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This paper investigates the coordinated path following of multiple marine vessels with speed saturation. Based on virtual leader
strategy, the authors show how the neural dynamicmodel and passivity-based techniques are brought together to yield a distributed
control strategy. The desired path following is achieved by means of a virtual dynamic leader, whose controller is designed based
on the biological neural shunting model. Utilizing the characteristic of bounded and smooth output of neural dynamic model, the
tracking error jump is avoided and speed saturation problem is solved in straight path. Meanwhile, the coordinated path following
of multiple vessels with a desired spatial formation is achieved through defining the formation reference point. The consensus of
formation reference point is realized by using the synchronization controller based on passivity. Finally, simulation results validate
the effectiveness of the proposed coordinated algorithm.

1. Introduction

Control of multiple vehicles has received great attention from
the control community as an emerging technology in recent
years. A group of vehicles can performmany tasksmore effec-
tively in terms of time and cost than a single vehicle and can
accomplish complicated tasks not executable by a single one.
Coordination control of multiple vessels finds various appli-
cations in fields such as FPSO offloading, supporting, lifting,
and pipelay. All of these applications need coordination oper-
ations, which require multiple vessels to perform the compli-
cated task together while maintaining the desired formation
pattern.

In recent years, many studies on coordination control
issues ofmultiplemarine vessels have beenwidely reported in
the existing literatures, which are mainly focused on forma-
tion control, coordinated dynamic positioning, and coordi-
nated path following. For every issue, several advancedmeth-
ods are employed to design the controllers, such as leader fol-
lowing, virtual-structure, and behavioral coordination strate-
gies for formation control [1–3] and Lagrangian constraint
functions [4], nonlinear model predictive control [5], and
graph theory [6] for coordination control; some other meth-
ods for coordinated path following are introduced in [7–11].

Besides, communication issues between marine vessels like
link failures and time-delay are also discussed deeply; related
researches can be seen in [12, 13]. A common trait for all the
above work is that the controller design is task-oriented, for
example, controller designed for dynamic positioning or path
following. However, in practical applications the marine ves-
sels are capacity limited; for instance, the thrust of the vessels
is bounded. In coordinated path following, the speed jump
will happen at the critical point, which is beyond the actuator
limitation.

This need motivates the research on coordinated path
following controller structure design for marine vessels with
speed saturation. In this structure, the tracking speed should
be bounded under the set value and the speed saturation will
not influence the coordination. In traditional methods, the
saturation problem is usually solved by trajectory planning
according to the vessel dynamics. However, in coordinated
path following, we need to design guidance system for each
vessel, which will increase system complexity. Furthermore,
the formation will be influenced by the speed saturation. In
literature [14], we proposed a Guidance-Control structure.
The guidance system is designed by means of a virtual
dynamic leader, and the consensus of formation reference
point is realized by using the synchronization controller
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based on passivity. The virtual leader is simulated by the
computer, so this structure has stronger robustness than
the leader-follower. But this virtual leader just tracks the
predefined constant speed, and the saturation problem is still
unsolved.

To tackle the problem of speed saturation for a single
vehicle in the traditional path following controller, different
kinds of control schemes have been developed. The active
disturbance rejection control (ADRC) was first presented by
Han [15] and had been widely used in industry [16, 17]. By
arranging the process of the tracking differentiator based
on the expected state vectors, the speed saturation can be
solved indirectly. Yang and Luo [18, 19] introduced the neural
dynamics model for path planning to improve the perfor-
mance of the backstepping method and got better effect.
Based on the above works, a three-dimensional neural net-
workmodel based on bioinspired neurodynamics is proposed
for the path planning of an autonomous underwater vehicle
(AUV) in underwater environments [20–22]. In literature
[23], the trajectory tracking control problem of the WMR is
addressed and an energy-efficient tracking control approach
based on bioinspired neurodynamics is proposed. For ocean
surface vessels, an auxiliary design system is presented to
analyze the effect of input saturation, and states of auxiliary
design system are utilized to develop the tracking control in
[24]. Butmost of the previous works are about a single vehicle
with saturation; it is challenging to apply the existingmethods
to the coordination scenario of a group of vehicles.

In this paper, we develop the Guidance-Control structure
in [14] and combine the neural dynamicmodel and passivity-
based techniques to yield a distributed control strategy. The
desired path following is achieved by means of a virtual
dynamic leader, whose controller is designed based on
the neural dynamic model. Utilizing the characteristic of
bounded and smooth output of neural dynamic model, the
tracking error jump is avoided and speed saturation problem
is solved. Then, the multiple vessels just need to track the
desired speed produced by the virtual leader with a desired
spatial formation. This is achieved through defining the for-
mation reference point.The consensus of formation reference
point is realized by using the synchronization controller
based on passivity. The desired speed is bounded by the neu-
ral dynamic model such that the saturation problem can be
solved. Furthermore, the virtual leader is free from environ-
mental disturbances and will not influence the coordination
stability of multiple vessels.

