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Abstract: Cluster of differentiation 24 (CD24) is a small, highly glycosylated cell adhesion protein
that is normally expressed by immune as well as epithelial, neural, and muscle cells. Tumor CD24
expression has been linked with alterations in several oncogenic signaling pathways. In addition, the
CD24/Siglec-10 interaction has been implicated in tumor immune evasion, inhibiting macrophage-
mediated phagocytosis as well as natural killer (NK) cell cytotoxicity. CD24 blockade has shown
promising results in preclinical studies. Although there are limited data on efficacy, monoclonal
antibodies against CD24 have demonstrated clinical safety and tolerability in two clinical trials.
Other treatment modalities evaluated in the preclinical setting include antibody–drug conjugates and
chimeric antigen receptor (CAR) T cell therapy. In this review, we summarize current evidence and
future perspectives on CD24 as a potential target for cancer immunotherapy.
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1. Introduction

Checkpoint immunotherapy with programmed cell death protein 1 (PD-1)/programmed
death-ligand 1 (PD-L1) and/or cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)
inhibitors has altered the treatment landscape in medical oncology, thus improving patient
outcomes [1,2]. Additional immune checkpoint molecules that facilitate tumor immune
evasion represent potential targets for novel immunotherapy strategies [3].

Cluster of differentiation 24 (CD24), also known as heat-stable antigen (HSA), is a
highly glycosylated 31–34 amino acid protein attached to the cell surface by a glycosylphos-
phatidylinositol anchor [4]. It is normally expressed on B and T lymphocytes, monocytes,
and granulocytes [4,5] as well as epithelial, neural, and muscle cells [5]. CD24 represents
a costimulatory molecule for CD4+ T cell proliferation [6]. It has been shown to have a
proapoptotic role in B cell precursors as well as in differentiated B cells, possibly through the
activation of the MAPK pathway [7,8]; CD24 is a marker for B10 regulatory B cells, which
restrain the immune response by regulating T cell activity [9]. In addition, CD24 is highly
expressed in regulatory T cells and may regulate their immunosuppressive activity [10]. It
is also involved in the differentiation of CD8+ T cells [11]. Thus, decreased CD24 expression
may lead to uncontrolled T cell proliferation, with implications in autoimmunity [12]. Fur-
thermore, CD24 interaction with P-selectin [13] mediates leukocyte binding to endothelial
cells and activated platelets [14], therefore promoting cell migration [15]. CD24 also regu-
lates the activity of several other adhesion molecules, including integrins, by affecting their
localization in the cell membrane, possibly by activating Src-related kinases [15,16]. While it
is also involved in the differentiation of neural stem cells [17], CD24 is transiently expressed
during the development of the human central nervous system [18,19]. As a matter of fact,
the activity of L1CAM (CD171), a neural signal transduction molecule which regulates
neurite outgrowth, appears to be dependent upon its interaction with CD24-associated
sialic acids [20].
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CD24 also plays an important role in tumorigenesis. Surface CD24 expression in
tumor cells has been linked with alterations in multiple oncogenic signaling pathways,
including Src/STAT3 [21], EGFR [22], HER2 [23], Ras-like GTPase [24], MAPK [25,26],
AKT/mTOR [27], WNT/β-catenin [28], and miRNA-related pathways [25]. Moreover, the
cytoplasmic accumulation of CD24 may be involved in tumor cell proliferation, including
p53 inactivation [4]. In this regard, the overexpression of CD24 has been documented in
several malignancies, including breast [29,30], lung [31], colorectal [32], hepatocellular [27],
pancreatic [33], ovarian [30], urothelial [34], prostate [35], and head and neck cancer [36],
as well as in primary central nervous system (CNS) tumors [37,38] and hematologic malig-
nancies [39–41] (Table 1).

Table 1. Association between CD24 overexpression and disease features across different tumor types.

