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Fully-Automatic Synapse Prediction
and Validation on a Large Data Set
Gary B. Huang*, Louis K. Scheffer and Stephen M. Plaza

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States

Extracting a connectome from an electron microscopy (EM) data set requires

identification of neurons and determination of connections (synapses) between neurons.

Asmanual extraction of this information is very time-consuming, there has been extensive

research efforts to automatically segment the neurons to help guide and eventually

replace manual tracing. Until recently, there has been comparatively little research on

automatic detection of the actual synapses between neurons. This discrepancy can, in

part, be attributed to several factors: obtaining neuronal shapes is a prerequisite for the

first step in extracting a connectome, manual tracing is much more time-consuming than

annotating synapses, and neuronal contact area can be used as a proxy for synapses in

determining connections. However, recent research has demonstrated that contact area

alone is not a sufficient predictor of a synaptic connection. Moreover, as segmentation

improved, we observed that synapse annotation consumes a more significant fraction of

overall reconstruction time (upwards of 50% of total effort). This ratio will only get worse

as segmentation improves, gating the overall possible speed-up. Therefore, we address

this problem by developing algorithms that automatically detect presynaptic neurons

and their postsynaptic partners. In particular, presynaptic structures are detected using

a U-Net convolutional neural network (CNN), and postsynaptic partners are detected

using a multilayer perceptron (MLP) with features conditioned on the local segmentation.

This work is novel because it requires minimal amount of training, leverages advances

in image segmentation directly, and provides a complete solution for polyadic synapse

detection. We further introduce novel metrics to evaluate our algorithm on connectomes

of meaningful size. When applied to the output of our method on EM data from Drosphila,

these metrics demonstrate that a completely automatic prediction can be used to

effectively characterize most of the connectivity correctly.

Keywords: connectomics, synapse prediction, deep learning, quantitative evaluation, Drosophila

1. INTRODUCTION

High-resolution EM imaging allows one to identify synapses, such as those shown in Figure 1

below. In these examples, there is an electron dense region corresponding to the synapse at the
pre-synaptic body. This consists of different transport apparatuses, such as vesicles, that abut the
neuronal membrane. In a data set that contains numerous organelles of varying electron densities
(i.e., imaging intensity) and neuronal membrane that intricately weaves throughout, identifying
synapses can be challenging. When creating a connectome, an annotator will typically scan the
data set or a traced neuron and manually identify and mark these sites. Even for organisms as small
as a fruit fly, there are up to 100 million connections, making the process of manual annotation
intractable.
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Consequently, there have been recent research efforts
to automate synapse detection using machine learning,
which we discuss below in section 2. However, existing
techniques for automated synapse detection have primarily
been applied to detection in mammalian tissues. It is unclear,
then, how well such approaches would translate when they
are applied to synapse detection in Drosophila tissues. In
contrast to synapses in the mammalian brain, which are
predominantly monadic, involving a single presynaptic site
and postsynaptic site, synapses in Drosophila are mostly
polyadic, involving multiple postsynaptic partners for a given
presynaptic site (Cardona et al., 2010), as can be seen in the
examples shown in Figure 2. Even when the pre-synaptic
site is given, these neuronal processes are often difficult to
segment, which makes identifying the post-synaptic partners
nontrivial.

With the exception of Staffler et al. (2017), prior work on
automated synapse identification, as discussed below in section 2,
has also focused only on the detection problem in isolation, with
performance evaluated at the individual synapse level. However,
synapse detection is one step in a larger pipeline, whose final goal
is the extraction of a connectome from the electron microscopy
(EM) data. Therefore, we are interested not only in individual
synapse detection accuracy but also in how synapse detection
integrates into this larger system and how errors in individual
steps in this system combine when evaluating the final produced
connectome.

For instance, one straightforward method for reliably using
automated synapse detections in an EM pipeline is as hints
for manual annotation, as done by Plaza et al. (2014). By
manually verifying detections, errors in the final connectome
are minimized but at the expense of human effort and time.
An alternative would be to simply accept all detected synapses
above a certain confidence threshold, but there has been limited
prior work on whether such a prediction would result in a
meaningful connectome (Dorkenwald et al., 2017). In particular,
many connections between neurons are formed from a large
number of synaptic contacts, and, therefore, one might hope that
automated algorithms are capable of faithfully reconstructing
such high strength connections, but there has been limited
experimental testing in this direction.

