polymerase with tenfold lower susceptibility to 2ʹ-FdG-triphosphate in an enzy-
matic assay.161 The identity of the amino acid changes in this mutant polymerase was not
disclosed, which is unfortunate since this insight could be very helpful to explain the role of
specific residues in the catalytic or other functional domain of PB1, as identified in the recent
crystallographic studies.23, 24, 56, 58

During more recent years, 2ʹ-substituted carba-nucleoside analogues,100 C-3ʹ-modified
analogues,102 and 6-methyl-7-substituted-7-deaza purine nucleoside analogues103 were reported
to have anti-influenza activity comparable to 2ʹ-FdG. The antiviral activity of 2ʹ-FdG and ana-
logues is dependent on intracellular conversion to the active nucleoside 5ʹ-triphosphate form.
ProTide prodrugs were employed to overcome the first (rate-limiting) phosphorylation step,
and enable intracellular delivery of the nucleoside 5ʹ-monophosphate species.194 This ProTide
concept was successfully applied to 2ʹ-FdG and its uridine analogue 2ʹ-FdU.104, 106

The pyrimidine analogue 2ʹ-deoxy-2ʹ-fluorocytidine (2ʹ-FdC) seems more potent than 2ʹ-
FdG, with in vitro and in vivo activity against various strains of influenza A or B.105 It remains
to be demonstrated whether the 5ʹ-triphosphate of 2ʹ-FdC acts as an alternative substrate for
the influenza polymerase complex, as is the case for 2ʹ-FdG. Alternatively, since 2ʹ-FdC was
shown to be cytostatic in cells,195 it could act as an immunomodulator in vivo, or inhibit in-
fluenza virus through inhibition of cellular enzymes which are involved in de novo pyrimidine
biosynthesis. Similar to what is explained above for ribavirin and other inhibitors of IMPDH,
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nucleoside analogues that interfere with purine or pyrimidine nucleotide synthesis can give
strong inhibition of influenza virus replication in cell culture. Unfortunately, the therapeutic
window of this approach is too narrow to allow broad application in influenza virus therapy.
A few examples are 2ʹ-2ʹ-difluorodeoxycytidine196 (known as the anticancer drug gemcitabine),
compound “A3,”107 and N10169,108 which lower the intracellular pyrimidine levels by inhibit-
ing ribonucleotide reductase, dihydroorotate dehydrogenase, and orotidylate decarboxylase,
respectively. Also, the anti-influenza activity of the carbocyclic nucleoside analogues carbodine
and cyclopentenyl cytosine has been linked to pyrimidine depletion through CTP-synthetase
inhibition.94, 197–199 For a few carbocyclic purine nucleoside analogues with borderline to mod-
est activity against influenza virus, no mechanistic data are available.200 For the broad antiviral
agent 3-deazaguanine, a mechanism involving IMPDH inhibition was proposed.94, 201

4. Time to Revisit Nucleoside Inhibitors for Influenza?
That nucleoside analogues merit more attention in influenza drug development is nicely illus-
trated by the successful progression of T-705. The unprecedented bonuses of this agent are:
high resistance barrier, low cytotoxicity, and broad coverage of diverse RNA viruses. As for
2ʹ-FdG, the relevance of the 2ʹ-fluoro modification to achieve nonobligate chain terminators
of RNA virus polymerases202 is underscored by the fact that this substitution is present in suc-
cessful drugs for hepatitis C203 or drug candidates for respiratory syncytial virus therapy.204 An
important aspect is the avoidance of inhibitory effects on cellular polymerases or enzymes of
the purine or pyrimidine pathways, since this will de facto reduce the therapeutic index. Besides
this relevance for drug development, nucleoside analogues (or their 5ʹ-triphosphate forms) are
unique tools to study the kinetics or fidelity of the influenza polymerase, and the role of specific
PB1 residues.

C. Inhibitors of the Cap-Snatching Reaction

1. Inhibitors of Cap-Binding by PB2
As explained in Section 2,A, the first part of the cap-snatching reaction by the influenza virus
polymerase involves cap-binding by PB2. Initially, the fact that PB2 recognizes capped RNA
alike eukaryotic cap-binding proteins such as eIF4E,205 raised doubts about the target dru-
gability of the PB2-CBD and the possibility to design influenza virus-selective cap-binding
inhibitors. However, Hooker et al.39 used quantitative UV crosslinking to analyze the elements
in cap analogues that contribute to their recognition by isolated vRNPs and eIF4E, and identi-
fied some notable differences. Based on this, compound RO0794238 (Fig. 2F) was designed as
a cap analogue lacking a negative charge and containing an acyclic moiety instead of a ribose,
with the aim to achieve superior potency and selectivity for PB2. This molecule was indeed able
to inhibit cap-binding by influenza virus vRNPs in a dose-dependent manner, with no effect on
eIF4E.39