Tumor Type CD24 Overexpression Disease
Characteristics Outcome Reference

Hepatocellular
carcinoma High IHC expression NA Decreased OS [27]

Breast carcinoma

Moderate/high-
intensity IHC staining

or present in >26%
of cells

Luminal A
subtype Decreased OS [29]

Breast carcinoma mRNA expression
>median TNBC subtype Decreased OS [30]

Ovarian
carcinoma

mRNA expression
>median NA Decreased RFS [30]

Colorectal
adenocarcinoma

Moderate/high IHC
staining, mRNA
expression >90th

percentile

NA Increased OS [42]

Urothelial
carcinoma

Moderate/high-
intensity IHC staining

in >10% of cells

High grade,
stage NA [43]

Prostate
adenocarcinoma Any IHC staining High stage Decreased PSA

relapse time [35]

Oral squamous
cell carcinoma

IHC staining in >10%
of cells NA

Decreased ORR
to neoadjuvant

therapy
[36]

Multiple
myeloma

BM PC expression >5%
by flow cytometry NA Increased PFS,

OS [41]

Abbreviations—BM: bone marrow, CRC: colorectal carcinoma, HCC: hepatocellular carcinoma, IHC: immunohis-
tochemistry, ORR: objective response rate, OS: overall survival, PC: plasma cell, PFS: progression-free survival,
RFS: relapse-free survival.

Notably, the expression of CD24 in solid tumors has been correlated with worse
prognosis, including the presence of more aggressive features and their metastatic spread
in vivo [44]; in fact, CD24 expression has been shown to promote tumor growth and
malignant behavior in a dose-dependent manner [45]. Tumor cell CD24 interaction with
P-selectin on endothelial cells may account for the latter [4,46]. Additional mechanisms that
depend upon the expression of CD24 and are implicated in tumor cell extravasation and
metastasis include rolling on E-selectin [47] and binding to fibronectin in the extracellular
matrix [47]. CD24 represents a target of the transcription factor hypoxia inducible factor-
1α (HIF-1α), a molecule commonly upregulated in hypoxic conditions, including during
primary tumor growth and metastasis [48]. Intriguingly, metastatic tumor growth has been
shown to be inhibited when CD24 activity is suppressed [34]. Finally, the surface expression
of CD24 in peripheral blood leukocytes has been shown to be both sensitive and specific for
the detection of colorectal adenoma and cancer in individuals undergoing colonoscopy [49].
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Combined with peripheral blood CD11b expression, surface CD24 has also been evaluated
as a potential screening tool for the detection of hematologic malignancies [50].

Its multifaceted role in both the regulation of the immune response and tumorigenesis
has made CD24 a compelling target for the immunotherapy of cancer. In this review,
we sought to summarize the available data on the role of CD24 in chemoresistance and
antitumor immunity. In addition, we present clinical trials that have assessed the efficacy
of CD24 blockade in cancer, either alone or in combination with other treatment modalities.

2. Resistance to Chemotherapy

In the preclinical setting, the overexpression of CD24 has been associated with resis-
tance to several chemotherapy agents. Leukemia stem cells with CD24 surface expression
appear to be resistant to doxorubicin, possibly through the activation of the Wnt/β-catenin
and PI3K/Akt pathways [51]. Likewise, downstream activation of the PI3K/Akt pathway
by CD24 has been shown to reduce the sensitivity of retinoblastoma cells to vincristine [52].
Thus, the inhibition of autophagy through the PI3K/Akt pathway seems to be involved in
the development of CD24-mediated chemoresistance [53]. Another mechanism of resistance
may involve the activation of MAPK-related pathways, resulting in temporary inhibition
of cell proliferation [54]. CD24 may also enhance cytotoxicity from DNA-damaging agents
through the disruption of NF-κB signaling [55]. CD24+ head and neck squamous cell
carcinoma (HNSCC) cell lines were resistant to cisplatin, and this effect was reversed by
CD24 inhibition [56]. Additional preclinical data support chemoresistance to doxorubicin
and cisplatin for CD24+ ovarian cancer [57] and to gemcitabine for CD24+ pancreatic cancer
cell lines [58]. Moreover, the overexpression of CD24 has been linked with worse outcomes
following chemoradiotherapy in patients with glioblastoma [59] and locally advanced
HNSCC [36].

CD24-induced chemoresistance may be tissue-dependent. The induced expression
of CD24 in endometrial cell lines increased resistance to doxorubicin and paclitaxel [60].
Furthermore, treatment with anti-CD24 antibodies conferred increased sensitivity to mul-
tiple chemotherapy agents in colorectal cancer models. However, this is not the case for
early breast cancer, where the increased expression of CD24 has demonstrated conflicting
results across studies [61,62]. The latter may be due to polymorphisms in the CD24 gene,
which may be culpable of discordances in tumor immune infiltration and thus explain the
differences in the pathologic response to neoadjuvant chemotherapy [63].