The rest of this paper is organized as follows. In Section 2,
we give some preliminary results about the vesselmodel, neu-
ral dynamicmodel, passivity, and stability, which will be used
in the following design. Section 3 describes the control object
in mathematical expression. We present the coordination
controller design in detail for multiple vessels with speed sat-
uration in Section 4. Based on the Guidance-Control struc-
ture, the virtual leader is designed based on the bioinspired
neural dynamic model, and the coordinated formation of
multiple vessels is realized based on passivity.The simulation
of coordination tasks of four vessels is carried out to
demonstrate the validity of the proposed control approach in
Section 4. At last, we draw conclusion in Section 5.

2. Preliminaries

2.1. VesselModel. The3-DOFmathematic vesselmodel intro-
duced in [25] is considered here. The model is described as

𝜂̇ = R (𝜓) k,

MVk̇ + CV (k) k +DV (k) k = 𝜏V.
(1)

Here 𝜂 = [𝑛 𝑒 𝜓]

𝑇 is the position and orientation of the
vessel with respect to an inertial reference coordinate system,
and k = [𝑢 V 𝑟]

𝑇 is the vector of velocities given in the body-
fixed coordinate system. R(𝜓) is a transformation matrix
between the inertial and body-fixed coordinate frames, with

R (𝜓) = (
cos𝜓 − sin𝜓 0

sin𝜓 cos𝜓 0

0 0 1

) . (2)

Furthermore, MV is the system inertia matrix, including
added mass, and CV(k) and DV(k) denote the Coriolis cen-
tripetal matrix and damping matrix, respectively. 𝜏V is the
vector of external forces and torques input.

The expression of vessel model in the earth-fixed refer-
ence frame is

M (𝜂) 𝜂̈ + C (𝜂, 𝜂̇) 𝜂̇ +D (𝜂, 𝜂̇) 𝜂̇ = 𝜏. (3)

It is obtained by applying the following kinematic transfor-
mations:

M (𝜂) = R−𝑇 (𝜓)MVR
−1
(𝜓) ,

C (𝜂, 𝜂̇)

= R−𝑇 (𝜓) [CV (k) −MVR
−1
(𝜓)

̇R (𝜓)]R−1 (𝜓) ,

D (𝜂, 𝜂̇) = R−𝑇 (𝜓)DV (k)R
−1
(𝜓) ,

𝜏 = R−𝑇 (𝜓) 𝜏V.

(4)

The vessel model in the earth-fixed reference frame holds the
following properties:

(1) M(𝜂) is symmetric positive definite and satisfies

𝜆min (M) I ≤ M (𝜂) ≤ 𝜆max (M) I. (5)

(2) ̇M(𝜂) − 2C(𝜂, 𝜂̇) is skew symmetric, which means

𝜉
𝑇
(

̇M (𝜂) − 2C (𝜂, 𝜂̇)) 𝜉 = 0, ∀𝜉 ∈ R
3
. (6)

(3) DV(k) is positive definite, and R(𝜓) is invertible
matrix, so we have

𝜉
𝑇D (𝜂, 𝜂̇) 𝜉 = 0, ∀𝜉 ̸= 0. (7)
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2.2. Neural DynamicsModel. According to the way of neuron
membrane potential action, the shunting model is proposed
to understand the real time adaptive reaction of the agent to
the complex and dynamic environment [26]. Yang and Luo
[18] introduced this model to solve the path planning for
robot and got better effect. The bioinspired neural dynamics
model can be described as follows:

̇

𝜁 = −𝐴

∗
𝜁 + (𝐵

∗
− 𝜁) 𝑆

+
(𝑡) − (𝐷

∗
+ 𝜁) 𝑆

−
(𝑡) ,

(8)

where 𝜁 is the membrane potential; 𝐴∗, 𝐵∗, and 𝐷

∗ are
the negative damping ratio and the upper and lower limits,
respectively; the variables 𝑆

+
(𝑡) and 𝑆

−
(𝑡) represent the

excitatory and inhibitory neurons.
The bioinspired neural dynamicsmodel has the following

properties:

(P1) If variable changes in the range [−𝐷∗, 𝐵∗], then (8) is
stable.

(P2) For arbitrary excitatory or inhibitory input, this
model can generate continuous, smooth outputs,
which are limited in the range [−𝐷∗, 𝐵∗].

2.3. Passivity-Preserving Structure. Thedefinition of passivity
is given in this section, and a passivity-preserving structure is
introduced, which will be used in the controller design.