The revelation of the cocrystal structure of the PB2-CBD in complex with m7GTP32

(Fig. 2A and Section 2,A) finally enabled the rational design of selective inhibitors, given its
unique protein fold and cluster of hydrophobic residues. Four compounds (e.g., compound
“11”; Fig. 2C) displayed potent activity in a binding assay with the isolated PB2-CBD but,
unfortunately, were devoid of antiviral activity in influenza virus-infected cells (possibly due to
the presence of multiple negative charges, resulting in poor cellular uptake).36 The previously
identified compound RO079423839 however appeared inactive in this binding assay. The authors
speculated that RO0794238 might inhibit cap-binding by PB2 in an indirect manner through its
interaction with another part of the viral RNP complex. In addition, given its long substitution
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at the N-7 position, it seems implausible that RO0794238 would be able to bind in the m7GTP
pocket of the PB2-CBD.

The validity of the PB2-CBD as a drug target is best demonstrated by the clinical candidate
VX-787 (JNJ-63623872 or JNJ-872; Fig. 2D). In a Phase 2a challenge study, VX-787 yielded a
dose-dependent decrease in symptom scores and duration of symptoms.11 Additional clinical
trials with this promising compound are ongoing. Its discovery process was reported in 2014 by
Clark et al.37 VX-787 is an azaindole derivative that resulted from extensive iterative synthesis to
develop PB2 inhibitors, which optimally occupy the m7GTP binding pocket, as demonstrated
by cocrystallizing VX-787 with the PB2-CBD of influenza A (Fig. 2D). In particular, optimal
interactions with the hydrophobic as well as basic residues were achieved by introducing the
bicyclooctane-carboxylate moiety. A further structure-activity relationship (SAR) exploration
with isosteric replacements of the carboxylic group of VX-787 showed that the pKa value and
orientation of the negative charge significantly affect both anti-influenza potency and selectivity
for unwanted protein kinase targets (the latter being related to compound binding to the ATP
site of cellular kinases).206 VX-787 possesses strong antiviral activity (i.e., EC50 values in the
nanomolar range) in cellular assays with a broad range of influenza A virus strains, including
NAI- and amantadine-resistant isolates, 2009 pandemic H1N1, and circulating avian H5N1
strains.37, 207 Its activity against influenza B virus is negligible, which can be attributed to amino
acid differences in the PB2-CBD.208 In particular, the π -stacking interaction between VX-787
and Phe323 in the influenza A PB2-CBD cannot be formed in the influenza B protein, which
contains a glutamine (Q325) at the corresponding position (Fig. 2A and B). The apparent
flexibility in the PB2-CBD of influenza B (see Section 2,A) may be another factor complicating
the development of cap-binding inhibitors that cover both influenza A and B virus.

Resistance studies with VX-787 in cell culture delivered six resistance mutations in PB2
(Q306H, S324I, S324N, S324R, F404Y, and N510T), which yielded at least 60-fold reduction
in VX-787 sensitivity.207 In the Phase 2a clinical study, an M431I mutant virus was detected in
a minority of the patients, which, in cell culture, displayed 57-fold lower sensitivity to VX-787,
yet reduced viral fitness.11 In mice, prophylactic use of VX-787 (which is orally bioavailable)
provided 100% protection against the APR8 laboratory strain, a pandemic 2009 strain, or a
highly pathogenic avian H5N1 virus. In addition, this inhibitor provided 100% survival when
treatment was initiated up to 4 days after challenge with influenza virus.207

Recently, Roch et al.38 reported two compounds, Cap-3 and Cap-7 (Fig. 2E), which bind
to the PB2-CBD and inhibit transcription in an enzymatic assay with the polymerase complex.
In addition, they inhibit virus replication in cell culture, albeit considerably less potently than
VX-787 (i.e., EC50 values in the range of 1–9 μM). Hitherto, mechanistic validation was not
yet reported.

2. Metal-Chelating Inhibitors of PA-Nter Endonuclease Activity
The conserved nature of several amino acid residues inside the catalytic site of PA-Nter implies
that this domain is highly relevant to achieve inhibitors with broad activity against influenza A
and B. The strategy explored thus far consists of metal-chelating scaffolds containing coplanar
oxygens to bind the divalent metal ion(s), which resembles the action principle of approved
HIV integrase inhibitors.209, 210 The challenge is to achieve inhibitors, which optimally occupy
the PA-Nter catalytic site and surrounding regions, yet do not interact with metal-dependent
proteins of the host cell. The concept seems now validated since the recent introduction of two
PA inhibitors (AL-794 and S-033188) into clinical trials.211