Finally, the overexpression of CD24 has been linked with resistance to targeted ther-
apies. In melanoma, the increased expression of CD24 was associated with resistance to
BRAF inhibitors [64]. In addition, CD24 was shown to promote resistance to sorafenib
in hepatocellular carcinoma [27]. CD24 was also shown be upregulated and to promote
resistance to EGFR inhibition in lung adenocarcinoma cells resistant to gefitinib [65,66].
In addition, CD24 polymorphisms were associated with differences in survival outcomes
after neoadjuvant treatment, which included bevacizumab in resected metastatic colorectal
cancer [67].

3. Implications in Antitumor Immunity

Siglecs, or sialic-acid-binding immunoglobulin-like lectins, are a family of surface
receptors that are expressed by immune cells and bind sialic acid-containing glycans, also
known as sialoglycans [68]. Siglecs have been implicated in various components of the
immune response, such as in the regulation of immune cell proliferation, survival, T cell
and eosinophil activity, antigen presentation, and endocytosis signaling [69]. CD24 is the
main ligand for Siglec-10 [30]; Siglec-10 is widely expressed by B cells, activated T cells,
and monocytes [28]. The CD24/Siglec-10 complex engages danger-associated molecular
pattern (DAMP) molecules, released as a result of tissue injury, in order to initiate a sig-
naling cascade that is mediated by SHP-1 and/or SHP-2 phosphatases associated with the
two immunoreceptor tyrosine-based inhibition motifs (ITIMs) in the cytoplasmic tail of
Siglec-10. This inhibits TLR-mediated inflammation, which ultimately leads to the suppres-
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sion of the immune response following tissue damage [70,71]. Selective interaction with
DAMPs but not with pathogen-associated molecular pattern molecules (PAMPs), which
are related to the recognition of “non-self” patterns associated with infection, provides
the biologic basis for a differential response between healthy and neoplastic tissue as a
result of CD24 blockade [71,72]. As a matter of fact, inactivating CD24 alterations may
confer protection against autoimmune diseases such as systemic lupus erythematosus
and multiple sclerosis [73]. The anti-inflammatory effects of CD24 activation have also
been explored as a strategy to counteract immune-related adverse events (NCT04552704,
NCT04060407), graft-versus-host disease [74], and as of late, COVID-19 [75]. The effects of
CD24 signaling on immune cell activity are summarized in Table 2.

Table 2. Effects of CD24 signaling different subtypes of immune cells.

Immune Cell
Subype Effect Proposed Mechanism Outcome

T cells Regulation of
proliferation

Inhibition of rapid T cell
proliferation in

lymphopenic hosts
Inhibition

T cells Downregulation of Th1,
upregulation of Treg cells CD24+ Breg cells Inhibition

T cells
Promotion of the
differentiation of

memory/effector T cells

Costimulatory signal for
naive CD8+ T cells Activation

NK cells Reduced NK cell
cytotoxicity Siglec-10-mediated Inhibition

Macrophages Inhibition of
phagocytosis Siglec-10-mediated Inhibition

Monocytes/neutrophils Hematogenous spread

P-selectin-mediated cell
adhesion to activated

endothelial cells
or platelets

Activation

Dendritic cells
Suppression of immune

response to tissue
damage

Inhibition of
TLR-mediated

inflammation via
Siglec-10 interaction

Inhibition

Several malignancies have been found to overexpress sialyated glycans, which connect
with Siglec-10 and employ the CD24/Siglec-10 interaction as a means of tumor immune
evasion [76]. This mimics the innate “recognition of self” signal that is emitted by injured
tissues to inhibit inflammation and allow for tissue healing [76]. Aberrant sialyation has
been linked with uncontrolled cell proliferation and malignant potential, as well as tumor
immune evasion [77]. Mouse sepsis models have provided a possible mechanism for the
inhibition of the CD24/Siglec-10 interaction and the resulting immunosuppression through
the disruption of CD24 sialyation with the use of recombinant bacterial sialidases; however,
this strategy harbors the risk of increasing susceptibility to sepsis secondary to bacterial
infection [78].