Definition 1. The dynamical system

𝜉 = f (𝜉, u)

y = h (𝜉, u) ,

𝜉 ∈ R
𝑛
, u, y ∈ R

𝑝

(9)

is said to be passive if there exists a scalar storage function
𝑆(𝜉) ≥ 0 such that

̇

𝑆 = ∇𝑆 (𝜉)
𝑇 f (𝜉, u) ≤ −𝑊 (𝜉) + u𝑇y, (10)

for some positive semidefinite function𝑊(𝜉).

Lemma 2. Consider the interconnection structure of two pas-
sive systems 𝐻

1
and 𝐻

2
in Figure 1. Then the interconnection

system is passive from u to y (see [27]).

2.4. Lyapunov Theorem of Asymptotic Stability

Lemma 3. For a nonlinear time varying system 𝑥̇ = 𝑓(𝑡, 𝑥)

if there exist a continuous differentiable function 𝑉 : [0,∞) ×

𝑈 → R (𝑈 = {𝑥 | 𝑥 ∈ R𝑛, ‖𝑥‖ < 𝑟}) and three continuous
positive definite functions𝑊

1
(𝑥),𝑊

2
(𝑥), and𝑊

3
(𝑥), such that

(1) 𝑊
1
(𝑥) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑊

2
(𝑥),

(2) ̇

𝑉(𝑡, 𝑥) ≤ −𝑊

3
(𝑥).

Then the system is uniformly asymptotically stable at equi-
librium point 𝑥 = 0. Furthermore, when 𝑊

1
(𝑥) is radially

unbounded, the system is uniformly globally asymptotically
stable (UGAS).

u
+

yE

−

ET H1

H2

u1

u2y2

y1

Figure 1: Symmetric interconnection of two passive systems.

3. Problem Statement

This paper investigates the coordination of multiple vessels
with speed saturation. To avoid repeated guidance design, a
virtual vessel is introduced as a leader to obtain a command
velocity that drives the vessels move along the path. The
speed of the virtual leader is regarded as the desired speed for
the multiple vessels to track. Meanwhile, the desired spatial
formation is achieved through defining the formation refer-
ence point.

Virtual leader is labeled with 0 and its dynamic is similar
to the true vessel. Suppose that label 𝑖 = 1, 2, . . . , 𝑛 represents
the 𝑖th vessel in the group and l

𝑖
= [𝑥

0𝑖
, 𝑦

0𝑖
, 𝜓

0𝑖
]

𝑇 is the forma-
tion reference vector of each vessel. Establish the formation
pattern for the vessels, and the formation reference position of
each vessel can be defined as

x
𝑖
= 𝜂
𝑖
(𝑡) + R (𝜓

𝑖
) l
𝑖
𝑖 = 0, 1, 2, . . . , 𝑛. (11)

The formation is achieved if and only if the formation
reference positions reach consensus; that is, x

1
= x
2
= ⋅ ⋅ ⋅ =

x
𝑛
. The formation reference position change of each vessel is

illustrated in Figure 2.

Control Objective. Assuming 𝜂
𝑑
(𝑡) is the desired path in the

earth-fixed frame and 𝜂
0
(𝑡), 𝜂̇
0
(𝑡) are the state vector of the

virtual leader and speed in the earth-fixed frame, respectively,
then the control objective can be expressed in the following
mathematical form:

(1) lim
𝑡→∞

󵄨

󵄨

󵄨

󵄨

𝜂
0
(𝑡) − 𝜂

𝑑
(𝑡)

󵄨

󵄨

󵄨

󵄨

= 0,

(2) 𝜂̇
0min ≤ 𝜂̇0 (𝑡) ≤ 𝜂̇0max,

(3) lim
𝑡→∞

󵄨

󵄨

󵄨

󵄨

ẋ
𝑖 (
𝑡) − k
𝑑 (
𝑡)

󵄨

󵄨

󵄨

󵄨

= 0,

(4) lim
𝑡→∞

󵄨

󵄨

󵄨

󵄨

󵄨

x
𝑖 (
𝑡) − x
𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

= 0, for 𝑖 ̸= 𝑗.

(12)

4. Controller Design

4.1. Frame of Coordination Controller. The frame of the
coordination controller is based on the Guidance-Control
structure in Figure 3. The guidance system is realized by
simulating a virtual leader with similar dynamics to the true
vessels, and controller of the virtual leader is designed based
on the bioinspired neural dynamic model, such that the
path following can be achieved with limited speed. Then the
position and velocity of the virtual leader are broadcast to
the followers. Finally, we use passivity theory to construct
controller to track the speed of the virtual leader andmaintain
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Figure 2: The sketch map of formation with guidance system.

Guidance 
system

Control 
system Vessels

Figure 3: The frame of coordinated controller.

the predefined formation for the true vessels. The details of
the design process are presented in Figure 4.