Moreover, extracting a connectome is also dependent upon
automatic neuron segmentation. In addition to possibly being
outright incorrect, a segmentation may also be noisy along
a border. Both cases may potentially cause errors in the
connectivity graph when combined with the automated synapse
identification output.

To our knowledge, these questions of evaluating synapse
detection in a larger context have only been investigated in the
recent work by Staffler et al. (2017). They find that many synapse
detection errors occur near errors in automated segmentation
and that manually fixing these segmentation errors is sufficient
to correct nearly half of the synapse detections. They also give
a theoretical analysis of individual synapse accuracy vs. binary
neuron-to-neuron connection accuracy, assuming a distribution
of synapses per neuron pair estimated from paired recordings
in rodent cerebral cortex; additionally, they compute synapse

accuracy and neuron-to-neuron level accuracy on a sparse local
cortical connectome.

Therefore, in this paper, we introduce algorithms that enable
fully automatic synapse prediction and evaluate the results of the
end to end process from the standpoint of the final produced
connectome. Specifically, key contributions and results of our
approach include the following:

1. an algorithm that generalizes well over a large data set of
Drosophila tissue with minimal supervision required,

2. new metrics to better evaluate synapse prediction in realistic
settings, and

3. empirical results analyzing the end to end accuracy of the
proposed approach on a publicly available connectome data
set (Takemura et al., 2015), demonstrating high performance
and preservation of biological pathways, in particular, relative
to a baseline using body-proximity as a proxy for synaptic
contact.

2. BACKGROUND

An automated approach for synapse identification in EM images
using machine learning was first proposed by Kreshuk et al.
(2011), who used a random forest (RF) classifier on hand-selected
image features to detect synapses. In a subsequent study, Kreshuk
et al. (2014) extend this method by applying graph cut on the
synapse probabilities to obtain a segmentation of each putative
synapse, extracting object-level features when the segmentation
is given, and then applying a RF classifier to determine whether
each segmented region is a synapse or not.

Becker et al. (2013) attempt to generate more informative
features, by conditioning on the synaptic cleft, thereby, allowing
features to be extracted from consistent spatial locations relative
to the putative synapse. These features are then used as input
for AdaBoost for synapse detection. Staffler et al. (2017) extend
this by conditioning on presynaptic and postsynaptic regions
separately, and use extracted features from these regions as input
for LogitBoost for synapse detection, yielding improved results.

Jagadeesh et al. (2013) consider the problem of large-scale
synapse detection in a large image volume. They first use a
fast interest point detector based on image-thresholding to
generate proposals for possible synapse locations. They then use
feature descriptors hand-designed to extract information about
relevant biological structures, namely vesicles, clefts, and ribbons.
These features are used as input for a support vector machine
(SVM) or a multiple kernel learner for patch-based synapse
detection.

Biological preparation has also been considered as a means to
aid automated synapse detection. Navlakha et al. (2013) apply a
technique for the selective staining of synapses, leading to more
pronounced opacity at synaptic sites, and leaving non-synaptic
membranes unstained. They propose a high-throughput method
for automated detection by first filtering down to a candidate
set of patches and then applying an SVM to classify each patch
as synapse or non-synapse. While this technique can be used
to compute statistics on synapses such as density, since the
membranes are left unstained, it cannot be used in conjunction
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FIGURE 1 | Five examples of synapses in the Drosophila optic lobe (columns). Rows show three orthogonal views (xy, yz, xz slices) of each synapse. The presynaptic

structure, referred to as a T-bar because of its shape, is centered in each image. Red dots mark segments containing postsynaptic densities (PSDs) that partner with

the T-bar. Each image slice captures 1 µm2 of data.

with segmentation and, therefore, cannot be directly used for
extracting a connectome.

More recently, Roncal et al. (2015) also consider large-
scale synapse detection, presenting two different techniques.
They propose a fast RF classifier using hand-selected features,
including a filter designed for vesicle detection. This RF classifier
yields results that are similar to the results of Becker et al. (2013)
but with approximately half the run-time. They also propose a
deep learning classifier for synapse detection, which yields results
that are superior to the fast RF classifier but is approximately two
orders of magnitude slower. Dorkenwald et al. (2017) also give a
deep learning multiclass CNN for detecting synapses along with
vesicle clouds and mitochondria and report improved results
over Roncal et al. (2015).

The above approaches were evaluated on synapse detection
in mammalian tissues, assuming a single postsynaptic site for
each presynaptic site. Several approaches also make additional
assumptions on the data, such as being able to reliably identify the
synaptic cleft to extract spatially consistent features (Becker et al.,
2013) or having feature descriptors hand-tuned for particular
biological structures (Jagadeesh et al., 2013).