In addition, the surface expression of CD24 has been described as a “do not eat me”
signal, inhibiting phagocytosis by infiltrating Siglec-10-expressing macrophages [30]. In con-
trast, the loss of CD24 expression has been shown to increase phagocytosis by macrophages
expressing Siglec-10 in renal clear cell carcinoma [79]. Furthermore, a decrease in Siglec
binding to surface sialic acids promotes macrophage-mediated phagocytosis [80]. Silenc-
ing NPM/B23, a protein that induces CD24 expression, promotes macrophage-mediated
phagocytosis by downregulating CD24, while the restoration of CD24 expression inhibits
phagocytosis and therefore promotes immune evasion [81].



J. Pers. Med. 2022, 12, 1235 5 of 15

Natural killer (NK) cells have been shown to selectively eradicate less differentiated
cells such as CD24+ ovarian cancer cells [57] and cancer stem cells [82]. This antitumor
effect is largely dependent on the activation of the Natural Killer Group 2D (NKG2D)
receptor [82]. NKG2D-mediated NK cell cytotoxicity has been correlated with intracellular
reactive oxygen species (ROS) formation, with cells that have low ROS levels being more
sensitive to NK cell-mediated killing [83]. The CD24/Siglec-10 interaction has been linked
with NK cell dysfunction in hepatocellular carcinoma and could provide another pathway
for CD24-mediated immune evasion [84].

The correlation between CD24 and PD-1/PD-L1 immune checkpoints has not been
clearly established at this point. The overexpression of PD-L1 seems to downregulate
surface CD24 in breast cancer cells [85]. Moreover, high PD-1 expression was correlated
with decreased CD24 expression in B cells infiltrating hepatocellular carcinoma tumors,
which resulted in decreased cytokine production [86]. Furthermore, treatment with CD24Fc
reduced infiltration by PD-1-expressing T cells in vivo [87]. However, this was not the case
in patients with NSCLC [88]. Although early indications for the interaction between CD24
and PD-(L)1 point towards tumor type specificity, more data are needed to draw definitive
conclusions.

CD44 is a cell surface glycoprotein that acts as an adhesion molecule by binding
to hyaluronic acid [89]. It is normally expressed on all hematopoietic as well as most
epithelial cells [90]. While its possible role in tumorigenesis is currently under investi-
gation, CD44 is widely used as a marker of cancer stem cells [91]. By regulating P- and
L-selectin activity, CD44 is thought to be involved in hematogenous dissemination, includ-
ing leukocyte recruitment and metastatic tumor spread [92]. More specifically, it appears
to control tumor infiltration by the intratumoral movement of cytotoxic T cells [93] and
may exert an immune suppressive effect upon its interaction with osteopontin [94,95].
Intratumoral movement is also regulated by the CD44/hyaluronic acid interaction, which
is involved in the reorganization of the cytoskeleton that is necessary for cell migration [89].
CD44+/CD24–/low cells have been described as breast [96] and prostate cancer [97] stem
cells; stem-like properties, including increased proliferation [96], angiogenesis [98], and
resistance to chemotherapy [99], have been attributed to CD44+/CD24–/low NSCLC [100],
and ovarian cancer cells as well [101]. However, the loss of CD24 expression does not
appear to be necessary for cancer stemness. As a matter of fact, CD44+/CD24+ pancreatic
cancer cells that express epithelial-specific antigens appear to possess several stem-like
properties that have led them to be considered as tumor-initiating cells [102]. Target-
ing those cells in particular resulted in significant antitumor activity in vivo and could
evolve into a potential strategy for pancreatic cancer immunotherapy [103]. Furthermore,
CD44+/CD24+ melanoma cells have been shown to have greater tumor-forming potential
in vivo than CD44+/CD24–, suggesting that the increased malignant potential might be
attributable to CD24 expression [104].

4. CD24 Inhibition in Solid Tumors
4.1. Preclinical Data

Treatment strategies that have employed the inhibition of the CD24 immune check-
point have been evaluated in the preclinical setting. In vivo studies are summarized
in Table 3.
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Table 3. Preclinical studies in vivo with agents that target CD24.