4.2. Guidance Design. This section shows controller design of
virtual leader based on the neural dynamic model. In order
to guarantee that the speed of all the following vessels varies
in bounded range, the virtual vessel should follow the path
with bounded speed. Taking the tracking error as input, the
neural dynamic model is constructed. Then, a new virtual
speed is formulated by using the smooth and bounded output
of neural dynamic model.

The desired trajectory is denoted as 𝜂
𝑑
, and the tracking

error can be defined as

S
1
= 𝜂
0
− 𝜂
𝑑
. (13)

Let S
1
= [𝑆11

𝑆

12
𝑆

13]
𝑇, and 𝑆

11
, 𝑆
12
, and 𝑆

13
are scalar

elements of the tracking error.
From the dynamic model, we can get

̇S
1
= R (𝜓) k

0
− 𝜂̇
𝑑
. (14)

To make S
1
→ 0, we need to design a virtual speed k̂

0

R (𝜓) k̂
0
= 𝜂̇
𝑑
− Λ

1
S
1
, (15)

where Λ
1
∈ R3×3 is positive diagonal matrix.

Notice that the virtual speed k̂
0
designed in (15) is related

to the tracking error S
1
. When the vessel moves at the critical

point of the trajectory, the tracking error will increase sud-
denly, which may lead to the virtual speed beyond the vessel
ability. To solve this problem, we substitute the termΛ

1
S
1
for

a smooth and bounded output 𝜁 of neural dynamics model,
and a new intermediate virtual speed k

0
is introduced as

R (𝜓) k
0
= 𝜂̇
𝑑
− 𝜁. (16)

Thus

̇S
1
= −𝜁. (17)

And 𝜁 is calculated from the neural dynamic model:

̇

𝜁

1
= −𝐴

1
𝜁

1
+ (𝐵

1
− 𝜁

1
) 𝑓 (𝑆

11
) − (𝐷

1
+ 𝜁

1
) 𝑔 (𝑆

11
) ,

̇

𝜁

2
= −𝐴

2
𝜁

2
+ (𝐵

2
− 𝜁

2
) 𝑓 (𝑆

12
) − (𝐷

2
+ 𝜁

2
) 𝑔 (𝑆

12
) ,

̇

𝜁

3
= −𝐴

3
𝜁

3
+ (𝐵

3
− 𝜁

3
) 𝑓 (𝑆

13
) − (𝐷

3
+ 𝜁

3
) 𝑔 (𝑆

13
) ,

(18)

where 𝜁 = [𝜁1
𝜁

2
𝜁

3]
𝑇, 𝑓(𝑥) = max{𝑥, 0}, 𝑔(𝑥) = max{−𝑥,

0}, 𝐴
𝑖
, 𝐵

𝑖
, 𝐷

𝑖
(𝑖 = 1, 2, 3) are positive scalar.

We consider a Lyapunov function candidate:

𝑉

1
=

1

2

S𝑇
1
S
1
+

1

2

𝜁
𝑇K
1
𝜁, (19)

where K
1
= diag([1/𝐵1 1/𝐵2 1/𝐵3]).

Taking the time derivative of (13) yields

̇

𝑉

1
= S𝑇
1
̇S
1
+ 𝜁
𝑇K
1
̇𝜁

= 𝑆

𝑇

11
̇

𝑆

11
+

1

𝐵

1

𝜁

𝑇

1

̇

𝜁

1
+ 𝑆

𝑇

12
̇

𝑆

12
+

1

𝐵

2

𝜁

𝑇

2

̇

𝜁

2
+ 𝑆

𝑇

13
̇

𝑆

13

+

1

𝐵

3

𝜁

𝑇

3

̇

𝜁

3

= −

1

𝐵

1

𝜁

𝑇

1
𝜁

1
[𝐴

1
+ 𝑓 (𝑆

11
) + 𝑔 (𝑆

11
)]

+

1

𝐵

1

𝜁

𝑇

1
[𝐵

1
𝑓 (𝑆

11
) − 𝐷

1
𝑔 (𝑆

11
) − 𝐵

1
𝑆

11
]

−

1

𝐵

2

𝜁

𝑇

2
𝜁

2
[𝐴

2
+ 𝑓 (𝑆

12
) + 𝑔 (𝑆

12
)]

+

1

𝐵

2

𝜁

𝑇

2
[𝐵

2
𝑓 (𝑆

12
) − 𝐷

2
𝑔 (𝑆

12
) − 𝐵

2
𝑆

12
]

−

1

𝐵

3

𝜁

𝑇

3
𝜁

3
[𝐴

3
+ 𝑓 (𝑆

13
) + 𝑔 (𝑆

13
)]

+

1

𝐵

3

𝜁

𝑇

3
[𝐵

3
𝑓 (𝑆

13
) − 𝐷

3
𝑔 (𝑆

13
) − 𝐵

3
𝑆

13
] .