While manual annotation of synapses has been performed
for sparse EM reconstructions (Zheng et al., 2018) and
software tools have been created to facilitate manual synapse
annotation (Boergens et al., 2017), a scalable alternative to

facilitate reconstruction of larger connectomes is to make use
of automated methods within a semi-manual workflow. For
example, the method of Kreshuk et al. (2011) was adapted
for presynaptic site detection by Plaza et al. (2014), where
human proofreaders subsequently verified or rejected each
automated detection, but the labeling of postsynaptic partners
was performedmanually with no automated guidance. Takemura
et al. (2017) also took a similar approach, using the method of
Huang and Plaza (2014) to generate presynaptic site proposals,
with postsynaptic partner identification again being performed
manually.

As mentioned in the introduction, synapse detection in
Drosophila can be more challenging, owing to the polyadic
nature of such synapses, where presynaptic sites have multiple
postsynaptic partners and where postsynaptic processes can often
be small and difficult to segment. To address this difficulty in
Drosophila synapse detection, Kreshuk et al. (2015) specifically
studied the problem of synaptic partner assignment. Conditioned
on ground-truth neuron segmentation and synapse detection,
they formulate a pairwise graphical model wherein nodes of the
model, Pij, represent possible assignments between two neurons
i, j at a putative synapse, for example, neuron i is presynaptic
and neuron j is postsynaptic. Edges in the model, connecting
Pij and Pik, encode biological priors on triplets of neurons i, j, k
at a putative synapse, such as a preference for a one-to-many

Frontiers in Neural Circuits | www.frontiersin.org 3 October 2018 | Volume 12 | Article 87

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Huang et al. Fully-Automatic Synapse Prediction

connection pattern over one-to-one. In a recent study, Heinrich
et al. (2018) propose a deep learning CNN model for synaptic
cleft segmentation in Drosophila, achieving state of the art results
(evaluated on the CREMI challenge data set). With its specific
focus on voxel-wise identification of the synaptic cleft, this work
can be distinguished from ours in that we attempt to directly
predict synaptic connectivity, which would require a nontrivial
subsequent step conditioned on the cleft prediction output (for
instance, by applying the method of Kreshuk et al. (2015).

In this study, we propose a complete system for automated
synapse detection, capable of handling polyadic synapses as
found in Drosophila. Our system uses a weakly-supervised deep
learning approach and takes the simple point-wise annotations
of presynaptic and postsynaptic sites as training data and,
therefore, can be applied to new data sets with relatively minimal
supervision. By comparison, existing methods as discussed
above, which require hand-designed features to extract high-level
information such as vesicles and ribbons, may not be appropriate
for new data sets or may require significant manual effort to
tune or redesign the feature descriptors. In contrast to Kreshuk
et al. (2015), we evaluate our system on completely automated,
noisy segmentation. Although our overall system was designed
for synapse detection in Drosophila, in section 6, we discuss how
the elements of our approach could be adapted for other domains
such as mammalian tissue.

3. AUTOMATED SYNAPSE DETECTION

Our system for automated synapse detection proceeds in two
distinct steps. First, independent of any segmentation, we apply a
classifier to automatically identify presynaptic sites inDrosophila,
which are often referred to as T-bars, because of their T-
like shape, formed by a pedestal and platform structure. Next,
conditioned on predicted T-bar locations and a segmentation,
we apply a second classifier to predict partnering postsynaptic
densities (PSDs) for the identified T-bars.

Owing to its distinct structure, we focus on first predicting
T-bars in isolation, independent of both segmentation and PSD
prediction, and delay the problem of determining the potentially
multiple PSD partners until after segmentation, as PSDs are
typically more ambiguous and difficult to identify. We note that
this approach of splitting T-bar and PSD prediction into separate
steps, with PSD prediction aided by segmentation, has also been
employed for manual synapse detection (Plaza et al., 2014).

We describe each step in our pipeline inmore detail in the next
two sections. We have also released source code that implements
the proposed methods1.

3.1. Presynaptic T-bar Identification
Algorithm
The first step in our automated synapse detection pipeline is to
detect the presynaptic T-bar sites. Examples of T-bars can be seen
in Figure 1.