Tumor Type Anti-CD24 Agent Other Agents Result Proposed
Mechanism Reference

Urothelial
carcinoma ALB9 NA Tumor growth inhibition

Inhibition of
P-selectin-mediated

metastatic dissemination
[34]

Lung
adenocarcinoma SWA11 NA Tumor growth inhibition Inhibition of Src/STAT3

signaling

[21]
Pancreatic

adenocarcinoma SWA11 NA Tumor growth inhibition Inhibition of Src/STAT3
signaling

Ovarian carcinoma SWA11 NA Tumor growth inhibition Inhibition of Src/STAT3
signaling

Lung
adenocarcinoma SWA11 Gemcitabine

Tumor growth
inhibition, increased

efficacy of gemcitabine

Modification of
intratumoral cytokine

microenvironment
[105]

Ovarian carcinoma SWA11 NA Tumor growth inhibition
Modification of

intratumoral cytokine
microenvironment

Colorectal
adenocarcinoma SWA11

Paclitaxel,
doxorubicin,

5-fluorouracil,
oxaliplatin,
irinotecan

Tumor growth
inhibition, increased

efficacy of
chemotherapeutic

agents

Inhibition of Ras pathway [106]

Breast carcinoma SN3 NA Tumor growth inhibition

Promotion of
phagocytosis by

Siglec-10-expressing
macrophages

[30]

Lung
adenocarcinoma G7mAb Cetuximab Improved survival

Inhibition of STAT3
signaling by dual
targeting of CD24

and EGFR

[107]
Hepatocellular

carcinoma G7mAb Cetuximab
Tumor growth

inhibition, improved
survival

Inhibition of STAT3
signaling by dual
targeting of CD24

and EGFR

Colorectal
adenocarcinoma G7mAb Cetuximab

Tumor growth
inhibition, improved

survival

Inhibition of STAT3
signaling by dual
targeting of CD24

and EGFR

Hepatocellular
carcinoma rG7S-MICA NA Tumor growth inhibition

NK cell recruitment
through MICA/NKG2D

pathway
[108]

Breast carcinoma scFvs Epirubicin
Tumor growth

inhibition, increased
efficacy of epirubicin

Targeting of
CD44+/CD24+ cells [109]

Small cell lung
cancer

SWA11-SPDB-
dg.ricin A

chain
NA Tumor growth inhibition Targeted, ricin-mediated

toxicity [110]

Burkitt’s
lymphoma SWA11.dgA NA Durable complete

remissions
Targeted, ricin-mediated

toxicity [111]

Colorectal
adenocarcinoma SWA11-ZZ-PE38 NA Tumor growth inhibition

Targeted,
exotoxin-mediated

cytotoxicity
[112]
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Table 3. Cont.

Tumor Type Anti-CD24 Agent Other Agents Result Proposed
Mechanism Reference

Hepatocellular
carcinoma hG7-BM3-VcMM NA Tumor growth inhibition

Targeted,
MMAE-mediated

cytotoxicity
[113]

Hepatocellular
carcinoma G7mAb-DOX NA

Tumor growth
inhibition, improved

survival

Targeted,
doxorubicin-mediated

cytotoxicity
[114]

Hepatocellular
carcinoma HN-01 NA

Tumor growth
inhibition, improved

survival

Targeted, intracellular
release of nitric oxide [115]

Pancreatic
adenocarcinoma

CAR-redirected
anti-CD24 T-cells NA

Tumor growth
inhibition, improved

survival

T-cell mediated
cytotoxicity [116]

4.1.1. Monoclonal Antibodies

Monoclonal antibodies targeting CD24 have been used either with or without chemother-
apy in various solid tumor models. ALB9 prevented lung metastases from CD24-overexpressing
human urothelial cancer cells, with lung colonization restarting promptly after treatment
discontinuation [34]. SWA11, which is another monoclonal antibody against CD24, reduced
proliferation in human lung [21,105], ovarian [21,105], and pancreatic cancer cell lines [21]
and impeded tumor growth in human colorectal cancer xenograft models [106]. Monother-
apy with SWA11 has been shown to decrease tumor volume in several human xenograft
models [21]. Moreover, pretreatment with SWA11 increased the antitumor efficacy of
gemcitabine in vivo, particularly by promoting macrophage infiltration and disrupting
angiogenesis [105]. SWA11 has been shown to increase the antitumor efficacy of multiple
chemotherapy agents, including oxaliplatin, 5-fluorouracil, irinotecan, paclitaxel, and dox-
orubicin [106]. Dual CD24 inhibition with SWA11 and ML-5 suppressed the proliferation
of CD24+ pancreatic cancer cell lines, with the antiproliferative effect correlating with
CD24 expression levels [33]. Clone SN3 promoted phagocytosis in ovarian and breast
cancer patient-derived CD24+ cell lines, and it increased survival in vivo through the
macrophage-mediated inhibition of tumor growth [30].