(20)
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Figure 4: The controller design process of the virtual leader.
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∫
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Figure 5: The frame of passive formation controller.

If 𝐵
𝑖
= 𝐷

𝑖
, then we will have

𝐵

𝑖
𝑓 (𝑆

1𝑖
) − 𝐷

𝑖
𝑔 (𝑆

1𝑖
) − 𝐵

𝑖
𝑆

1𝑖
= 0, for 𝑖 = 1, 2, 3. (21)

So, when S
1
̸= 0 we can get

̇

𝑉

1
=

3

∑

𝑖=1

−

1

𝐵

𝑖

𝜁

𝑇

𝑖
𝜁

𝑖
[𝐴

𝑖
+ 𝑓 (𝑆

1𝑖
) + 𝑔 (𝑆

1𝑖
)] < 0. (22)

At this point, we can conclude that the intermediate virtual
speed generated by the neural dynamicsmodel can guarantee
convergence of tracking error. To avoid high order derivative
computation, we introduce a first-order low-pass filter as
tracking differentiator for the virtual speed:

Tk̇
𝑑0
+ k
𝑑0
= k
0
, (23)

where k
𝑑0

serves as an estimate of k
0
and T is the time

constant matrix of filter.
We define the speed error as

S
2
= k
0
− k
𝑑0
. (24)

Construct the second Lyapunov function:

𝑉

2
=

1

2

S𝑇
2
M]S2. (25)

From the model dynamics (1), the time derivative of (17) can
be calculated as

̇

𝑉

2
= S𝑇
2
[M]k̇0 −M]k̇𝑑0] = S𝑇

2
[𝜏] − C] (k0) k0

−D] (k0) k0 −M]T
−1
(k
0
− k
𝑑0
)] .

(26)

If we choose 𝜏] as

𝜏] = C] (k) k0 +D] (k) k0 +M]T
−1
(k
0
− k
𝑑0
)

− K
2
S
2
,

(27)

where K
2
∈ R3×3 is positive diagonal matrix, then the

derivative of the second Lyapunov function is

̇

𝑉

2
= −S𝑇
2
K
2
S
2
< 0, (28)

which guarantees that S
2
→ 0; that is, k

0
→ k
0
.Then, S

1
→ 0.

By introducing the neural dynamic model, the speed of
the virtual leader is limited in the range [−𝐷

𝑖
, 𝐵

𝑖
]. Denote

B
ℎ
= [𝐵1

𝐵

2
𝐵

3]
𝑇, D
𝑙
= [𝐷1

𝐷

2
𝐷

3]
𝑇; then we have 𝜂̇

0
∈

[−R(𝜓
0
)D
𝑙
,R(𝜓
0
)B
ℎ
]. In a word, the first and second objec-

tives in (12) are achieved. According to the virtual leader, we
can confirm the desired speed k

𝑑
for the vessels to track k

𝑑
=

𝜂̇
0
, k̇
𝑑
= 𝜂̈
0
.

4.3. Coordinated Formation Controller Design. The coordi-
nated formation controller designed for the true vessels is
based on the assumption that the communication topology
between the vessels is undirected graph. Based on the
passivity-based consensus strategy [22], we establish the
closed-loop system in Figure 5.We use dynamics of vessels to
be the feedback channel and construct the feed forward chan-
nel through introducing auxiliary signal.Then, we design the
control law such that both channels are passive. Based on the
passivity theory, the closed-loop system can be proved to be
uniformly globally asymptotically stable (UGAS).

The auxiliary control input for each vessel is defined as

𝛼
𝑖
= −

𝑝

∑

𝑘=1

𝑑

𝑖𝑘
𝜙

𝑘
(z
𝑘
) 𝑖 ∈ (0, 1, . . . , 𝑛) , (29)
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where D = {𝑑

𝑖𝑘
} ∈ R(𝑛+1)×𝑝 is the incidence matrix of

the communication topology graph among the vessels. The
synchronization error between vessels 𝑖 and 𝑗 which are
connected by the 𝑘th communication link is calculated by

z
𝑘
=

𝑛

∑

𝑖=1

𝑑

𝑖𝑘
x
𝑖
. (30)

In order to guarantee the passivity of the feed forward
channel, a nonlinear function of the synchronization error
is defined as Φ = diag[𝜙

1
, . . . , 𝜙

𝑝
], and each element can be

expressed as follows:

𝜙

𝑘
(z
𝑘
) =

𝜕𝑃

𝑘
(z
𝑘
)

𝜕z
𝑘

, (31)

where 𝑃
𝑘
(z
𝑘
) is nonnegative quadratic function, which satis-

fied the next three conditions:

𝑃

𝑘
(z
𝑘
) > 0, ∀

󵄨

󵄨

󵄨

󵄨

z
𝑘

󵄨

󵄨

󵄨

󵄨

̸= 0,

𝑃

𝑘
(z
𝑘
) 󳨀→ ∞ as 󵄨󵄨󵄨

󵄨

z
𝑘

󵄨

󵄨

󵄨

󵄨

󳨀→ ∞,

z𝑇
𝑘

𝜕𝑃

𝑘
(z
𝑘
)

𝜕z
𝑘

> 0, ∀z
𝑘
̸= 0.