The literature contains diverse PA inhibitors with inhibitory activity in enzymatic assays
with the viral polymerase or isolated PA-Nter. It is important to note that for many of these
agents, cell culture data on antiviral activity and, in particular, mechanism of action are not
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elaborated. Some compounds have a high anionic charge that impedes their cellular uptake.
For example, we demonstrated that for EGCG (Fig. 6K), the activity in virus-infected cells
is related to inhibition of virus entry.74 To definitely prove that an assumed PA inhibitor acts
upon PA in a virus/cell context, resistance studies should be carried out. As of today, this
decisive mechanistic evidence is only available for L-742,001 (Fig. 6E–G), since three labora-
tories including ours49, 74, 117 demonstrated that specific mutations in PA confer moderate (3-)
to high (>10-fold) viral resistance to this agent. The substitutions were present in the cat-
alytic core of PA or surrounding hydrophobic pockets (colored purple, green, red, and orange
in Fig. 6), confirming that these PA regions are critical for the antiviral mode of action of
L-742,001. This molecule is the prototype of the first class of influenza endonuclease inhibitors,
already discovered at Merck about two decades ago.115, 116 Among this series of 4-substituted-
2,4-dioxobutanoic acids with a characteristic β-diketo acid motif, compound L-742,001 was
identified as a particularly potent inhibitor of the influenza virus endonuclease reaction in an
enzymatic assay, and of virus replication in cells.49, 74, 116, 117 In a mouse model, the compound
provided up to 4-log10 reduction in virus lung titers.116 Strong in vivo activity was also re-
ported for the recently discovered inhibitor ANA-0 proposed to act upon PA (Fig. 6K).79 Other
classes of reported endonuclease inhibitors (awaiting mechanistic validation in cell culture)
include: flutimide75 (Fig. 6K) and a series of more potent aromatic analogues,212 N-hydroxamic
acid and N-hydroxyimide (Fig. 6K) compounds,77 tetramic acid derivatives,118 polypheno-
lic catechins,76 trihydroxyphenyl-bearing compounds73, 78, 120 (Fig. 6D and K, compound 273

and compound 1678), phenethylphenylphthalimide analogues derived from thalidomide,119

macrocyclic bisbibenzyls,213 fullerenes,214 hydroxyquinolinones,215 hydroxypyridinones,47, 50

hydroxypyridazinones,216 hydroxypyrimidinones,216 β-diketo acid (DKA), and DKA-
bioisosteric compounds,68 bis-dihydroxyindolecarboxamides,121 2-hydroxybenzamides,217

thiosemicarbazones,218 pyrimidinoles,45 pyridopiperazinediones38 (Fig. 6K, Endo-1), and mis-
cellaneous compounds bearing distinct pharmacophoric fragments.45, 78, 101 All these different
chemotypes have in common that they bear chelating motifs able to bind the bivalent metal
ion(s) in the catalytic core of PA-Nter.219

As explained in Section 2,B, the different crystal structures for PA-Nter that have become
available since 2009 converge on the overall structure of the active site, yet do not agree on
whether the enzyme contains one or two (or possibly three) divalent metal ions in its catalytic
site, nor on which metal ions (i.e., Mn2+ or Mg2+) are present in the native enzyme.42–47 Knowl-
edge of the precise number and identity of these metal ions is critical to design optimized
metal-chelating PA inhibitors. Similar to what was observed for HIV integrase,220 we found
that the potency of metal-chelating inhibitors in enzymatic assays with PA-Nter can show large
variations depending on which bivalent metal ion (Mg2+ or Mn2+) is used.68 This phenomenon
can be explained by the different ligand preferences of these two metal ions. For example, mag-
nesium generally binds oxygen atoms rather than nitrogen, while manganese has slightly greater
affinity for nitrogen.221 Moreover, two tautomeric forms of an inhibitor can display a difference
in metal preference. For DKA compounds, it was shown that Mn2+ preferentially binds to
the diketo form, while Mg2+ predominantly recognizes the β-keto-enol form.222 Dependent on
which metal ion is physiologically relevant, the compounds’ activity may increase by stabiliza-
tion of the preferred tautomeric form, for instance by substituting the flexible β-diketo acid
(DKA) moiety by a “locked” motif having optimal geometry for bidentate metal coordination.

Crystallographic analyses of PA-Nter in complex with diverse PA inhibitors have revealed
that the catalytic center is surrounded by different hydrophobic pockets, which are amenable
to inhibitor design.45–47, 49, 50, 120, 215, 216 Overall, the active site of PA-Nter is quite spacious and
flexible, and in silico design of optimized PA inhibitors is further complicated by the fact that
inhibitors bind via an induced-fit mechanism. Assuming that metal-chelating PA inhibitors act
as substrate or product mimics, precise insight into the binding mode of the RNA substrate
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or cleavage product is crucial to identify which of the hydrophobic pockets have the highest
relevance for PA inhibitor design. A cocrystal structure for PA-Nter in complex with an RNA
substrate is highly needed. Three X-ray structures are available of PA-Nter in complex with
UMP (Fig. 6H–J), which can be regarded as a mimic of one of the two cleavage products.44, 46, 49