The G7 monoclonal antibody designed against CD24 has demonstrated some an-
titumor activity as well [107,113]. Its combination with cetuximab exhibited enhanced
antitumor efficacy, possibly through disruption of STAT3 signaling [107]. Concomitant
manipulation of CD24 and CD47 has also been investigated as a potential treatment for
glioblastoma in the preclinical setting [117]. The development of a bispecific antibody
against the NK receptor ligand MICA and G7 has also shown promising preliminary re-
sults [108,118]. This approach employed the increased expression of CD24 in hepatocellular
carcinoma tumor cells in order to recruit NK cells at the tumor site [108,118] and promote
NK cell-mediated cytotoxicity, consequently showing substantial antitumor activity in vivo.

Recombinant antibodies targeting CD24 have also been tested. Single-chain variable
fragments (scFvs), selected from a total RNA library from lymphocytes of breast cancer
patients, showed high selectivity for CD24 and CD44 and produced a synergistic effect
when administered in combination with epirubicin [109]. ScFvs have received FDA ap-
proval in malignancies, including blinatumomab for acute lymphoblastic leukemia [119],
and represent an alternative method for targeting CD24.

4.1.2. Antibody–Drug Conjugates

Antibody–drug conjugates have also shown promising results in preclinical studies.
As such, the conjugate of an anti-CD24 monoclonal antibody with deglycosylated ricin
A-chain delayed tumor growth in a small cell lung cancer xenograft model [110]. A second
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antibody–deglycosylated ricin A-chain conjugate produced complete remissions that were
durable and increased survival in a Burkitt’s lymphoma mouse model [111]. Anti-CD24
monoclonal antibodies have also been conjugated with Pseudomonas-derived exotoxin;
this approach produced dose-dependent cytotoxicity in CD24-expressing colorectal cancer
cells and inhibited tumor growth in xenograft models, with the results replicated in a
second preclinical study [45,112].

A humanized murine anti-CD24 monoclonal antibody conjugated with monomethyl
auristatin E (MMAE), a tubulin inhibitor, exhibited antitumor efficacy in mouse hepa-
tocellular carcinoma models [113]. MMAE represents a validated conjugate candidate,
that has demonstrated activity in hematologic malignancies and has gained regulatory
approval by the FDA [120]. A conjugate bearing doxorubicin induced cell cycle arrest in
CD24+ hepatocellular carcinoma cells and impeded tumor growth in mice [114]. Finally,
an antibody–nitric oxide conjugate delayed hepatocellular carcinoma tumor growth in
mice by nitrating the mitochondrial protein Cyt c and promoting apoptosis [115]. More
importantly, the conjugated form exhibited superior antitumor activity as compared with
the unconjugated anti-CD24 monoclonal antibody itself [115].

4.1.3. Chimeric Antigen Receptor (CAR) T Cell Therapy

Following the successful implementation of CAR T cell immunotherapy in hematologic
malignancies [121], some preclinical studies have employed engineered immune cells to
target CD24 in solid tumors. Anti-CD24 CAR T cell therapy was effective in reducing tumor
growth and metastasis in human pancreatic adenocarcinoma xenografts in mice [116]. The
treatment was effective even in CD24 subclone-bearing tumors [116], suggesting that
targeting pancreatic cancer stem cells with the use of this approach could be a viable
treatment strategy for the therapy of pancreatic cancer.

Beyond T cells, NK cells have also demonstrated cytotoxic activity against ovarian
cancer cell lines and patient-derived ovarian cancer cells [122]. Another strategy was the
use of dendritic cells loaded with antibody-coated cancer cells, which targets different
surface antigens, including CD24, to cross-present tumor antigens to CD8+ T cells [123].
This approach promoted T cell-mediated cytotoxicity in melanoma and ovarian cancer
cell lines.