(32)

In this paper we choose 𝑃
𝑘
(z
𝑘
) as

𝑃

𝑘
(z
𝑘
) =

1

2

(𝑎

𝑘
𝑧

𝑘1

2
+ 𝑎

𝑘
𝑧

𝑘2

2
+ 𝑏

𝑘
𝑧

𝑘3

2
)

(z
𝑘
= [𝑧𝑘1

𝑧

𝑘2
𝑧

𝑘3]
𝑇
) ,

(33)

such that

𝜙

𝑘
(z
𝑘
) = [𝑎𝑘

𝑧

𝑘1
𝑎

𝑘
𝑧

𝑘2
𝑏

𝑘
𝑧

𝑘3]
𝑇
.

(34)

Denote the speed error between the formation reference
point and the desired speed as 𝜉

𝑖
= ẋ
𝑖
−k
𝑑
and introduce a new

variable f
𝑖
= R(𝜓

𝑖
)𝑙

𝑖
. Then the formation control algorithm

for each vessel is designed as

𝜏
𝑖
= (C
𝑖
+D
𝑖
) (k
𝑑
−

̇f
𝑖
) +M

𝑖
(k̇
𝑑
−

̈f
𝑖
)

− K
𝑑𝑖
(ẋ
𝑖
− k
𝑑
) + 𝛼
𝑖
,

(35)

where K
𝑑𝑖
= K𝑇
𝑑𝑖
> 0 is positive definite matrix.

Substituting the control law into the vessel dynamics
yields

M
𝑖
̇𝜉
𝑖
= −C
𝑖
𝜉
𝑖
+ (D
𝑖
+ K
𝑑𝑖
) 𝜉
𝑖
+ 𝛼
𝑖
𝑖 ∈ 1, 2, . . . , 𝑛. (36)

Theorem 4. For 𝑛 vessels with undirected topology, whose
dynamics are given by (1), the state vector 𝜒 = [z𝑇, 𝜉𝑇]𝑇 =
0 of the closed-loop system in Figure 4 is uniformly globally
asymptotically stable (UGAS); that is, [(x

𝑖
−x
𝑗
)

𝑇
, (ẋ
𝑖
−k
𝑑
)

𝑇
]

𝑇
=

0 is UGAS, which guarantees that speed of all the formation
reference points converges to the desired speed and predefined
formation is achieved.

Proof. Define the storage function for the feed forward
channel as

𝑉

𝑓 (
z) =

𝑝

∑

𝑘=1

𝑃

𝑘
(z
𝑘
) , (37)

where z = (D𝑇 ⊗ I
3
)x.

Take derivative of (37):

̇

𝑉

𝑓 (
z) = [ 𝜕

𝜕z
(

𝑝

∑

𝑘=1

𝑃

𝑘
(z
𝑘
))]

𝑇

ż

= Φ (z)𝑇 (D𝑇 ⊗ I
3
) ẋ = Φ (z)𝑇 (D𝑇 ⊗ I

3
) 𝜉

= [(D𝑇 ⊗ I
3
)Φ (z)]

𝑇

𝜉 = −𝛼
𝑇
𝜉.

(38)

From the definition of passivity, we know that the feed for-
ward channel is passive from 𝜉 to −𝛼.

To establish passivity of the feedback path, another
storage function is defined as

𝑉

𝑏 (
𝜉) =

𝑛

∑

𝑖=1

𝑆𝜉𝑖 (𝜉𝑖) =

𝑛

∑

𝑖=1

1

2

𝜉
𝑇

𝑖
M
𝑖
𝜉
𝑖
. (39)

Using the properties in (5)–(7), we get

̇

𝑉

𝑏 (
𝜉) =

𝑛

∑

𝑖=1

̇

𝑆𝜉𝑖 (𝜉𝑖) =

𝑛

∑

𝑖=1

1

2

𝜉
𝑇

𝑖
̇M
𝑖
𝜉
𝑖
+ 𝜉
𝑇

𝑖
M
𝑖
̇𝜉
𝑖

= 𝜉
𝑇

𝑖
(

1

2

̇M
𝑖
− C
𝑖
) 𝜉
𝑖
− 𝜉
𝑇

𝑖
(D
𝑖
+ K
𝑑𝑖
) 𝜉
𝑖
+ 𝜉
𝑇

𝑖
𝛼
𝑖

≤

𝑛

∑

𝑖=1

(−𝜉
𝑇

𝑖
K
𝑑𝑖
𝜉
𝑖
+ 𝜉
𝑇

𝑖
𝛼
𝑖
)

= −

𝑛

∑

𝑖=1

(𝜉
𝑇

𝑖
K
𝑑𝑖
𝜉
𝑖
) + 𝜉
𝑇
𝛼.