Two distinct UMP-binding poses were observed, particularly related to the position of the ribose
and base, which underlines the impact of crystallization procedures (i.e., cocrystallization vs.
soaking; addition of metal ions or not). In the context of PA, cocrystallization seems more
reliable since it enables the binding pocket to adapt to the ligand. One particularly flexible
region is the helix containing residue Tyr24, which, in two cocrystal structures, stacks with the
uracil base46, 49 of UMP (Fig. 6I and J, in green) and also shows hydrophobic interactions with
PA inhibitors like those shown in Figures 6C and E.45, 46, 49, 50 To accommodate these ligands,
this Tyr24 moves or rotates compared to its pose in the apo form. Since, upon crystal soaking,
this conformational change is unlikely to occur, the ligand may be forced into an alternative
and biologically less relevant binding pose.

Another interaction site that seems of high relevance is Arg124. A role for this residue in
RNA substrate binding was suggested by Yuan et al.43 This was corroborated by Xiao et al.,57

whose MD simulations (Fig. 6A) pointed to Arg124, Arg125, and Arg192 as the residues re-
sponsible for interaction with the 3ʹ end of the RNA substrate. Likewise, the relevance of this
Arg124 pocket (in blue in Fig. 6) was suggested by our cell-based antiviral studies in which
we introduced mutations at different sites within or around the PA-Nter active center, and
analyzed the resistance of the mutant viruses to the prototype PA inhibitor L-742,001.74 The
data agreed to a docking model74 for L-742,001 in PA-Nter (Fig. 6G), but only partially agreed
to the cocrystallization results45, 49 (Fig. 6E and F). In addition, an analogous orientation
as for the docked L-742,001 molecule was seen in the X-ray structures of PA-Nter in com-
plex with the dihydropyrimidine-based “compound 5”45 (Fig. 6B), and the particularly potent
hydroxypyridinone-based PA inhibitor “compound 7”50 (Fig. 6C). For both these compounds,
the authors reported a role for Arg124 in binding of the inhibitor.

Consequently, we speculate that a PA inhibitor with a binding orientation that allows
interactions with these RNA-binding residues, mimics the 3ʹ end of the capped RNA substrate
and is able to efficiently compete with the substrate. Presumably, the interactions with the 3ʹ end
are essential for correct positioning and cleavage of the substrate. In contrast, the interactions
between the 5ʹ end of the capped RNA and PA-Nter (i.e., at the pocket colored in purple in Fig.
6) may be weaker, since the cap-binding site in the PB2 subunit already ensures strong binding
of the 5ʹ end. As a result, the pocket in PA-Nter, which binds the 5ʹ end could possibly be more
flexible. An additional argument is the fact that, once cleavage has occurred, the PA active site
has to release the capped 5ʹ end in order to allow its relocation into the PB1 catalytic site for
primer elongation and transcription of the viral mRNA. Hence, tight binding affinity of PA
to the 5ʹ end of the capped RNA substrate would substantially decrease the rate of product
release, which would be detrimental to the overall process of transcription.

3. PA Targeting Aptamers
Recently, a DNA aptamer library screening performed by Yuan et al.123 yielded a number of
aptamers with binding affinity to either entire PA or PA-Nter. Four aptamers were able to
inhibit the endonuclease reaction and one of them showed broad influenza A inhibition when
transfected into virus-infected cells. At present, aptamers still require significant improvements
in terms of pharmacokinetics and—dynamics before having broad clinical applicability. Nev-
ertheless, this study demonstrates that aptamers can be excellent tools to identify new relevant
binding pockets for inhibitors of the PA endonuclease or other viral target proteins.
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Figure 8. The two thus far explored protein–protein interaction (PPI) domains and chemical structures of PAC-
PB1N PPI inhibitors. (A) Location in the FluA polymerase crystal structure23 (PDB: 4WSB) of the two PPI domains,
which have been targeted by peptides or small molecules. (B) Closeup showing a superposition of the crystal
structures of the PAC-PB1N interface223 (PDB: 3CM8) on that of the FluA polymerase (light gray) and the apo
form of PAC

224 (light blue; PDB: 4IUJ). (C) Closeup showing a superposition of the crystal structure of the
PB1C-PB2N interface225 (PDB: 3A1G) on the FluA polymerase complex, in light gray. (D) Chemical structures of
representative PAC-PB1N-PPI inhibitors “compound 1,”127 diclazuril,126 benzbromarone,126 “compound 7e,”124