4.2. Clinical Trials

To this day, two clinical trials evaluating CD24-inhibiting agents have been completed
in patients with cancer. The first one was a single-arm phase 1/2 study that enrolled
58 patients with severe B cell lymphoproliferative disease after bone marrow or organ trans-
plantation [124,125]. The patients received a combination of two monoclonal antibodies:
ALB9 targeting CD24 and BL13 targeting CD21 [124,125]. Overall, the study treatment
was well-tolerated, with the most common adverse events being grade ≥ 3 transient neu-
tropenia (42%) and grade 2 fever (22%) during the first infusion [124,125]. Grade 3 sepsis,
diarrhea, vomiting, and thrombocytopenia were each reported in one patient. Combination
therapy showed substantial clinical activity, with complete remission achieved in 61% of
the cases [125]. After a median follow-up of 61 months, the overall survival rate was
46% [125]. However, the study treatment showed limited activity in the central nervous
system [124,125]. As a result, this strategy has not been explored any further, and current
treatment options for B cell lymphoproliferative disease arising post transplantation include
the reduction of immunosuppression, rituximab, chemotherapy, or their combination [126].

The second study was a single-arm, single-institution phase 1/2 study involving
36 patients with primary hepatocellular carcinoma that had been subjected to surgical
resection [127]. Study participants received adjuvant therapy with autologous transfusions
of dendritic cells and cytokine-induced T cells loaded with the CD24 peptide [127]. The
treatment was safe, with the most common adverse event being transient fever (<grade 3)
in 19% of the patients [127]. No grade 3 or higher adverse events were reported [127]. The
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4-year overall survival rate was 47% and 53% in patients receiving study treatment two
and four times, respectively [127].

Additional clinical trials evaluating agents that target the CD24 immune checkpoint in
patients with melanoma or advanced solid tumors have been registered (NCT04552704,
NCT04060407). These trials used a recombinant fusion protein, CD24Fc, which activates
the CD24/Siglec-10 pathway [128], in combination with immunotherapy; their aim was
to evaluate whether combination therapy would reduce the incidence and/or severity of
immune-related adverse events. One of these trials was terminated early (NCT04552704),
while the other was withdrawn before recruitment started (NCT04060407). Clinical trials of
CD24-targeting agents in malignancies are summarized in Table 4.

Table 4. Clinical trials with agents targeting CD24 in patients with cancer.

Trial
Identifier Inclusion Agent Phase Setting Primary

Outcome Enrollment Status Results

NCT04552704 Advanced Solid
Tumors CD24 agonist I/II Any

Safety,
tolerability,

recovery
from irAEs

78 Active, not
recruiting No

NCT04060407
Unresectable or

metastatic
melanoma

CD24 agonist,
nivolumab,
ipilimumab

Ib/II Any Safety,
tolerability 0 Withdrawn No

NA Posttransplant
BLPD ALB9, BL13 I/II First

line
Safety,

tolerability 58 Completed Yes

NA Resected HCC
CD24-loaded

DC/CIK
autotransfusion

I/II Adjuvant Safety,
efficacy 36 Completed Yes

5. Conclusions

CD24 represents a promising target for cancer immunotherapy. The overexpression of
CD24 has been documented in several tumor types and the activation of the CD24/Siglec-
10 axis has been shown to promote tumor immune evasion through the suppression of
the cytotoxic T cell function and macrophage-mediated phagocytosis. Preclinical efforts to
inhibit CD24 signaling have employed monoclonal antibodies, antibody–drug conjugates,
and CAR T cell therapy. Although clinical evidence regarding the efficacy of CD24 blockade
is currently limited, the compelling preclinical data in various tumor types—including
but not limited to those with dismal prognosis and limited efficacy of PD-1/PD-L1 axis
inhibition such as in pancreatic and ovarian cancer—as well as the pressing clinical need
for novel treatment strategies might provide enough justification for the accelerated clinical
testing of CD24 axis inhibitors. A potential caveat to that would be the lack of established
biomarkers for the prediction of response to treatment with anti-CD24 antibodies. There is
currently no standardized method for determining CD24 positivity, with some studies using
flow cytometry and others employing immunohistochemical expression, with substantial
heterogeneity. Finally, more preclinical data are required to delineate a potential role for a
concomitant CD24 and PD-1/PD-L1 axis blockade.
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