(40)

Thus, we conclude that the feedback is passive with input 𝛼
and output 𝜉.

To prove uniformly asymptotical stability of 𝜒, the Lya-
punov function is defined as

𝑉

𝑧𝜉
(𝑡,𝜒) = 𝑉

𝑓 (
z) + 𝑉𝑏 (𝜉) . (41)

It is easy to deduce from properties in (5) that

𝜆min (M𝑖) ‖𝜉‖
2

2
≤ 𝑉

𝑏 (
𝜉) ≤ 𝜆max (M𝑖) ‖𝜉‖

2

2
, (42)

because the lower andupper boundof storage functions𝑉
𝑓
(z)

and 𝑉

𝑏
(𝜉) can be determined. And the two functions are

radially unbounded for variable z and 𝜉, respectively. So, there
exist two 𝜅

∞
functions 𝛾

1
and 𝛾
2
for 𝑉
𝑧𝜉
(𝑡,𝜒), such that

𝛾

1 (|(
z, 𝜉)|) ≤ 𝑉𝑧𝜉 ≤ 𝛾2 (|(z,𝜉)|) . (43)
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Calculating the derivative of 𝑉
𝑧𝜉
(𝑡,𝜒), we can obtain

̇

𝑉

𝑧𝜉
(𝑡,𝜒) = ̇

𝑉

𝑓 (
z) + ̇

𝑉

𝑏 (
𝜉)

≤ −𝛼
𝑇
𝜉 +

𝑛

∑

𝑖=1

(−𝜉
𝑇

𝑖
K
𝑑𝑖
𝜉
𝑖
) + 𝜉
𝑇
𝛼

= −

𝑛

∑

𝑖=1

(𝜉
𝑇

𝑖
K
𝑑𝑖
𝜉
𝑖
)

(44)

and∑𝑛
𝑖=1
(𝜉
𝑇

𝑖
K
𝑑𝑖
𝜉
𝑖
) is radially unbounded for variable 𝜒. From

the above results in (43)-(44), we have proved that both of the
conditions in Lemma 3 can be satisfied. So, equilibrium point
of the closed-loop system 𝜒 = [z𝑇, 𝜉𝑇]𝑇 = 0 is uniformly
globally asymptotically stable (UGAS). The vessels can track
the desired speed while maintaining the predefined forma-
tion. Thus, the last two control objectives are achieved.

5. Simulation Results

In this section, experimental simulations are carried out to
evaluate the effectiveness of the proposed coordinated path
following algorithm. Five marine vessels (including the vir-
tual leader) are considered to perform the coordinated track-
ing task. Detailed parameters of these vessels are presented
in [23]. The communication topology between the vessels is
undirected graph, and the incidence matrix is

D =

[

[

[

[

[

[

[

[

[

1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

−1 0 0 0 1

]

]

]

]

]

]

]

]

]

. (45)

Initial position and the desired formation pattern of the
vessels are set to be (label 0 represents the virtual leader)

𝜂

0
= [

27 782 −

𝜋

3

]

𝑇

,

𝑙

0
= [0 0 0]

𝑇
,

𝜂

1
= [80 831 −

7𝜋

30

]

𝑇

,

𝑙

1
= [0 100 0]

𝑇
,

𝜂

2
= [

−94 753 −

𝜋

2

]

𝑇

,

𝑙

2
= [0 −100 0]

𝑇
,

𝜂

3
= [

40 700 −

𝜋

4

]

𝑇

,

𝑙

3
= [0 50 0]

𝑇
,

𝜂

4
= [

−50 800 −

𝜋

3

]

𝑇

,

𝑙

4
= [0 −50 0]

𝑇
.

(46)

The simulation is divided into two stages. In the first 1000
seconds, the virtual leader tracks a sin curve based on the
conventional dynamic surface control (DSC) without speed
saturation; in the next 500 seconds, the virtual leader tracks
a straight line based on the neural dynamic model proposed
in this paper.