For automated T-bar detection, we follow the approach
described in Huang and Plaza (2014), except that we update

1https://github.com/janelia-flyem/flypylib

FIGURE 2 | T-bar precision/recall. (This figure and subsequent figures are best

viewed in color.) The dashed red curve indicates PR when the only constraint

for a match between a predicted T-bar and a ground-truth T-bar is that the two

locations fall within a specified distance from each other. The dotted blue curve

gives PR when a match is further constrained to enforce that the predicted

T-bar and ground-truth T-bar both fall within the same segment, in the

ground-truth segmentation. Finally, the solid green curve gives PR with the

segmentation constraint, if the predicted T-bar locations are first shifted

slightly, away from potentially ambiguous regions. See the accompanying text

and section 3.1 for more discussion.

the voxel-wise classifier to be a 3D U-Net CNN (Ronneberger
et al., 2015). We give an overview of our approach here; for more
details, see Huang and Plaza’s paper (2014).

Unlike the problem of image segmentation, which is naturally
framed as a voxel-wise prediction problem (at each voxel, predict
whether that voxel belongs to a cell boundary or not), T-bar
detection is an object detection problem, which we formulate
as predicting, for each T-bar, a point annotation, specifying the
spatial coordinates of the center of the T-bar. To generate voxel-
wise training data for the U-Net, we simply consider any voxels
within a certain radius of a T-bar point annotation to be a positive
example and all other voxels to be negative examples. We find
that the U-Net is able to successfully learn from this simple
training data, allowing for less manual supervision effort relative
to methods and tasks that require dense labeling. Our specific U-
Net model consists of layers of convolution with 33 voxel filters
and two downsampling and two upsampling layers, with a total
receptive field size of 193 voxels.

To generate final T-bar point predictions from the voxel-
wise output of the U-Net, we spatially smoothen the voxel-wise
predictions, selecting the voxels with highest confidence, and
apply non-maxima suppression.

We make two notes concerning the evaluation of T-bar
prediction, in the context of a larger connectomics pipeline.
First, it is important to consider the precision/recall (PR) curve
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for the automated predictions. Different applications may have
different misclassification costs, leading to different thresholds
along different points of the PR curve. For instance, if very high
fidelity is required, one may need to select a threshold for high
recall, at the expensive of precision, whereas if the final goal is
to determine strong connections in the connectome with some
tolerance for small errors, the optimal threshold may be to select
for the PR break-even point.

Second, T-bar prediction accuracy can be computed by
necessitating for instance, that predicted T-bars be within a
specified distance of a ground-truth T-bar to be counted as a
correct match, as described by Huang and Plaza (2014). However,
ultimately, the exact location of a T-bar annotation will be
abstracted as one end point of an edge in a connectomic graph,
indicating the presynaptic body. Therefore, the primary concern
is that annotation be placed in the correct neuron. Thus, when
a segmentation is available, T-bar prediction accuracy should be
computed by further necessitating that the predicted T-bar falls
within the same segment as the ground-truth T-bar.

Owing to this interaction with the segmentation when
evaluating T-bar performance accuracy, it may be beneficial to
post-process the T-bar predictions. For instance, we find that
our T-bar detection often places the annotation in the distinctive
dark T-like structure itself, which, owing to its dark intensity,
can cause problems for automated segmentation. We, therefore,
find a benefit in slightly shifting T-bar predictions within a small
radius to the brightest intensity voxel, helping the annotation to
be placed in a nonambiguous region relative to the segmentation.

3.2. Segmentation-Aware Postsynaptic
Partner Identification
Once we automate T-bar predictions and a (possibly automated)
segmentation, we condition on this information in order to
predict the PSDs that partner with each T-bar. For a given T-
bar, we can consider all nearby segments as potentially possessing
a partner PSD. More precisely, we use the set of segments that
have a non-empty intersection with a sphere of a given radius,
centered at a given T-bar, as the candidate set of bodies that
may be postsynaptic to the T-bar. We exclude the segment
containing the T-bar itself and, therefore, make no attempt at
predicting autapses. Additionally, we do not attempt to identify
cases where a single T-bar makes multiple connections to the
same postsynaptic body, and, thus, any such biological multiple-
connections will at most be predicted as a single synapse.

With this setup, we have a binary classification problem, where
for each T-bar and each candidate segment, we wish to determine
if the candidate segment contains an actual PSD and, thus, forms
a synapse with the T-bar. For classification, we use a multi-layer
perceptron (MLP) with a single hidden layer consisting of 50
hidden units, trained using cross-entropy loss. To generate the
feature representation, we estimate the interface of the synapse
between the T-bar segment and candidate segment, by dilating
both segments by varying amounts and letting the estimated
interface to be the intersection. We then pool a set of simple
image features over the interface, computing statistics such as
size of the interface and image intensity within the interface

(such as number of voxels with intensity lower than some given
threshold), giving a total input feature dimensionality of 135.