“compound 36,”131 and ANA-1.133

D. Protein–Protein Interaction Inhibitors of the Influenza Polymerase Complex

The assembly of the three subunits (PB1, PB2, and PA) into a functional viral polymerase
complex is essential for influenza RNA synthesis and virus replication. Thus, interference with
its correct assembly through inhibition of a crucial protein–protein interaction (PPI) is currently
explored as an innovative antiviral strategy. Until 2014, tailored design of assembly inhibitors
was based on at that time available crystal structures for two specific interfaces in the polymerase
heterotrimer (Fig. 8). The revelation of the full polymerase structure now creates the possibility
to explore other inter- or intrasubunit interfaces, yet two important issues are: (i) the size of a
specific interface, to allow fitting of small-molecule inhibitors; and (ii) the conservation of its
residues when envisaging both influenza A and B.
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The structural details for one important PA-PB1 interaction domain were revealed in 2008,
based on cocrystallization of the PA C-terminal domain (PAC, residues 239 or 256–716) with a
short N-terminal PB1 peptide (PB1N).223, 226 This PAC domain resembles a dragon’s head that
clamps the PB1N peptide. As shown in Figure 8B, the base of this pocket overlaps between
the crystal structures of the PB1N-bound PAC domain223 (in dark blue), the full polymerase
heterotrimer23 (in gray), and the apo PAC domain224 (in light blue). In contrast, there is less
overlap at the periphery, meaning that the binding groove is slightly more narrow in the structure
of the PB1N-bound PAC compared to the two other crystal structures. The less mobile base
of the pocket appears relevant as the initial interaction point for PPI inhibitors; to these
scaffolds, structural elements should be added to target also the more flexible protein parts on
the periphery of the interface.

Three features explain the drugability of this PAC-PB1N interface: several residues are
conserved (among influenza A, B, and C), and the interface is hydrophobic and relatively
small, implying that it can be targeted by small molecules.227 Initially, the concept to disrupt
the PAC-PB1N interface was explored with PB1-derived peptides.228–230 Among a first series of
small-molecule inhibitors identified by in silico screening followed by a PAC-PB1N biochemical
interaction assay, “compound 1” emerged as particularly relevant given its broad anti-influenza
A and B virus activity in cell culture (Fig. 8D).127 Other early lead molecules with anti-influenza
A activity in cell culture are benzbromarone and diclazuril126 and “compound 7e”124 (Fig. 8D).
This was followed by rational development of diverse lead compounds,125, 129–132, 231 some of
which were used to generate a pharmacophore model for PAC-PB1N interaction inhibitors.130

For the recently identified inhibitor ANA-1 (Fig. 8D), the anti-influenza activity was confirmed
in a mouse model.133 On the basis of docking, the binding site of ANA-1 in PAC was predicted
to lie in an allosteric site adjacent to the PB1 interacting domain. Yet, for all the PAC-PB1N

interaction inhibitors reported thus far, mechanistic studies using cocrystallization or resistance
selection remain to be performed to verify their antiviral mode of action and precise binding
mode. This could also aid to design PAC-PB1N assembly inhibitors, which establish hydrophilic
besides hydrophobic interactions, thereby leading to better solubility and potentially higher
antiviral potency than the current lead compounds.232

Another protein–protein interface that was validated with peptide inhibitors233, 234 but is
as yet unexplored with small molecules, is the interaction domain between PB1C (residues 678–
757; Fig. 8C, in light green) and PB2N (residues 1–37; in dark green). The crystal structure of this
isolated domain was published in 2009225 and nicely overlaps with that in the full polymerase
complex23 (in gray). Despite the fact that this PB1C-PB2N interface carries conserved amino
acids, the inhibition by a PB2N-derived peptide seemed prone to strain dependency.235 One
proposed hypothesis relates this observation to a conformational change in PB1, when it is
bound in the PB1-PA dimer intermediate, thereby rendering the PB2N-binding part in PB1
inaccessible. Hence, this PB1-PB2 interface appears a more challenging target for development
of broad influenza virus inhibitors.234, 235

E. Gene Silencing Approaches

Pharmaceutical development of oligonucleotide inhibitors faces some common obstacles, par-
ticularly related to their low in vivo stability and inefficient cellular delivery. Antisense oligonu-
cleotides function as a single strand and block mRNA processing or translation by binding to
the mRNA to which they are complementary. One influenza virus inhibitor currently in Phase 1
clinical trials,236 is the antisense oligonucleotide AVI-7100 (Radavirsen), a phosphorodiamidate
morpholino oligomer (PMO). AVI-7100 contains nonionic morpholino rings (instead of ribose
rings) and three phosphorodiamidate intersubunit linkages, and was designed to interfere with
translation and splicing of mRNA derived from the M-gene. In preclinical studies, AVI-7100

Medicinal Research Reviews DOI 10.1002/med



1154 � STEVAERT AND NAESENS

proved effective against influenza A virus infection in mice and ferrets, even when administered
after virus challenge.146