We use 𝜂
𝑑
to denote the desired path:

𝜂

𝑑 (
𝑡) = [𝑛𝑑 (

𝑡) 𝑒𝑑 (
𝑡) 𝜓𝑑 (

𝑡)]

𝑇
,

(47)

where 𝑛
𝑑
is the desired north position, 𝑒

𝑑
is the desired east

position, and 𝜓
𝑑
is the desired heading.

The sin curve path is defined as follows:

𝑛

𝑑 (
𝑡) = 𝑡,

𝑒

𝑑 (
𝑡) = 1000 sin( 𝑡

600

) ,

𝜓

𝑑 (
𝑡) = arc tan(

̇𝑒

𝑑 (
𝑡)

𝑛̇

𝑑 (
𝑡)

) .

(48)

The straight path is defined as follows:

𝑛

𝑑 (
𝑡) = 𝑡,

𝑒

𝑑 (
𝑡) = 1000 sin(1000

600

) ,

𝜓

𝑑 (
𝑡) = 0.

(49)

In the first stage, the dynamic surface control (DSC) param-
eters of the virtual leader controller are chosen as follows:

T = diag ([0.1, 0.1, 0.1]) ,

K
1
= diag ([0.5, 0.5, 0.5]) ,

K
2
= 0.1 ∗M].

(50)

Coordinated controller parameters of the true vessels are
chosen as

𝑎

𝑘
= 3000,

𝑏

𝑘
= 6 ∗ 10

5
,

K
𝑑𝑖
= 10

5
∗ diag (6.5, 6.5, 1350) , 𝑖 = 1, 2, 3.

(51)

In the second stage, the control parameters are chosen the
same as in the first stage, and the speed saturation and added
parameters in the neural dynamic model are chosen as

𝜐max = [10m/s 2m/s 0.5

∘
/s]𝑇 ,

𝐴

1
= 𝐴

2
= 𝐴

3
= 15,

𝐵

1
= 𝐷

1
= 10,

𝐵

2
= 𝐷

2
= 2,

𝐵

3
= 𝐷

3
= 0.5.

(52)
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Figure 6: The trajectory of each vessel.

According to the above parameters, the virtual reference
speed k

0
of the virtual leader in the second stage can be calcu-

lated from (16):

k
0
= [1 0 0]

𝑇
− 𝜁. (53)

The simulation results are shown in Figures 6–10. Tacking tra-
jectories of each vessel during the whole simulation process
are shown in Figure 6, and the surge speed, sway speed, and
yaw rate are shown in Figures 8–10. The speed of the virtual
leader and output of the neural dynamic model in the second
stage are also given in Figure 7.

Figure 6 shows that the coordinated path following is
achieved in both stages. It is clear to see that tracking error
jump happens at the initial time and the duration between
two stages. In practice, the tracking jump may lead to a huge
velocity, which can be out of the vessel’s capability.

Figure 7 shows speed of the virtual leader and output
of the neural dynamic model in the second stage. The
output of the neural dynamic model is bounded in the range
of [−10 10], [−2 2], and [−0.05 0.05], respectively, which
coincides with the parameters set in the neural dynamics
model (𝐵

1
= 𝐷

1
= 10, 𝐵

2
= 𝐷

2
= 2, 𝐵

3
= 𝐷

3
= 0.5). The

actual speed of the virtual leader in the second stage follows
(53), which is also bounded in the range of [−10 10], [−2 2],
and [−0.05 0.05]. Although there is tracking error jump at the
beginning of the second stage, the speed saturation can be
solved by introducing a neural dynamic model.

From Figure 8, we can see that the surge speed exceeds
10m/s in the first stage and is lower than 8m/s in the second
stage. Figure 9 shows the sway speed can be up to 2.5m/s
in the first stage and lower than 1.5m/s in the second stage.
Figure 9 shows the yaw rate is under 0.1 in the first stage and
lower than 0.05 in the second stage. According to (53), the vir-
tual speed of the virtual leader should be bounded in [−9 11],
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Figure 7: Speed of the virtual leader and output of the neural
dynamic model in the second stage.
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Figure 8: The surge speed of each vessel.

[−2 2], and [−0.5 0.5], respectively.The actual speeds of each
vessel exceed this limit in the first stage and fall in the
bounded range in the second stage.

From the above simulation results, it is indicated that the
proposed coordinated path following controller based on the
neural dynamic model and passivity-based techniques can
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Figure 10: The yaw rate of each vessel.

solve the saturation problem in straight path and achieve the
coordinated path following task at the same time.

6. Conclusion

The control scheme proposed in this paper solves the speed
saturation in coordinated path following for multiple vessels.
Based on the virtual leader structure, the guidance system
is also greatly simplified. The novel scheme takes the vessel
capability and consumption into consideration, which makes
this method more applicable in practice. The simulation
results verify the effectiveness of the proposed algorithm.
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