One important consideration is that PSD prediction
performance will depend on both the accuracy of the PSD
predictor itself as well as the performance of the algorithm used
to generate the segmentation. Therefore, it may be necessary
to tune the PSD predictor with an awareness of the behavior of
the segmentation algorithm. For instance, we found that dark
intensity values such as those found at a boundary, as well as
at T-bars, would often present difficulties for the segmentation
algorithm. This ambiguity could lead to, for instance, small parts
of the T-bar being incorrectly assigned to a neighboring segment.
Although such localized errors would not have a large effect
on the topology of the segmentation (in terms of Rand error,
for example), they could have a large effect on the proposed
feature representation and, hence, the PSD classifier. Therefore,
we attempt to make the classifier more robust to such errors by
ignoring the segmentation at voxels with such dark intensity
values.

4. METRICS FOR EVALUATION

As discussed above, to properly evaluate automated synapse
detection performance in the context of a larger pipeline, it
is important to consider the full performance curve as the
threshold of classifier confidence is varied. This allows for
synapse prediction to be evaluated at the appropriate threshold
for varying misclassification costs, which will depend on the
final application that is being considered. One straightforward
metric for evaluating detection at the individual synapse level
is to produce a (PR) curve. Under the view of the connectome
as a graph, with directed edges between nodes (representing
neurons) defined by synapses, we can consider two variations for
computing PR. First, we can view the connectome as a weighted
graph and compute PR by considering each individual synapse
as a ground-truth label that is to be predicted. Second, we can
consider the connectome as an unweighted graph and compute
PR by considering each edge (formed by any number of synapses
between a pair of neurons) as a ground-truth label that is to be
predicted.

The above methods for computing PR are two ways of
dealing with the finding from connectomic studies that many
connections between neurons consist of multiple synapses
(Takemura et al., 2013, 2015). This multiplicity may be a weight
on the synapse strength ormay be amechanism for robustness. In
either case, a general assumption in many connectomic efforts is
that important biological connections will have somemultiplicity
greater than one. Therefore, we would like to consider a range of
metrics that will better reflect whether a set of automated synapse
predictions is actually good enough for use in connectomic
studies.

Computing PR with a weighted graph requires that the
automated predictions match the ground-truth precisely in terms
of strength, without any regard to topology. For example,
predicting an edge of strength 7 for a ground-truth edge of
strength 9 is equivalent to missing an edge of strength 2 (in terms
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of impact on total recall value), which may be inappropriate if
we fail to care about precisely determining the multiplicity of
strong connections. Computing PR with an unweighted graph,
on the other hand, evaluates the automated predictions solely in
terms of unweighted topology. Therefore, no penalty is incurred
for not correctly determining multiplicity, but missing an edge of
multiplicity 1 is equivalent to missing an edge of multiplicity 7.

One simple modification that can be made to the unweighted
graph computation is to consider the unweighted graph
produced by thresholding the edge weights by some value t (in
both the predicted and ground-truth connectomes). For t = 1,
we have the original unweighted PR; for t > 1, we focus only on
stronger predicted and ground-truth edges, with multiplicity of
at least t. We can also examine performance of a given classifier
over different sets of curves as we vary this threshold t.

4.1. Asymmetric PR, Connections
Added/Missed
By thresholding the edge weights at some t > 1 and computing
unweighted PR, we focus on the strong edge connections and
ignore potentially noisy weak connections. However, there is still
a strong boundary effect, where, for instance, a predicted edge of
strength t − 1 for a corresponding ground-truth edge of strength
t is counted as a false negative, the same as if the predicted edge
strength had been simply zero. This harsh decision boundarymay
also be problematic from the standpoint of potential small errors
in the manually annotated ground-truth. We would like a metric
that focuses on identifying clear error cases in the automated
predictions.