The possible application of RNA interference (RNAi) for influenza therapy has been the
subject of a series of studies.237 This includes siRNAs, small RNA duplexes, which trigger the
destruction of specific mRNAs by associating with the RNA-induced silencing complex. This
concept can be valuable for PA, PB1, PB2, and NP since some regions in their nucleotide
sequences are conserved among influenza A subtypes. The siRNAs for NP and PA were shown
to prevent accumulation of their mRNAs, and reduce the mRNA, vRNA, and cRNA lev-
els for other viral genes.238 siRNAs against NP, PA, and PB1 were shown to have antiviral
activity in cell culture and mice.238, 239 5ʹ-Triphosphate modification of siRNA (for NP) pro-
vided a dual effect by combining gene silencing with RIG-I activation.240 Alternatively, to
circumvent the poor delivery of siRNA, a lentiviral241 or Escherichia coli vector242 was ex-
plored to express NP- and PB1-targeting, or NP- and PA-targeting RNA interfering sequences,
respectively.

F. Small-Molecules Targeting the Viral NP

The viral NP directly interacts with the viral polymerase complex to support viral RNA
synthesis.243–245 However, it primarily has a structural function since it forms the protein
scaffold of the vRNP complexes through its homo-oligomerizing246–248 and RNA-binding
properties.246, 249 The NP protein is crescent shaped with head, body, and tail domains246, 247

and a putative RNA-binding groove (Fig. 9A and B).246 NP–NP oligomerization is the result
of one tail loop inserting into the body of a neighboring monomer. This insertion is stabilized
by intermolecular β-sheets, hydrophobic interactions, and salt bridges.246

The NP protein contains different sites that are amenable to inhibitor design and are
briefly described below (Fig. 9C–E).136 A first series are NP-aggregating agents such as the
aryl piperazine amide compound called nucleozin (Fig. 9D).111, 134, 135, 251 This molecule forms
bridges between NP subunits to give higher order NP oligomers.135 Depending on the assay,
nucleozin exerts its activity prior to nuclear import of the vRNPs; at the stage of viral RNA
synthesis; or during cytoplasmic trafficking of progeny vRNPs.252 It exhibits robust activity
against influenza A virus in vitro and in vivo, yet is inactive against influenza B. Viral resistance
to nucleozin emerged after only five cell culture passages.111, 134, 135 This agent is inherently
inactive against some influenza virus strains (such as the 2009 pandemic H1N1 virus) that
already carry one of its resistance mutations.111, 134 Another NP-aggregating compound, PPQ-
581, shows no cross-resistance to nucleozin and selects for a resistance mutation adjacent to
the nucleozin-binding site (Fig. 9D).137

A second type of NP inhibitors target the highly conserved Glu339-Arg416 salt bridge
among NP neighbor monomers.246 Shen et al.138 identified four small-molecule influenza in-
hibitors, which are able to disrupt NP oligomerization, with compound “3” (Fig. 9E) being the
most potent one in cell culture.

A third possibility is to target the RNA-binding groove in NP. In silico screening139 led
to the identification of naproxen (Fig. 9C), which was found to inhibit RNA binding by NP
in biochemical assays, and display anti-influenza virus properties in cell culture and mouse
models. The latter activity is likely potentiated by naproxen’s well-known anti-inflammatory
effect. The analogue naproxen C0,250 which carries a 1,3-dicarboxylated phenyl group instead
of the propionic acid in naproxen, has higher NP binding affinity in vitro, but its activity in cell
culture was not yet reported. A different virtual screening hit encoded F66 showed antiviral
activity in cell culture and mouse models,140 yet its RNA-NP disrupting activity and binding
mode in NP remain to be established.
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Figure 9. Structure of the viral nucleoprotein and chemical structures of proposed or proven NP inhibitors. The
NP structures are based on the H1N1 NP X-ray structure246 (PDB: 2IQH). The residues lining the RNA-binding
groove are shown in darker colors. (A) Head, body, and tail domains in NP. (B) As in panel A, but rotated 120°
around the x-axis. (C) Predicted binding sites for compound 4,142 naproxen139 and naproxen C0,250 RK424,141

and F66.140 (D) Binding site for nucleozin111,134,135 (proven by cocrystallization) and that predicted for PPQ-
581.137 The overlap of the nucleozin-binding site with that of compound 4 or PPQ-581 is colored in maroon and
orange, respectively. (E) The model in (C) is rotated 90° around the y-axis to show the internal tail loop binding
cavity (in cyan), which is the predicted binding pocket for compound 3.138 (F) Chemical structure of Ingavirin R©,
which was reported to impair biogenesis and oligomerization of NP in vitro.144
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Compound RK424141 was reported to inhibit influenza A virus in cell culture and mouse
models, and interfere with RNA binding to NP, the NP–NP interaction, and nuclear export
of NP. Although this complex mode of action remains to be verified, it seems to agree with
the docking analysis for RK424, which predicted its binding in an NP pocket surrounded
by the RNA-binding groove, NP dimer interface, and nuclear export signal.141 Other pro-
posed NP inhibitors are compound “4” (Fig. 9C) and Ingavirin R© (Fig. 9F), a controversial143

influenza inhibitor that is commercially available in Russia. This agent was reported to im-
pair biogenesis and oligomerization of NP in vitro144 and suppress influenza A and B infec-
tions in animal models.145, 253 However, since its broad antiviral activity encompasses unrelated
respiratory viruses,145 Ingavirin R© most likely targets a cellular rather than a virus-specific
component.