We, therefore, introduce an asymmetric variant of the above
thresholded PR curve. Let the asymmetric t1, t2 thresholded
PR curve (with t1 > t2) be defined as follows: consider the
(weighted) ground-truth connectome graph g and the predicted
graph p produced by applying some classifier threshold, and let
g(e) be the weight of a given edge e in g and similarly for p(e).
Recall is then computed as

∑
e[p(e) ≥ t2 ∧ g(e) ≥ t1]

∑
e[g(e) ≥ t1]

,

where the square Iverson brackets equate to 1 if the condition
inside is true and 0 otherwise. In other words, the total set of
positive ground-truth instances consists of all edges with ground-
truth weight greater than t1, but the subset of true positives
allows for edges with predicted weight greater than the smaller
t2. Conversely, precision is computed as

∑
e[p(e) ≥ t1 ∧ g(e) ≥ t2]

∑
e[p(e) ≥ t1]

.

Here, the total set of positive predicted instances consists of all
edges with predicted weight greater than t1, but the subset of true
positives allows for edges with ground-truth weight greater than
the smaller t2.

From the above PR definitions, it can be seen that the
asymmetric t1, t2 thresholded PR upper bounds the original
symmetric thresholded PR at t = t1. This more lenient

performancemeasure focuses on themore clear, egregious errors,
where there is a strong edge in either the ground-truth or
predicted connectome graph but a weak or no edge in the
other graph. We can also report these types of errors directly
as connections falsely added (false positives) and connections
missed (false negatives). Let connections missed be the set of
edges e such that g(e) ≥ t1 ∧ p(e) < t2. The number of
connections missed is an unnormalized version of 1− recall. Let
connections added be the set of edges e such that p(e) ≥ t1 ∧

g(e) < t2. The number of connections added is an unnormalized
version of 1 − precision. When plotting number of connections
added vs. number of connections missed, we normalize these
values by the number of edges in the ground-truth connectome
after thresholding, that is, the number of edges e such that g(e) ≥
t1, to put curves with different values of t1 on the same scale.

By using asymmetric thresholded PR and connections
added/missed, we can focus on strong error cases when
comparing sets of predictions and be robust to small amounts
of labeling noise. These error measures also more clearly indicate
to what extent strong biological connections are being missed or
falsely introduced through prediction.

5. RESULTS

In this section, we present a case study of our proposed synapse
detection system on data from theDrosophila optic lobe. The data
set that we use comprises seven columns of the medulla, acquired
using focused-ion beam milling scanning electron microscopy
(FIB-SEM). The image data has a total volume of 40 × 40 ×

80 µm, with an isotropic resolution of 10 nm per voxel. The
manually annotated subset of the data that we use in this study
consists of 27, 000 cubic microns and contains ∼56,500 T-bars
and ∼336,500 PSDs. Our methods operate on the data at the
original resolution. Additional details of the data can be found
in the papers of Plaza et al. (2014) and Takemura et al. (2015),
and the raw EM image data, FIB-25, is available online2.

We give results of the individual steps of our pipeline, full end
to end results, results using the proposed error metrics focusing
on clear error cases, comparison against a surface area contact
baseline, and results in the context of preserving biological
findings.

5.1. Performance of T-bar, PSD Detectors
We first train a T-bar detector using the system described above
in section 3.1, using the ground-truth annotations contained in
two 5203 voxel subcubes of the total volume, containing a total
of 325 T-bars. Figure 2 gives the precision/recall curve for the
automated predictions over the entire data volume. The plot
highlights two important points that were made in section 3.1:
First, T-bar prediction accuracy should ideally be assessed
within the context of segmentation and the final produced
connectome graph, rather than only considering the distance
between predicted and ground-truth T-bar locations. A predicted
T-bar that is very close to a ground-truth T-bar, but placed
in the wrong ground-truth segment, will lead to errors in the

2https://www.janelia.org/project-team/flyem/data-and-software-release
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connectome graph. This is highlighted in the difference between
the dashed red curve and the dotted blue curve. Consequently,
second, the T-bar detector may need to be aware of the behavior
of the corresponding segmentation algorithm. In our case, we
found that simply shifting the predicted T-bar locations slightly,
toward brighter image voxels, would move the predictions away
from dark image regions that are more difficult or ambiguous for
the segmentation algorithm and, therefore, improve performance
when applying the segmentation constraint.

Next, we evaluate the performance of the PSD predictor.
We consider performance both under the scenario in which
we have access to the ground-truth segmentation and in
which we only have access to a predicted, fully-automated
segmentation. We first make a note about the “ground-truth
segmentation.” This segmentation was produced by starting from
an automated segmentation (separate and distinct from the fully-
automated segmentation we use for synapse prediction) and
manually proofreading the segmentation by applying merge and
split operations as necessary. This ground-truth segmentation,
therefore, aims to get the correct general topology, but it is
not refined to the point of necessarily assigning a correct
label at the voxel level, and additionally this segmentation
may have orphan fragments that were not merged into larger
bodies. One important consequence is that, when we compute
performance using this ground-truth segmentation, we typically
ignore all predictions that fall into such orphan fragments,
defined as segments that contain neither a ground-truth T-
bar nor a ground-truth PSD. In other words, predictions that
fall into such fragments are not counted when computing
precision. Additionally, we shift PSD point annotations using the
same criteria as those used when shifting T-bar annotations as
mentioned above.

We first evaluate PSD prediction assuming that we have
access to ground-truth T-bar locations, in order to evaluate the
performance of the PSD detector on its own. This performance
is given in the left plot of Figure 3. Next, we evaluate PSD
prediction using predicted T-bar locations (using a conservative
threshold on the T-bar confidence scores, aimed at achieving
a high recall of 0.9). We compute precision/recall considering
each PSD separately, corresponding to a weighted view of
the connectome graph. Importantly, we note that although
performance is best when the ground-truth segmentation is
available during PSD prediction, our PSD predictor is still able
to achieve close performance using the automated, predicted
segmentation.

5.2. End to End Synapse Performance and
Comparison
We now move from evaluating each of the detectors in isolation
to giving a full end to end evaluation of our synapse detection
pipeline, with respect to the final generated connectome. As
determining an acceptable prediction accuracy is difficult without
considering the particular connectomics application domain,
we present a range of performance curves using our proposed
error metrics. Additionally, we compare against a baseline using
neuronal-body proximity/contact as a proxy for synaptic contact.
For this baseline, we use the ground-truth segmentation. We
randomly sample points at boundaries between ground-truth

segments and then randomly select the direction of the synapse
(presynaptic and postsynaptic bodies). For this proximity-
based comparison, we also compute precision/recall using an
undirected view of the connectome graphs, thereby, allowing for
matches even if the predicted direction of synapse was incorrect.

The left plot of Figure 4 gives the PR of our proposed system,
using the fully-automated predicted segmentation. We fix a
conservative threshold for T-bars, accepting all T-bars above this
threshold, and vary the threshold for the PSD detector to generate
PR curves, under both a weighted and unweighted view of the
connectome graph edges. The right plot shows a comparison
against the baseline using body-proximity as a proxy for synaptic
contact. Even after using the ground-truth segmentation and
computing the undirected edge PR this baseline performs much
worse.

Next, we evaluate synapse detection performance using our
proposed variants to PR, as shown in Figure 5. We give curves
when thresholding the edges at different values t, that is, a
(unweighted) edge is preserved in the connectome graph if the
original edge weight is greater than t. If t = 1, then the curve
is equivalent to the above unweighted graph PR. We also give
curves using our proposed asymmetric thresholded t1, t2 PR. We
again compare with the baseline of using body-proximity.

We give another view of synapse detection performance,
using our metrics of connections strongly added and missed,
in Figure 6. For the case of thresholding with t1 = 10, t2 =

5, we have a total of about 2000 edges in the ground-truth
connectome with a weight of at least t1 = 10. Using our proposed
system, we can recover more than 99% of these edges (less
than 1% connections missed) while introducing less than 1%
falsely added connections. By comparison, from the right plot
in Figure 6, we can see that by using body-proximity as a proxy
for synaptic connection, when thresholding by t1 = 10, t2 =

5 and considering the directed graph, the normalized number
of connections added and missed is approximately 50/50%.
Therefore, even with this error metric that focuses on clear,
unambiguous errors, this baseline approach is missing half the
ground-truth connections and adding in approximately the same
number of false connections.

Lastly, we present plots comparing automatic vs. manual
synapse counts when restricting edges to a core set of bodies
and connectomes, used in a study by Takemura et al. (2015).
Figure 7 gives scatter plots, where each point gives the automated
and manual synapse count for an edge in the connectome.
As mentioned above in section 3.2, our proposed system has
limitations in that it does not attempt to predict autapses
and predicts at most one connection from a T-bar to a given
postsynaptic body. Therefore, we also give a comparison of
automatic vs. manual counts, shown to the right in Figure 7, after
removing autapses and collapsing multiple connections from a
single T-bar to the same postsynaptic body.