Taken together, besides nucleozin, several lead molecules to target NP have been proposed
during recent years. Among these, nucleozin is the only inhibitor for which the mechanism has
been firmly proven by cocrystallization and resistance analysis.

G. Less Defined Approaches to Inhibit the Influenza Polymerase Complex

For a number of compounds suggested to act on influenza virus polymerase activity in cell
culture, the detailed mechanism of action has not yet been revealed. Compound “367”111

(Fig. 7B) was proposed to target PB1 since mutation H456P in PB1 rendered the virus resistant
to “367” and its close analogue “715.” Compound “367” inhibited viral RNA synthesis in the
vRNP reconstitution (minigenome) assay, an effect that possibly contributes to its antiviral
activity in influenza virus-infected cell cultures. Another small molecule that may target PB1
is “ASN2” (Fig. 7B). This compound inhibits influenza A virus polymerase function while
simultaneously activating the innate immune system by inducing type I interferon expression.112

ASN2 inhibited viral transcription but not all genes were equally affected. It induced preferential
downregulation of mRNAs encoded by the smallest genome segments, that is M1, M2, NS1,
and nuclear-export protein (NEP). Loss of NS1 expression resulted in induction of interferon-I,
which may prove beneficial in an in vivo setting. Resistance selection revealed that the antiviral
activity of ASN2 is linked to the serine or tyrosine residue at position 499 in PB1.

Before the three-dimensional structure of PB1 was revealed, it was impossible to analyze
whether the identified resistance mutations for ASN2 and “367” (at position 499 and 456 of
PB1, respectively) are located close to each other. Using the crystal structures published by
Pflug et al.,23 we were now able to establish that both residues are located at the outside of PB1,
close to the PB2-627 domain (Fig. 5, in maroon) and at a distance of 15–20 Å from each other.
Both molecules appear relevant not only in terms of drug development, but also as tools to
unravel as yet unknown functions of particular regions in PB1.

Compound THC19 (Fig. 7B) was reported to inhibit influenza RNA synthesis and virus
replication by targeting the PA subunit, yet its mode of action remains to be established.122 The
quinoline-based compound BPR3P0128 (Fig. 7B) was shown to strongly inhibit viral mRNA
synthesis.148 This molecule inhibited binding and cleavage of capped RNA fragments by in-
fluenza polymerase complexes in nuclear extracts, yet did not compete with cap structures in
an in vitro cap-binding assay using isolated PB2. Based on this, it was hypothesized148 that
BPR3P0128 might target the interaction between PB2 and a host factor, such as the heat
shock proteins Hsp70 or Hsp90. Based on NMR-based fragment screening, Lee et al.149

identified the small molecule DPQ (Fig. 7B) that appears to interact with the influenza
vRNA promoter. This molecule was found to inhibit virus replication in a plaque reduction
assay.149

Medicinal Research Reviews DOI 10.1002/med



THE INFLUENZA VIRUS POLYMERASE COMPLEX � 1157

H. Strategies Directed Toward Associated Host Cell Factors

The concept of targeting a host factor to indirectly inhibit influenza virus RNA synthesis is still
in its infancy. Like all other viral pathogens, influenza viruses strictly rely on a variety of host
factors to support their replication.254 Thus, targeting such a cellular component represents
an alternative to traditional drugs that are directed toward a viral factor.255–257 This approach
could diminish the emergence of resistance since the mutation rate of the host cells is intrinsically
lower compared to that of the virus, and the virus most probably does not readily adapt itself
to use an alternative cellular factor. Obviously, the inherent challenge of all host-directed drug
discovery campaigns is to ensure that inhibition of the cellular protein is not detrimental to the
host. Hence, the pharmaceutical industry has been rather hesitant when considering host cell
targets to treat virus infections.