We note that, for strong edges with a synapse count of 30
or above, our automated predictions fall within the indicated
bounds of y = 2x and y =

1
2x. We can also examine edges

in the automated and ground-truth connectome for which the
corresponding connectome has a synapse count of zero. We can,
thus, see that, for all edges with a manual synapse count of at
least four, we are able to recover the edge, in the sense that
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FIGURE 3 | PSD precision/recall, where each PSD is considered separately (weighted view of connectome graph, see section 4). Performance is computed both

when access to the ground-truth segmentation is available during PSD detection (ground-truth/gt segm), and when only the fully-automated, predicted segmentation

is available during PSD detection (predicted/pd segm). (Left) Plot of PSD prediction performance in isolation, using ground-truth T-bar locations. (Right) Plot of

end-to-end performance, using predicted T-bar locations.

FIGURE 4 | Global connectome graph precision/recall. (Left) The top blue curves show PR of the connectome graph, with the dashed curve computing PR using a

weighted view of the graph edges and the solid curve computing PR using a unweighted binary view of the graph edges. These curves are computed using the

filtered set of bodies in the ground-truth segmentation, as described in section 5.1. For reference, the bottom red curves show weighted and unweighted PR if all

bodies (adding in orphan segments) are considered. (Right) Comparison against the baseline of using ground-truth body-proximity as a proxy for synaptic contact. All

curves show unweighted PR on the filtered set of bodies.
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FIGURE 5 | Thresholded global connectome graph precision/recall. (Left) The solid blue curve shows the unweighted PR from the previous figure, which is equivalent

to a threshold of t = 1. The red curves give symmetric thresholded PR at t = 5, 10. The green curves show asymmetric thresholded PR at t1 = 10, t2 = 5, 8. (Right)

Comparison against the baseline using body-proximity. Focusing on strong error cases shows that while the proposed method only makes a few mistakes at

t1 = 10, t2 = 5, the body-proximity baseline still performs comparatively poorly.

FIGURE 6 | Thresholded global connectome graph connections added/missed. (Left) The curves show errors in terms of connections that were added and missed,

using the same thresholds as the PR curves in Figure 5. (Right) Comparison against the baseline using ground-truth body-proximity, both directed and undirected

edges.
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FIGURE 7 | Comparison of manual and automatic synapse counts, where each point indicates the counts for an edge in the connectome. Edge weights of 0 have

been shifted to 0.5 to appear on the log plot. Dashed lines indicate y = 2x and y =
1
2 x. (Left) Comparison with full ground-truth connectome. (Right) Comparison

after removing ground-truth autapses and collapsing multiple connections from one T-bar to the same postsynaptic body.

the automated prediction gives a synapse count of at least one.
Similarly, for all edges with an automated synapse count of at
least five, the edge appears in the ground-truth connectome, as
the manual synapse count is at least one.

6. CONCLUSIONS

In this paper, we have proposed an end to end system for
automatic synapse detection in EM image data, capable of
handling the polyadic synapses found in Drosophila. We have
additionally proposed a set of metrics to better assess the quality
of a set of synapse predictions and whether such predictions
are sufficiently accurate to be of use in connectomic studies.
We evaluate our system on the Drosophila seven column
medulla data set and show that it is capable of reconstructing
high multiplicity synaptic connections, preserving biological
pathways, while only making a small number of clear errors; we
also show that our system greatly outperforms the baseline using
body proximity as a proxy for synaptic connections.

By performing an evaluation on the entire end to end
automatic predictions, we are able to assess both how each
component contributes to the overall performance as well as
how the components interact. For instance, by comparing
performance of PSD prediction using ground-truth T-bars or
ground-truth segmentation, we can estimate the expected gains
from improving T-bar prediction or segmentation. At the same
time, we are able to see that overall performance may be
improved by taking into account noise in a previous component,
such as the need to spatially shift the synapse predictions to be
more robust to noise in the segmentation.

Although our proposed method is designed for synapse
detection in Drosophila, we believe that the success of our
presynaptic T-bar detector suggests that our weakly-supervised
approach may be of value in other domains as well. For
example, in synapse detection in mammalian tissues, rather
than spending manual annotation time to obtain ground-
truth labeling of synapses accurate at a voxel-level, as is
common practice (Roncal et al., 2015), it may instead suffice
to place two landmarks per synapse (to indicate location and
directionality), allowing one to obtain more synapse annotations
in an equal amount of time. Training on a larger, potentially
more diverse set of synapses may lead to better accuracy and
generalization across a large volume. A combination of the two
approaches could also be used, wherein a small number of
synapses is labeled at voxel-wise accuracy and a large number
is labeled with landmarks, thereby, maintaining voxel-level
performance with the added benefit of a larger, more diverse
training set.
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