As explained below, miscellaneous host targeting approaches for influenza have been pub-
lished, which, at least conceptually, may be linked to indirect inhibition of the viral polymerase
complex. The interpretation is complicated by the fact that many of these molecules have mul-
tiple pharmacological (such as anti-inflammatory) effects. Hence, their therapeutic activity in
mouse influenza models may be related to immune-related besides antiviral effects. Although
this deviates from the traditional view on antiviral therapy, it fits with an ongoing call for
broader acting or immunomodulatory antiviral agents.258

One explored host-targeting strategy is to interfere with nuclear transport. All details on the
mechanisms for vRNP nuclear import and export can be found in a recent review.14 Inhibition
of the cellular CRM1 protein by the cytotoxic agent leptomycin B was already shown several
years ago to give nuclear retention of the vRNPs, presumably by disrupting the interaction
between NP and the CRM1 nuclear export receptor.259 In 2014, the more selective CRM1-
antagonist KPT-335 (Verdinexor; Fig. 7C), which is currently in Phase 1 clinical trials,260 was
proven to increase survival in influenza virus-infected mice.147

An alternative approach relates to the heat shock protein Hsp90, which is involved
in assembly and nuclear transport of the viral RNA polymerase, possibly as a molecular
chaperone for its protein subunits prior to the formation of a mature ternary polymerase
complex.261 It was demonstrated that Hsp90 inhibitors (Fig. 7C) such as geldanamycin,150

its analogue 17-allylamino-17-demethoxygeldanamycin150 (17-AAG), and 3beta-acetoxy-
deoxodihydrogedunin,151 impair influenza viral growth by reducing the levels of ribonucleo-
protein complexes. Recently, Swale et al.262 revealed how the PA-PB1 heterodimer assembles
with host RanBP5 into a complex, probably being the PA-PB1 import complex. Targeting the
assembly or disintegration of this complex with inhibitors, could be a valuable antiviral strategy.

Another pharmacological class is protein kinase inhibitors to inhibit phosphorylation of
a viral protein or crucial cellular factor. The MEK (mitogen-activated protein kinase kinase)
inhibitor U0126 (Fig. 7C) was shown to cause nuclear retention of viral RNPs, impaired
function of the NEP, and concomitant inhibition of virus production.263 U0126 proved able to
suppress propagation of influenza viruses, including highly pathogenic avian influenza viruses,
and was reported to have low cytotoxicity in vitro and in vivo.152, 153 Four other MEK inhibitors
(Fig. 7C), PD-0325901, AZD-6244, AZD-8330, and RDEA-119 (which are all orally available
and at least in Phase 1 clinical trials for cancer therapy) demonstrated antiviral activity in vitro
as single agents or in combination with oseltamivir.154 Also, the multiple kinase inhibitor
WV970 (Fig. 7C) was reported to suppress influenza virus in cell culture through vRNP
inhibition.155

The NF-κB signaling pathway is critical for efficient replication of influenza virus, and
its inhibition results in reduced virus titers. Mazur et al.156 reported that acetylsalicylic acid
(aspirin; Fig. 7C) can efficiently diminish influenza virus replication in vitro and in vivo
through NF-κB inhibition, which blocks caspase-mediated nuclear export of VRNPs. Three
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other NF-κB inhibitors, pyrrolidine dithiocarbamate, SC75741, and Bay 11–7082 (Fig. 7C),
were reported to significantly decrease influenza virus-induced disease in mice.157–159, 264

Another host cell factor with diverse regulatory functions, the Rac1 GTPase, was demon-
strated to have both virus-supportive as antiviral effects. The Rac1 GTPase inhibitor NSC23766
(Fig. 7C) was found to possess anti-influenza virus properties by affecting viral polymerase ac-
tivity in a cell-based (mini-genome) assay. NSC23766 was able to reduce virus replication in
mice and prolong the survival rate of infected mice.160

4. CONCLUSION AND PERSPECTIVES

For many viruses such as HIV, hepatitis B virus, hepatitis C virus, and herpesviruses, inhibitors
of viral DNA or RNA polymerases or hereto related activities are the cornerstone of current
antiviral interventions. For influenza virus, the development of viral polymerase inhibitors
has been lagging behind, but presently seems to be at a turning point. During the past years,
major progress was made in the structural elucidation of different influenza virus polymerase
subdomains, and very recently of the entire heterotrimeric complex. In parallel, significant
advances were achieved in unravelling the reaction mechanisms and functioning of the influenza
replication machinery. These accomplishments fuel the ongoing search for unique influenza
polymerase inhibitors, which has evolved from serendipitous discovery to rational structure-
aided drug design. It can be anticipated that, in the near future, some of these inhibitors will
enter the clinic to fundamentally reshape the field of influenza therapy and prevention.
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V, Palù G, Cruciani G, Loregian A, Goracci L, Tabarrini O. A broad anti-influenza hybrid small
molecule that potently disrupts the interaction of Polymerase Acidic Protein-Basic Protein 1 (PA-
PB1) subunits. J Med Chem 2015;58:3830–3842.

132. Trist IM, Nannetti G, Tintori C, Fallacara AL, Deodato D, Mercorelli B, Palù G, Wijtmans M,
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